KR20120121122A - Solidifying agent for sewage sludge - Google Patents

Solidifying agent for sewage sludge Download PDF

Info

Publication number
KR20120121122A
KR20120121122A KR1020110038905A KR20110038905A KR20120121122A KR 20120121122 A KR20120121122 A KR 20120121122A KR 1020110038905 A KR1020110038905 A KR 1020110038905A KR 20110038905 A KR20110038905 A KR 20110038905A KR 20120121122 A KR20120121122 A KR 20120121122A
Authority
KR
South Korea
Prior art keywords
sewage sludge
weight
compound
ash
calcium
Prior art date
Application number
KR1020110038905A
Other languages
Korean (ko)
Inventor
이상래
강석화
구자술
유승엽
이근재
문남구
손태환
Original Assignee
동양시멘트 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동양시멘트 주식회사 filed Critical 동양시멘트 주식회사
Priority to KR1020110038905A priority Critical patent/KR20120121122A/en
Publication of KR20120121122A publication Critical patent/KR20120121122A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/008Sludge treatment by fixation or solidification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • C02F11/145Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances using calcium compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/105Gaseous combustion products or dusts collected from waste incineration, e.g. sludge resulting from the purification of gaseous combustion products of waste incineration
    • C04B18/106Fly ash from waste incinerators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • C04B22/064Oxides, Hydroxides of the alkali or alkaline-earth metals of the alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/16Acids or salts thereof containing phosphorus in the anion, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/42Inorganic compounds mixed with organic active ingredients, e.g. accelerators
    • C09K17/44Inorganic compounds mixed with organic active ingredients, e.g. accelerators the inorganic compound being cement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/42Inorganic compounds mixed with organic active ingredients, e.g. accelerators
    • C09K17/46Inorganic compounds mixed with organic active ingredients, e.g. accelerators the inorganic compound being a water-soluble silicate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Civil Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE: A functional solidifying material for sewage sludge is provided to solidify sewage sludge, to reduce bad smell, to restrain eruption of heavy metal, to recycle sewage sludge as waste cover material, and to reduce environmental contamination. CONSTITUTION: A functional solidifying material for sewage sludge comprises 5-30 weight% of portland cement, 10-30 weight% of quicklime, 50-80 weight% of pozzolan material, and 0.5-10 weight% of a deodorizing agent. The sterilizer is that a metal composite is dipped in a calcium-phosphate compound represented by chemical formula 1: Ca_(10-x)(HPO4)_x(PO4)_(6-x)(OH)_(2-x) · nH2O. In chemical formula 1, x is 0 or 1. The pozzolan material is one or more selected from paper ash, fly ash, incinerate material, ground granulated blast-furnace slag, fly ash micropowder, volcano ash, chaff meal, diatomite, silica fume and zeolite.

Description

하수슬러지용 기능성 고화재{Solidifying agent for sewage sludge}Functional solid fire for sewage sludge {Solidifying agent for sewage sludge}

본 발명은 하수슬러지용 기능성 고화재에 관한 것으로서, 보다 상세하게는 하수슬러지의 수분을 신속하게 제거하여 복토재(인공 토양)용으로 재활용 할 수 있도록 고화하며, 고화 및 복토용으로 사용 시 악취 유발물질이 쉽게 탈리되지 않도록 장기적인 안정성을 지니게 하며, 또한 고화물의 중금속 용출을 억제할 수 있는 하수슬러지 기능성 고화재에 관한 것이다.The present invention relates to a functional solidified material for sewage sludge, and more specifically, to solidify so that it can be quickly recycled for the cover material (artificial soil) by removing the moisture of the sewage sludge, and used to solidify and cover the bad smell The present invention relates to a sewage sludge functional solidified material which has long-term stability so as not to be easily detached and also can suppress the leaching of heavy metals of solids.

국내 하수슬러지는 국민들의 생활수준 및 제반여건의 향상으로 그 발생량이 2007년도 7,631 톤/일에서 2011년도에는 10,259 톤/일로 급속하게 늘어나고 있는 추세이다. 따라서 정부에서는 이의 심각성을 인지하고 하수슬러지 처리를 위해 각 시?도별 처리시설을 설치하여 처리계획을 수립하고 있다. Domestic sewage sludge has been rapidly increasing from 7,631 tons / day in 2007 to 10,259 tons / day in 2011 due to improvement in people's living standards and conditions. Therefore, the government recognizes the seriousness of this and establishes a treatment plan by installing treatment facilities for each city and province for sewage sludge treatment.

그러나 하수슬러지 처리계획 방법 중 하나인 해양배출(2010년 전체 하수슬러지의 68.5%)의 경우 런던협약에 의해 2012년부터 전면금지가 예정되어 있고, 소각과 매립의 경우는 환경부에서 다이옥신 등의 환경오염물질 발생에 대한 우려와 온실가스 발생억제 및 재활용촉진을 위해 꺼려하고 있다. 또한 하수슬러지의 재활용에 있어, 농림부에서는 슬러지에 포함된 유해물질이 농작물을 통해 인체에까지 해를 미칠 수 있다는 점을 들어 퇴비화에 반대하고 있다. 따라서 하수슬러지 처리 방법 중 복토재로의 재활용에 대한 기대가 커지고 있으나 이 또한 여러 가지 문제에 봉착해 있다. However, in the case of marine discharges (68.5% of total sewage sludge in 2010), which is one of the sewage sludge disposal methods, the total ban is scheduled for 2012 from the London Convention. In case of incineration and landfill, We are reluctant to worry about material outbreaks and to curb greenhouse gas emissions and promote recycling. In the recycling of sewage sludge, the Ministry of Agriculture is opposed to composting because the harmful substances contained in the sludge can harm the human body through crops. Therefore, there is a growing expectation for the recycling of sewage sludge as a cover material, but this also faces various problems.

하수슬러지의 구성성분은 대부분 SiO2, Al2O3, Fe2O3 등과 같은 무기물질로 구성되어 있어 복토재로의 활용 가능하나, 일반적으로 스펀지형 구조를 이루고 있어 모세관력에 의한 수분함유로 탈수가 매우 어려워 복토재로의 활용에 대한 걸림돌이 되고 있고, 하수슬러지 내부에 함유된 수분과 유기물에 의한 병원균, 파리, 모기의 서식처를 제공함으로써 공중보건상 문제점이 유발될 가능성이 크고, 보다 큰 문제점은 침출수에 의한 지하수 오염과 악취 등의 2차 오염물질을 발생시킨다는 것이다. Constituents of the sewage sludge is mostly SiO 2, Al 2 O 3, Fe 2 O 3 a possible use of boktojae as it consists of inorganic materials such, it generally forms a sponge-like structure dehydrated with water contained by capillary forces It is very difficult to use as a soil material and it is likely to cause public health problems by providing habitat of pathogens, flies and mosquitoes due to moisture and organic substances contained in the sewage sludge, And it generates secondary pollutants such as ground water pollution and odor due to leachate.

상기와 같은 여러 가지 문제점을 해결하기 위해서는 함수량을 떨어뜨리고 자체 발열을 통한 살균이 가능한 고화재의 개발이 필수 불가결한 상황이다. In order to solve the above-mentioned problems, it is indispensable to develop a fire which can reduce the water content and sterilize by self-heating.

한편, 현재 사용되고 있는 고화재는 대부분 흡수 및 발열을 유도하는 CaO 계통의 알칼리성 재료 또는 FeSO4 계통의 산성 재료를 사용하고 있어 최근 들어 하수슬러지 처리에서 가장 문제 시 되고 있는 악취 저감 부분에는 취약한 실정이다.On the other hand, most of the currently used fires are mainly due to the use of CaO-based alkaline materials or FeSO 4 -based acidic materials that induce absorption and heat generation, and thus they are vulnerable to the odor reduction part which is most problematic in sewage sludge treatment in recent years.

함수율이 약 80% 정도인 하수슬러지의 악취를 분석해 보면, 50여종의 물질이 검출되는데, 이 중에서 비교적 농도가 높고, 최소 감지값이 낮은 물질을 대상으로 표 1에 나타내었다. 하기 표 1과 같이 황화합물과 알데하이드화합물, 질소화합물이 복합적으로 발생되고 있으며, 후각적으로는 이들의 복합취에 의한 냄새로 판단된다. When analyzing the odor of sewage sludge having a water content of about 80%, about 50 kinds of substances are detected. Among them, the substances having relatively high concentration and low minimum detection value are shown in Table 1. As shown in Table 1, the sulfur compound, the aldehyde compound and the nitrogen compound are generated in a complex manner, and the odor is attributed to their odor.

표 1에는 실제 발생되는 물질을 대상으로 악취 성분별 최소 감지값에 의한 기여율이 표현되어 있다. 이러한 기여율은 주 제거 대상물질을 선정하는 방법으로 단일물질에 의한 악취가 아닐 경우 탈취제 내부의 비율을 결정하는 주요한 자료가 된다. 산성 계통의 물질, 염기성 계통의 물질에 의한 혼합취가 주요 제거 대상이다.Table 1 shows the percentage of contribution by the minimum detection value of the odor component to the actual generated substance. This contribution rate is a method of selecting the substance to be removed, and it is the main data for determining the ratio of the deodorant inside the deodorant when the odor is not caused by a single substance. It is a major object to remove acidic and basic systems.

No.No. 물질 명Substance 농도
(ppm)
density
(ppm)
최소감지값
(ppm)
Detection value
(ppm)
이론적 희석배수Theoretical dilution 악취기여율
(%)
Odor contribution rate
(%)
1One 황화수소Hydrogen sulfide 0.260.26 0.000410.00041 634634 0.50.5 22 메틸머캅탄Methyl mercaptan 4.814.81 0.000070.00007 68,71468,714 51.151.1 33 디메틸 설파이드Dimethyl sulfide 3.093.09 0.0030.003 1,0301,030 0.80.8 44 디메틸 디설파이드Dimethyl disulfide 0.620.62 0.00220.0022 282282 0.20.2 55 아세트알데히드Acetaldehyde 0.510.51 0.00150.0015 340340 0.30.3 66 아크롤레인Acrolein 0.320.32 0.00850.0085 3838 0.030.03 77 프로피온알데히드Propionaldehyde 0.160.16 0.0010.001 160160 0.10.1 88 벤즈알데히드Benzaldehyde 0.020.02 0.0280.028 1One -- 99 트리메틸아민Trimethylamine 22 0.0000320.000032 62,50062,500 46.546.5 1010 암모니아ammonia 9898 0.150.15 653653 0.50.5

상기 표 1에 개시된 바와 같이 메틸머캅탄과 트리메틸아민이 주요악취 물질로 판단되지만, 작업장에서 작업환경을 고려하고, 악취 물질의 특성을 고려하면 산성 물질에서는 황화수소, 염기성물질에 대해서는 암모니아를 메틸머캅탄과 트리메틸아민의 발생량과 동일한 양으로 취급하는 것이 바람직할 것이다. 황화수소와 암모니아는 자체 휘발성이 크고, 수분 존재 하에서 온도, pH 등의 조건에 따라 발생량이 크게 달라지며, 무엇보다 후각적으로 심한 자극을 느낄 수 있는 물질이므로 악취 개선 여부를 판단하기 위해서는 반드시 제거되어야 한다.As shown in Table 1 above, methyl mercaptan and trimethylamine are considered to be the main odor substances. Considering the working environment in the workplace and taking into account the characteristics of the malodorous substance, hydrogen sulfide in the acidic substance and ammonia in the methylmercaptan And trimethylamine in an amount equal to the amount of generation of trimethylamine. Hydrogen sulfide and ammonia have a high volatility, and the amount of generation varies greatly depending on conditions such as temperature and pH in the presence of moisture, and above all, it must be removed to determine whether or not to improve odor because it is a substance that can sense severe stimuli. .

또한, 일반적으로 하?폐수슬러지의 경우 처리수의 수질특성 및 수처리 공정상의 투입약품에 의하여 일부 중금속 성분을 함유할 수 있으며, 이를 기존의 생석회와 시멘트를 위주로 한 고화제를 이용하여 고화 처리시 pH의 증가에 따라 일부 중금속 성분의 용출 증가가 우려된다. 일반적으로 Cr 및 Cu의 경우 pH 증가에 따라 용해도가 증가하는데 Cr의 경우 약 pH 9, Cu의 경우 약 pH 10.5를 기점으로 pH가 증가할 수 록 용출증가의 우려가 있다.In addition, generally, wastewater sludge may contain some heavy metals due to the water quality characteristics of the treated water and the chemicals added to the water treatment process, and the pH of the wastewater sludge is solidified using a solidifying agent based on existing quicklime and cement. There is a concern that the increase of some heavy metal components in the elution increases. In general, solubility increases with increasing pH in Cr and Cu, but there is a fear of dissolution increase as the pH increases from about pH 9 in Cr and about 10.5 in Cu.

이에, 본 발명의 목적은 하수슬러지를 고형화 시키고 악취를 저감하며 중금속 용출을 억제하는 하수슬러지용 기능성 고화재를 제공하여 하수슬러지 등을 양질의 매립용 복토재로 재활용하여 환경오염을 줄이는 것에 있다.Accordingly, an object of the present invention is to reduce the environmental pollution by recycling the sewage sludge to a high quality landfill material by providing a functional solid material for sewage sludge that solidifies sewage sludge, reduces odor and suppresses heavy metal leaching.

상기 목적을 달성하기 위하여, 본 발명은 포틀랜드 시멘트 5 ~ 30 중량%; 생석회 10 ~ 30 중량%; 포졸란 물질 50 ~ 80 중량%; 및 탈취제 0.5 ~ 10 중량%를 포함하며, 상기 탈취제는 하기 화학식 1로 표시되는 칼슘-포스페이트 화합물에 금속 복합체를 담지한 것을 특징으로 하는 하수슬러지용 기능성 고화재를 제공한다:In order to achieve the above object, the present invention is Portland cement 5 to 30% by weight; 10-30% by weight of quicklime; 50-80 weight percent of the pozzolanic material; And 0.5 to 10% by weight of a deodorant, wherein the deodorant provides a functional solidifying material for sewage sludge, characterized in that a metal complex is supported on a calcium-phosphate compound represented by Formula 1 below:

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서, x는 0 또는 1일 수 있다.In Formula 1, x may be 0 or 1.

상기 포틀랜드 시멘트는 하수슬러지 수분과 접촉하여 1차 수화반응을 진행시키는 역할을 수행하며, 1종에서 5종까지의 포틀랜드 시멘트를 적용 용도에 따라 달리하여 사용할 수 있다. 이때, 포틀랜드 시멘트의 함량이 30 중량%를 초과하게 되면 하수슬러지와의 수화반응에 의하여 혼합 후 과다 경화되어 고화재의 투수계수가 감소하며, 포틀랜드 시멘트 함량이 5 중량% 미만이면 수화생성물의 감소로 인하여 고화재가 소요의 압축강도를 만족시키지 못하거나 물과의 접촉 시 재용출의 문제가 야기될 수 있다.The portland cement serves to advance the first hydration reaction in contact with the sewage sludge moisture, and can be used differently depending on the application of one to five types of portland cement. At this time, when the content of the Portland cement exceeds 30% by weight, the water permeation coefficient of the solidified material is reduced by mixing with the sewage sludge after hydration reaction, and when the Portland cement content is less than 5% by weight, the hydration product is reduced. Due to this, the fire may not meet the required compressive strength or may cause problems of re-elution upon contact with water.

상기 생석회는 하수슬러지 수분과 접촉하여 반응초기에 수화반응에 의해 발생되는 고열과 체적팽창에 의한 모세관 공극 확대에 의해 하수슬러지의 수분을 증발시키며, 자유수를 결정하고 수화함으로써 단 시간 내에 하수슬러지를 건조시키는 역할을 수행한다. 이때, 생석회의 함량이 30 중량%를 초과하게 되면 물과의 격렬한 반응으로 인하여 고온으로 인한 혼합설비에 지장을 초래하거나 pH 증가에 의한 암모니아 발생이 증가되고, 생석회 함량이 10 중량% 미만이면 수분증발에 필요한 열량의 감소와 수화 생성물 발생량 감소로 하수슬러지의 고형화에 문제를 야기할 수 있다.The quicklime is in contact with the sewage sludge moisture and evaporates the water of the sewage sludge by the capillary pores enlarged by the high heat and volume expansion caused by the hydration reaction at the beginning of the reaction, and determines the free water and hydrates the sewage sludge within a short time. Serves to dry. At this time, when the content of quicklime exceeds 30% by weight, it may cause an impairment of the mixing facility due to the high temperature reaction with water or increase ammonia generation due to the increase of pH, and when the quicklime content is less than 10% by weight, water vaporization may occur. The reduction of calories needed and the reduction of hydration product generation can cause problems in solidifying sewage sludge.

상기 포졸란(Pozzolan) 물질은 포틀랜드 시멘트와 하수슬러지 수분 간의 1차 수화반응에 의해 생성된 수화물과 화학적인 반응을 통해 시멘트와 같은 수경성을 발휘하게 되어 포졸란 반응에 의한 장기적인 수화반응을 지속시키는 역할을 수행하며, 제지애시, 플라이애시, 소각재, 고로슬래그미분말, 석탄회미분말, 화산재, 왕겨재, 규조토, 실리카흄 및 제올라이트로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 사용할 수 있다. 이때, 포졸란 물질의 함량이 80 중량%를 초과하게 되면 자체 수경성을 갖고 있지 못하여 경화가 지연되거나 고화물이 소요의 압축강도를 만족시키지 못하며, 포졸란 물질이 50 중량% 미만이면 시멘트 및 생석회의 비율증가로 하수슬러지와의 혼합 시 과다 경화되어 고화물의 투수계수가 감소되는 문제를 야기될 수 있다.The pozzolan material plays a role of sustaining the long-term hydration reaction caused by the pozzolanic reaction through the chemical reaction with the hydrate produced by the first hydration reaction between the portland cement and sewage sludge moisture. In addition, any one or two or more selected from the group consisting of paper ash, fly ash, incineration ash, blast furnace slag powder, coal ash powder, volcanic ash, rice hull ash, diatomaceous earth, silica fume and zeolite may be used. At this time, if the content of the pozzolanic material exceeds 80% by weight, it does not have its own hydraulic properties and delays hardening or the solids do not satisfy the required compressive strength.If the pozzolanic material is less than 50% by weight, the ratio of cement and quicklime is increased. When mixed with sewage sludge, it may cause excessive hardening, which may cause a problem of decreasing the permeability coefficient of the solids.

상기 탈취제는 도 6에 도시된 바와 같이 하수슬러지에서 발생되는 냄새 성분 예를들어 아민/암모니아류, 황화합물 등과 무기 지지체(칼슘-포스페이트) 및 냄새제거 물질(금속 복합체) 간의 반응을 통해 물리적 또는 화학적 흡착이 이루어지며, 탈착이나 재분해 등의 2차적 문제를 발생시키지 않는 환경 친화적인 성분이며, 더불어 pH가 중성계인 탈취제의 첨가로 고화물의 pH를 10 ~ 11로 유지함과 동시에 중금속을 배위결합함으로써 고화물 외부로의 용출을 억제하는 역할을 수행한다. 상기 탈취제의 함량이 상기 범위를 벗어나면 포틀랜드 시멘트, 생석회 및 포졸란의 함량변화에 의해 고화성능의 저하를 초래할 수 있으며, 고화재의 원가 상승을 초래 할 수 있다. The deodorant is physically or chemically adsorbed through a reaction between an odor component generated in sewage sludge, for example, amine / ammonia, a sulfur compound, and an inorganic support (calcium-phosphate) and an odor removing substance (metal complex), as shown in FIG. It is an environmentally friendly ingredient that does not cause secondary problems such as desorption and re-decomposition. In addition, by adding a deodorant having a neutral pH, the pH of the solid is maintained at 10 to 11, and coordination of heavy metals is performed. It plays a role of suppressing leaching out of cargo. If the content of the deodorant is out of the above range may cause a decrease in the solidification performance by changing the content of portland cement, quicklime and pozzolanic, it may lead to a cost increase of the solidified material.

보다 상세하게는, 상기 탈취제는 칼슘-포스페이트 화합물 100 중량부에 대하여 금속 복합체 0.1 내지 20 중량부를 담지하는 것이 바람직하며, 상기 칼슘-포스페이트 화합물은 비화학량론적 하이드록시아파타이트(Nonstoichiometric hydroxyapatite) 구조일 수 있다. 이때, 상기 금속 복합체는 20 중량부를 초과하여 담지되지 않으며, 만약 20 중량부를 초과하여 담지하더라도 소재에 적용시 물성변화를 초래하는 문제가 야기될 수 있다.In more detail, the deodorant may carry 0.1 to 20 parts by weight of the metal complex based on 100 parts by weight of the calcium-phosphate compound, and the calcium-phosphate compound may have a nonstoichiometric hydroxyapatite structure. . At this time, the metal composite is not carried in excess of 20 parts by weight, even if it is carried in excess of 20 parts by weight may cause a problem that causes a change in physical properties when applied to the material.

상기 금속 복합체는 구리(Cu) 화합물, 망간(Mn) 화합물, 은(Ag) 화합물, 아연(Zn) 화합물, 백금(Pt) 화합물 및 몰리브텐(Mo) 화합물로 이루어진 군에서 선택된 둘 이상을 포함할 수 있으며, 바람직하게는 구리 화합물 및 망간 화합물 간의 복합체일 수 있다. The metal complex includes two or more selected from the group consisting of a copper (Cu) compound, a manganese (Mn) compound, a silver (Ag) compound, a zinc (Zn) compound, a platinum (Pt) compound, and a molybdenum (Mo) compound And preferably a complex between a copper compound and a manganese compound.

상기 탈취제는 정제수에 칼슘염과 인산염을 첨가하여 반응시켜 화학식 1로 표시되는 칼슘-포스페이트 화합물을 제조하는 단계(제1단계); 정제수에 칼슘-포스페이트 및 금속 복합체를 첨가하여 칼슘-포스페이트에 금속 복합체를 담지시키는 단계(제2단계); 및 상기 반응물을 여과하고 건조하는 단계(제3단계)를 포함하여 제조될 수 있다.Preparing a calcium-phosphate compound represented by Chemical Formula 1 by reacting the deodorant by adding calcium salt and phosphate to purified water (first step); Adding a calcium-phosphate and a metal complex to purified water to support the metal complex on the calcium-phosphate (second step); And filtering and drying the reactant (third step).

상기 제1단계의 칼슘-포스페이트 화합물 제조 공정은 정제수 100 중량부에 대하여 칼슘염, 예를들어 질산칼슘 5 내지 30 중량부와 인산염, 예를들어 인산수소이나트륨 2 내지 25 중량부를 첨가하여 100℃까지 올려 교반하는 단계; 반응온도를 50 내지 80℃로 낮춘 후 수산화나트륨을 첨가하여 교반하는 단계; 및 상온으로 냉각한 후 여과 및 건조하는 단계를 포함한다.In the first step, the calcium-phosphate compound manufacturing process is performed by adding calcium salt, for example, 5 to 30 parts by weight of calcium nitrate and phosphate, for example, 2 to 25 parts by weight of disodium hydrogen phosphate, to 100 ° C based on 100 parts by weight of purified water. Stirring up; Lowering the reaction temperature to 50 to 80 ° C. and then adding sodium hydroxide to stir; And cooling to room temperature, followed by filtration and drying.

상기 제2단계의 금속 복합체 담지 공정은 정제수 100 중량부에 대하여 칼슘-포스페이트 10 내지 60 중량부 및 금속 복합체 0.1 내지 12 중량부를 첨가하여 칼슘-포스페이트에 금속 복합체를 담지시킬 수 있다.In the second step of supporting the metal complex, 10 to 60 parts by weight of calcium-phosphate and 0.1 to 12 parts by weight of the metal complex may be added to 100 parts by weight of purified water to support the metal complex on the calcium-phosphate.

한편, 본 발명에 따른 고화재의 고형화 원리는 다음과 같다.On the other hand, the solidification principle of the solidified material according to the present invention is as follows.

(1) 포틀랜드 시멘트의 Ettringite의 생성에 의한 고화작용(1) Solidification by Formation of Ettringite in Portland Cement

포틀랜드 시멘트에 물을 가하면 시멘트 중의 구성화합물과 물과의 반응, 소위 수화반응(水和反應)이 시작되며, 물과 접촉 즉시 시멘트 광물 중 C3A(알루미네이트)와 석고(CaSO4?2H2O)의 반응으로 다량의 에트린자이트(Ettringite; 3CaO?Al2O3?3CaSO4?32H2O)를 생성한다. 에트린자이트는 아래 식과 같이 다량의 물을 결합수로 흡수하여 침상으로 미세하게 성장됨으로써, 고화재의 함수비를 저하시키고 동시에 압밀 등의 효과가 나타나 토립자의 이동을 구속하여 고화를 촉진시킨다.When water is added to Portland cement, the reaction between the constituents in the cement and water, the so-called hydration reaction, begins, and upon contact with water, C 3 A (aluminate) and gypsum (CaSO 4 –2H 2) The reaction of O) produces a large amount of Ettringite (3CaO? Al 2 O 3 -3CaSO 4 -32H 2 O). Ethrinzite absorbs a large amount of water as binding water and grows finely into a needle bed as shown in the following formula, thereby lowering the water content of the solidified material and at the same time, the effect of consolidation is suppressed, constraining the movement of the granules, thereby promoting solidification.

3CaO?Al2O3 + 3CaSO4 + 32H2O → 3CaO?Al2O3?3CaSO4?32H2O3CaO? Al 2 O 3 + 3CaSO 4 + 32H 2 O → 3CaO? Al 2 O 3 ? 3CaSO 4 ? 32H 2 O

(C3A + 3CS + 32H → C3A?3CS?32H)(C 3 A + 3CS + 32H → C 3 A? 3CS? 32H)

(2) 수산화칼슘[Ca(OH)2]의 응집?고결 작용(2) Aggregation and solidification of calcium hydroxide [Ca (OH) 2 ]

포틀랜드 시멘트와 생석회는 수화반응으로 다량의 수산화칼슘을 생성한다. 시멘트와 생석회 중의 CaO 성분은 아래 식과 같이 물과 반응하여 결정 형태의 수산화칼슘을 생성한다. 이렇게 생성된 수화물인 수산화칼슘, 규산칼슘 등에서 용출되는 Ca2+ 이온이 슬러지 입자를 응집?고결시켜 소성지수를 저하시킴으로써 슬러지를 사질화시킨다.Portland cement and quicklime produce large amounts of calcium hydroxide by hydration. The CaO component in cement and quicklime reacts with water to produce calcium hydroxide in crystalline form. Ca 2+ ions eluted from calcium hydroxide, calcium silicate, and the like, which are produced as described above, agglomerate and solidify the sludge particles to lower the plasticity index, thereby making the sludge silicide.

CaO + H2O → Ca(OH)2 CaO + H 2 O → Ca (OH) 2

(3) 칼슘실리케이트 수화물 생성에 의한 경화의 증진(3) Enhancement of Curing by Calcium Silicate Hydrate Production

포틀랜드 시멘트와 생석회는 수화반응으로 다량의 수산화칼슘을 생성한다. 시멘트 중의 실리케이트 상(C3S, C2S)은 물과 반응하여 겔 형태 또는 미세 결정 형태의 칼슘실리케이트 수화물(calcium silicate hydrate : C-S-H)을 생성한다. 칼슘실리케이트 형성반응은 다음과 같다.Portland cement and quicklime produce large amounts of calcium hydroxide by hydration. The silicate phases (C 3 S, C 2 S) in cement react with water to produce calcium silicate hydrate (CSH) in gel form or in microcrystalline form. Calcium silicate formation reaction is as follows.

2(3CaO?SiO2) + 6H2O → 3CaO?2SiO2?3H2O + 3Ca(OH)2 2 (3CaO? SiO 2 ) + 6H 2 O → 3CaO? 2SiO 2 ? 3H 2 O + 3Ca (OH) 2

(2C3S + 6H → C3S2H3 + 3CH)(2C 3 S + 6H → C 3 S 2 H 3 + 3CH)

2(2CaO?SiO2) + 4H2O → 3CaO?2SiO2?3H2O + Ca(OH)2 2 (2CaO? SiO 2 ) + 4H 2 O → 3CaO? 2SiO 2 -3H 2 O + Ca (OH) 2

(2C3S + 4H → C3S2H3 + CH)(2C 3 S + 4H → C 3 S 2 H 3 + CH)

이와 같이 칼슘실리케이트는 수화에 거의 비슷한 물의 양을 요구하지만, 생성되는 수화물은 C2S보다 C3S가 약 2배 이상 수화물을 생성한다. 시멘트 수화가 완전하게 끝나면 약 60 중량%의 칼슘실리케이트와 30 중량%의 수산화칼슘으로 구성되며, 수화가 진행됨에 따라 조직이 치밀하게 되므로 입자간의 접합이 증가하고 강도가 증가한다.As such, calcium silicate requires almost the same amount of water for hydration, but the resulting hydrate produces about two times more hydrate C 3 S than C 2 S. Complete cement hydration consists of about 60% by weight of calcium silicate and 30% by weight of calcium hydroxide. As the hydration proceeds, the structure becomes dense, resulting in increased bonding between particles and increased strength.

(4) 포졸란(pozzolan) 반응에 의한 강도의 증진(4) Enhancement of Strength by Pozzolan Reaction

제지애시와 같은 포졸란 물질은 자체적으로 갖고 있는 실리카(SiO2), 알루미나(Al2O3) 물질이 수경성을 갖고 있지 못하나, 미세하게 분쇄되어 수분이 있을 때, 상온에서 시멘트 수화물인 수산화칼슘과 화학적으로 반응하여 시멘트와 같이 수경성을 발휘하는 포졸란 활성을 가진다. 이와 같은 포졸란 특성은 시멘트 및 생석회의 수화반응에 의해 생성되는 수산화칼슘과 상온에서 서서히 화합하여, 불용성의 안정된 규산칼슘을 생성하여, 장기적으로 고화물의 내부공극을 밀실하게 하여 압축강도를 증진시킨다. Pozzolan materials such as paper ash do not have their own hydrophobic properties such as silica (SiO 2 ) and alumina (Al 2 O 3 ), but when they are finely pulverized, they are chemically treated with cement hydroxide, calcium hydroxide, at room temperature. It reacts and has the pozzolanic activity which exhibits hydraulic property like cement. Such pozzolanic properties are gradually combined with calcium hydroxide produced by the hydration reaction of cement and quicklime at room temperature, thereby producing insoluble stable calcium silicate, thereby increasing the compressive strength by keeping the internal voids of the solidified in a long term.

본 발명에 따른 하수슬러지용 기능성 고화재는 하수슬러지의 수분을 신속하게 제거하여 복토재(인공 토양)용으로 재활용 할 수 있도록 고화하며, 고화 및 복토용으로 사용 시 악취 유발물질이 쉽게 탈리되지 않도록 장기적인 안정성을 지니게 하며, 또한 고화물의 중금속 용출을 억제할 수 있기 때문에 하수슬러지 등을 양질의 매립용 복토재로 재활용하는 데에 매우 유용하게 사용될 수 있다. The functional solidified material for sewage sludge according to the present invention is solidified so as to quickly remove moisture from the sewage sludge and to be recycled for covering soil (artificial soil), and to prevent the odor causing substances from being easily detached when used for solidifying and covering soil. It can be very useful for recycling the sewage sludge as a good landfill material because it has stability and can suppress the leaching of heavy metals of solids.

도 1은 본 발명에 따른 고화재를 포함한 복토재 시료의 시간에 따른 pH 변화를 나타낸 것이고,
도 2는 본 발명에 따른 고화재를 포함한 복토재 시료의 시간에 따른 온도 변화를 나타낸 것이고,
도 3은 본 발명에 따른 고화재를 포함한 복토재 시료의 시간에 따른 함수율 변화를 나타낸 것이고,
도 4는 본 발명에 따른 고화재를 포함한 복토재 시료의 중금속 용출시험에 사용된 ICP 분석장비를 나타낸 것이고,
도 5는 본 발명에 따른 고화재에 포함된 탈취제에 의한 하수슬러지 중에 포함된 중금속과의 결합 원리를 나타낸 모식도이고,
도 6은 본 발명에 따른 고화재에 포함된 탈취제에 의한 하수슬러지 중에 포함된 냄새 성분 제거 원리를 나타낸 모식도이다.
Figure 1 shows the pH change with time of the cover material sample including the solidified material according to the present invention,
Figure 2 shows the temperature change with time of the cover material sample including the solidified material according to the present invention,
Figure 3 shows the moisture content change with time of the cover material sample containing a solid fire according to the present invention,
Figure 4 shows the ICP analysis equipment used in the heavy metal dissolution test of the cover material sample containing a solid fire according to the present invention,
5 is a schematic diagram showing the principle of bonding with heavy metals contained in the sewage sludge by the deodorant contained in the solidified material according to the present invention,
Figure 6 is a schematic diagram showing the principle of removing the odor component contained in the sewage sludge by the deodorant contained in the solidified material according to the present invention.

이하, 하기 실시예에 의해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

<실시예 1> 탈취제 제조Example 1 Preparation of Deodorant

1. 칼슘-포스페이트 제조1. Calcium-phosphate preparation

정제수 4L에 대하여 Ca(NO3)2 494g, Na2HPO4 392g을 투입한 후 교반하였다. 반응 온도를 100℃까지 올린 후 3시간 동안 교반을 통해 반응 시켰다. 그후, 반응온도를 80℃로 낮춘 후 NaOH 40g을 첨가하여 12시간 동안 교반하였다. 그후 상온으로 온도가 떨어지면 여과하면서 물 1L로 세정을 한 후, 생성물을 건조시켜 칼슘-포스페이트를 제조하였다.To 4 L of purified water, 494 g of Ca (NO 3 ) 2 and 392 g of Na 2 HPO 4 were added and stirred. The reaction temperature was raised to 100 ° C and reacted for 3 hours with stirring. Thereafter, the reaction temperature was lowered to 80 ° C., and 40 g of NaOH was added thereto, followed by stirring for 12 hours. Thereafter, when the temperature dropped to room temperature, the resultant was washed with 1 L of water while filtration, and the product was dried to prepare calcium-phosphate.

2. 칼슘-포스페이트에 금속 복합체 담지2. Supporting metal complexes on calcium-phosphate

정제수 3L에 대하여 상기 제조한 칼슘-포스페이트 1.5kg, 질산구리 5g, 염화망간 20g을 투입한 후 완전히 용해시켰다. 이때, 반응온도 50℃에서 4시간 동안 교반하였다. 반응이 종결된 후 여과 및 건조 공정을 통해 흰색의 고체 분말을 얻었다.1.5 kg of calcium-phosphate, 5 g of copper nitrate, and 20 g of manganese chloride were added to 3 L of purified water, followed by complete dissolution. At this time, the reaction temperature was stirred for 4 hours at 50 ℃. After the reaction was terminated, a white solid powder was obtained through filtration and drying.

<실시예 2> 고화재A 제조Example 2 Manufacture of Fire A

초고속 전단 옴니 믹서를 이용하여 포틀랜드 시멘트 10.0 중량%, 생석회 20.0 중량% 및 제지애시 70.0 중량%를 혼합하여 고화재A를 제조하였다. 이때 사용한 초고속 전단 옴니 믹서는 일본산 CHIYODA OMH-30NA를 사용하였고, 실내온도 20℃에서 3분간 350 RPM으로 혼합하였다. 이때, 사용된 원재료에 대한 특성은 표 2와 같다.A solid fire A was prepared by mixing 10.0 wt% of Portland cement, 20.0 wt% of quicklime, and 70.0 wt% of paper ash using an ultrafast shear omni mixer. The ultra-fast shear omni mixer used was made in Japan CHIYODA OMH-30NA, and was mixed at 350 RPM for 3 minutes at 20 ℃. At this time, the characteristics of the raw materials used are shown in Table 2.

구 분division 제조사manufacturer 제품명product name 분말도Powder figure 밀도density 시멘트cement 동양시멘트Dongyang Cement 포틀랜드 1종Portland Class 1 3397㎠/g3397㎠ / g 3.15g/㎤3.15 g / cm 3 생석회quicklime 태영EMCTaeyoung EMC 생석회 특급Quicklime Express 200MESH 이상200MESH or more 2.65g/㎤2.65 g / cm 3 제지애시Paper ash 대한제지Daehan Paper -- 3850㎠/g3850㎠ / g 2.80g/㎤2.80g / cm3

<실시예 3> 고화재B 제조Example 3 Manufacture of Fire F

초고속 전단 옴니 믹서를 이용하여 포틀랜드 시멘트 10.0 중량%, 생석회 18.0 중량%, 제지애시 70.0 중량% 및 앞서 준비된 탈취제 2.0 중량%를 혼합하여 고화재B를 제조하였다. 이때 사용한 믹서와 혼합방법, 원재료 특성은 실시예 2와 같다.Solidified material B was prepared by mixing 10.0 wt% of Portland cement, 18.0 wt% of quicklime, 70.0 wt% of paper ash, and 2.0 wt% of the deodorant prepared above using an ultrafast shear omni mixer. The mixer, mixing method, and raw material characteristics used at this time are the same as in Example 2.

<실시예 4> 복토재 제조Example 4 Preparation of Cover Material

본 실시예에 사용된 하수슬러지는 다음과 같다. 대구지역 달서천, 서부, 북부, 신천, 현풍, 성서 6개소의 하수처리장과 성서공단 폐수처리장에서 발생하는 오?폐수를 고도처리 또는 협기/무산소/호기 조합법으로 처리한 후 고분자 응집제를 이용하여 정화수와 분리한 후 하수처리장 침사지의 슬러지를 원심탈수기를 이용하여 함수율 80%로 탈수한 슬러지를 사용하였다. 이와 같이 처리하여 얻어진 농축슬러지 1000g을 용기에 담아 상기 실시예 2 및 실시예 3에서 제조한 고화재 500g씩을 상기 농축슬러지가 담긴 용기에 각각 넣고 10분간 혼합한 후 24시간 동안 자연건조시켜 고화된 복토재(A, B)를 제조하였다.       Sewage sludge used in this example is as follows. Wastewater from the sewage treatment plant and Seongseo Industrial Wastewater Treatment Plant in Dalseocheon, Western, Northern, Sincheon, Hyeonpung, and Seongseo Industrial Complexes in Daegu area is treated by advanced treatment or combination of anaerobic, anaerobic, and aerobic treatment. The sludge from the sewage treatment plant sediment was separated and dehydrated at a water content of 80% using a centrifugal dehydrator. 1000 g of the concentrated sludge obtained as described above was put in a container, and 500 g of the solidified material prepared in Examples 2 and 3 were put in a container containing the concentrated sludge, respectively, mixed for 10 minutes, and then dried naturally for 24 hours. (A, B) was prepared.

<실험예 1> pH 실험Experimental Example 1 pH Experiment

대조군으로서 하수처리장에서 호기성 미생물에 의해 처리된 농축슬러지 자체와, 앞선 실시예에서 준비된 복토재 시료(A, B) 10g씩을 50mL 비커에 취하여 증류수 25 mL를 넣어 잘 교반하고 30분 이상 방치한 다음 이러한 현탁액을 시료 용액으로 하고 유리전극을 넣어 pH 값을 측정하였으며, 그 결과는 도 1과 같다.As a control, take the concentrated sludge itself treated by aerobic microorganisms in the sewage treatment plant and 10 g of the cover material samples (A, B) prepared in the previous example in a 50 mL beaker, add 25 mL of distilled water, stir well, and leave for at least 30 minutes. Was measured as a sample solution and the glass electrode was measured to measure the pH value, and the results are shown in FIG. 1.

<실험예 2> 온도 실험Experimental Example 2 Temperature Experiment

고화재의 슬러지 혼합시 발생하는 발열 특성을 검토하기 위하여, 앞선 실시예에서 준비된 복토재 시료(A, B)의 시간에 따른 온도 변화를 측정하였으며, 그 결과는 도 2와 같다.In order to examine the exothermic characteristics generated during the sludge mixing of the solid material, the temperature change with time of the cover material samples (A, B) prepared in the previous embodiment was measured, and the results are shown in FIG. 2.

<실험예 3> 함수율 실험Experimental Example 3 Moisture Content Experiment

고화재의 건조 특성을 검토하기 위하여, 앞선 실시예에서 준비된 복토재 시료(A, B)의 시간에 따른 함수율을 측정하였으며, 그 결과는 도 3과 같이 복토재 시료(A, B)는 각각 함수율이 크게 감소한 것을 확인할 수 있었다.In order to examine the drying characteristics of the solidified material, the moisture content over time of the cover material samples (A, B) prepared in the previous embodiment was measured, and the result is that the cover material samples (A, B) as shown in FIG. It was confirmed that the decrease.

<실험예 4> 중금속 용출 실험Experimental Example 4 Heavy Metal Dissolution Experiment

폐기물 공정 시험법에서 정해진 방법에 따라 중금속 용출 분석을 수행하였다. 이때, 분석장비는 도 4에 도시된 ICP 분석장비(Liberty Series Ⅱ, 베리안)를 사용하였다. Heavy metal leaching analysis was carried out according to the method specified in the waste process test method. At this time, the analysis equipment used ICP analysis equipment (Liberty Series II, Varian) shown in FIG.

중금속 용출 실험 결과, 표 3과 같이 탈취제를 적용하지 않은 복토재 시료 A의 경우에는 기존 하수슬러지에 비해서 Cu 함량이 더 높은 농도가 검출되어 고화재에 의해서 용출이 일어나는 것을 확인할 수 있는 반면, 탈취제가 적용된 복토재 시료 B의 경우에는 탈취제의 영향으로 인해 Cu 함량 및 전체적인 중금속 농도가 낮게 검출되는 것을 확인할 수 있다. 이때, 탈취제에 의한 중금속 결합 원리는 도 5와 같으며, 하기 표 3에서 n.d는 검출되지 않음을 의미한다.As a result of the heavy metal dissolution test, as shown in Table 3, in the case of the cover material sample A without deodorant, the concentration of Cu was higher than that of the existing sewage sludge, and the dissolution caused by the solidified material was detected. In the case of the cover material sample B, it can be seen that the Cu content and the overall heavy metal concentration are low due to the effect of the deodorant. At this time, the principle of binding the heavy metal by the deodorant is shown in Figure 5, n.d in Table 3 means that it is not detected.

항목Item 분석 성분(mg/L)Analytical component (mg / L) Cr6+ Cr 6+ CuCu CdCD PbPb AsAs HgHg CNCN 하수슬러지(대조군)Sewage sludge (control) n.dn.d 3.3243.324 n.dn.d 0.060.06 n.dn.d n.dn.d n.dn.d 복토재 시료 ACover material Sample A n.dn.d 4.1304.130 n.dn.d 0.090.09 n.dn.d n.dn.d n.dn.d 복토재 시료 BCover material sample B n.dn.d 2.5242.524 n.dn.d 0.050.05 n.dn.d n.dn.d n.dn.d

<실험예 5> 탈취 특성 분석Experimental Example 5 Deodorization Characteristic Analysis

탈취 특성을 분석하기 위하여, 5L 테드라백(Tedler bag)에 하수슬러지와 앞선 실시예에서 준비한 복토재 시료(A, B) 100g을 넣고 30분간 상온 방치한 후 검지관, GC-PFPD로 탈취 특성을 분석하였다.In order to analyze the deodorization characteristics, 100 g of sewage sludge and 100 g of cover material (A, B) prepared in the previous example were placed in a 5L Tedler bag and allowed to stand at room temperature for 30 minutes, and then the deodorization characteristics were analyzed by a detection tube and GC-PFPD. It was.

그 결과, 하기 표 4와 같이 복토재 시료 A는 하수슬러지 적용시 암모니아 및 트리메틸아민 성분이 대조군보다 더 많이 검출되는 것을 확인할 수 있었으며, 이는 복토재 시료 A 자체 pH가 높아서 하수슬러지 중에 녹아있던 질소 화합물들이 외부로 방출되어서 나타나는 현상이다. 한편, 복토재 시료 B의 고화재도 자체 pH가 복토재 시료 A와 유사하지만 탈취제를 함유하므로, 탈취제에 의해 이러한 냄새 성분들이 제거된 것을 확인할 수 있다. 이때, 표 4의 TMA는 트리메틸아민을 의미한다.As a result, as shown in Table 4, when applying the sewage sludge, the ammonia and trimethylamine components were detected more than the control group. As a result, the nitrogen compounds dissolved in the sewage sludge due to the high pH of the sewage sludge were high. It is a phenomenon that is emitted by. On the other hand, since the solidified material of the cover material sample B is similar to the cover material sample A, but contains a deodorant, it can be confirmed that these odor components have been removed by the deodorant. In this case, TMA in Table 4 means trimethylamine.

H2SH 2 S CH3SHCH 3 SH NH3 NH 3 TMATMA 농도
(ppm)
density
(ppm)
제거율
(%)
Removal rate
(%)
농도
(ppm)
density
(ppm)
제거율
(%)
Removal rate
(%)
농도
(ppm)
density
(ppm)
제거율
(%)
Removal rate
(%)
농도
(ppm)
density
(ppm)
제거율
(%)
Removal rate
(%)
하수슬러지
(대조군)
Sewage Sludge
(Control group)
0.260.26 -- 4.814.81 -- 5454 -- 22 --
복토재 시료 ACover material Sample A 0.150.15 42.3142.31 2.562.56 46.7846.78 200200 overover 55 overover 복토재 시료 BCover material sample B 0.050.05 80.7780.77 0.780.78 83.7883.78 1717 68.5268.52 0.50.5 7575

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that various modifications and changes may be made without departing from the scope of the appended claims.

Claims (4)

포틀랜드 시멘트 5 ~ 30 중량%; 생석회 10 ~ 30 중량%; 포졸란 물질 50 ~ 80 중량%; 및 탈취제 0.5 ~ 10 중량%를 포함하며, 상기 탈취제는 하기 화학식 1로 표시되는 칼슘-포스페이트 화합물에 금속 복합체를 담지한 것을 특징으로 하는 하수슬러지용 기능성 고화재:
[화학식 1]
Figure pat00002

상기 화학식 1에서, x는 0 또는 1임.
Portland cement 5-30% by weight; 10-30% by weight of quicklime; 50-80 weight percent of the pozzolanic material; And 0.5 to 10% by weight of a deodorant, wherein the deodorant is a functional solidifying material for sewage sludge, characterized in that a metal complex is supported on a calcium-phosphate compound represented by the following Chemical Formula 1:
[Formula 1]
Figure pat00002

In Formula 1, x is 0 or 1.
청구항 1에 있어서, 상기 포졸란 물질은 제지애시, 플라이애시, 소각재, 고로슬래그미분말, 석탄회미분말, 화산재, 왕겨재, 규조토, 실리카흄 및 제올라이트로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상인 것을 특징으로 하는 하수슬러지용 기능성 고화재. The sewage material according to claim 1, wherein the pozzolanic material is any one or two selected from the group consisting of paper ash, fly ash, incineration ash, blast furnace slag powder, coal ash powder, volcanic ash, rice hull ash, diatomaceous earth, silica fume and zeolite. Functional solid fire for sludge. 청구항 1에 있어서, 상기 탈취제는 칼슘-포스페이트 화합물 100 중량부에 대하여 금속 복합체 0.1 내지 20 중량부를 담지한 것을 특징으로 하는 하수슬러지용 기능성 고화재. The functional solidifying material for sewage sludge according to claim 1, wherein the deodorant carries 0.1 to 20 parts by weight of the metal composite with respect to 100 parts by weight of the calcium-phosphate compound. 청구항 3에 있어서, 상기 금속 복합체는 구리(Cu) 화합물, 망간(Mn) 화합물, 은(Ag) 화합물, 아연(Zn) 화합물, 백금(Pt) 화합물 및 몰리브텐(Mo) 화합물로 이루어진 군에서 선택된 둘 이상을 포함하는 것을 특징으로 하는 하수슬러지용 기능성 고화재. The method of claim 3, wherein the metal complex is in the group consisting of copper (Cu) compound, manganese (Mn) compound, silver (Ag) compound, zinc (Zn) compound, platinum (Pt) compound and molybdenum (Mo) compound Functional solid fire for sewage sludge, characterized in that it comprises at least two selected.
KR1020110038905A 2011-04-26 2011-04-26 Solidifying agent for sewage sludge KR20120121122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110038905A KR20120121122A (en) 2011-04-26 2011-04-26 Solidifying agent for sewage sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110038905A KR20120121122A (en) 2011-04-26 2011-04-26 Solidifying agent for sewage sludge

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020130051414A Division KR101348456B1 (en) 2013-05-07 2013-05-07 Solidifying agent for sewage sludge

Publications (1)

Publication Number Publication Date
KR20120121122A true KR20120121122A (en) 2012-11-05

Family

ID=47507629

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110038905A KR20120121122A (en) 2011-04-26 2011-04-26 Solidifying agent for sewage sludge

Country Status (1)

Country Link
KR (1) KR20120121122A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288330A (en) * 2013-07-10 2013-09-11 江苏坤泽科技股份有限公司 Freshwater sludge curing agent
CZ305634B6 (en) * 2014-12-23 2016-01-13 Výzkumný ústav stavebních hmot, a.s. Binding agent for immobilization of toxic elements
CN109529248A (en) * 2018-11-27 2019-03-29 云南省环境科学研究院(中国昆明高原湖泊国际研究中心) A kind of stabilizer and preparation method thereof for handling arsenic-containing waste residue
CN111423080A (en) * 2020-03-02 2020-07-17 南京市城市建设投资控股(集团)有限责任公司 Foundation excavation slurry stabilizing and curing agent and preparation and use method thereof
CN113354327A (en) * 2021-06-10 2021-09-07 厦门美益集团有限公司 Reinforcing agent for pervious concrete

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288330A (en) * 2013-07-10 2013-09-11 江苏坤泽科技股份有限公司 Freshwater sludge curing agent
CZ305634B6 (en) * 2014-12-23 2016-01-13 Výzkumný ústav stavebních hmot, a.s. Binding agent for immobilization of toxic elements
CN109529248A (en) * 2018-11-27 2019-03-29 云南省环境科学研究院(中国昆明高原湖泊国际研究中心) A kind of stabilizer and preparation method thereof for handling arsenic-containing waste residue
CN111423080A (en) * 2020-03-02 2020-07-17 南京市城市建设投资控股(集团)有限责任公司 Foundation excavation slurry stabilizing and curing agent and preparation and use method thereof
CN111423080B (en) * 2020-03-02 2022-09-16 南京市城市建设投资控股(集团)有限责任公司 Foundation excavation slurry stabilizing and curing agent and preparation and use method thereof
CN113354327A (en) * 2021-06-10 2021-09-07 厦门美益集团有限公司 Reinforcing agent for pervious concrete
CN113354327B (en) * 2021-06-10 2023-11-28 厦门美益集团有限公司 Reinforcing agent for pervious concrete

Similar Documents

Publication Publication Date Title
KR100812828B1 (en) Solidifying agent for sewage or wastewater sludge and covering material for waste reclamation land prepared using this
JP2007313407A (en) Multifunctional modifier, non-heating modification treatment method and pollution-free plant growing material
KR20120121122A (en) Solidifying agent for sewage sludge
KR101348456B1 (en) Solidifying agent for sewage sludge
KR101366069B1 (en) Composition for soil stabilization, improvement, hardening, and compost fermentation promotion of contaminated sediment, and method of manufacturing the same
CN105084847A (en) Curing agent repairing heavy metal and lasting organic matter combined pollution bottom sediment
JP4744796B2 (en) Aggregate solidified material for soil stabilization containing inorganic polymer flocculant and organic polymer flocculant
KR101462483B1 (en) method for manufacturing sericite deodorant
KR19990014365A (en) Manufacturing method of multifunctional porous ceramics
AU2007201032A1 (en) Fly ash-based fertilizer and vegetation amendment method by fly ash-based fertilizer
CN101417851B (en) Method for reducing heavy metal biological effectiveness in activated sludge
JP2005232341A (en) Treatment agent of hexavalent chromium-containing soil
JPH10137716A (en) Waste treating material and treatment of waste
CN111661993A (en) Sludge curing agent and preparation method and use method thereof
JP2008255171A (en) Fixing agent for inorganic harmful component
CA2868518A1 (en) Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improving method
KR20130123799A (en) Method for treating organic waste matter
KR101059387B1 (en) Multifunctional Sorbent and Barn Enviroment Enhancer Using Water Sludge or Ash
JPH08197095A (en) Treatment of sewage sludge and treated sewage sludge
KR101287013B1 (en) Solidifying agent for sludge using industrial by-product
JP3965412B2 (en) Sludge modifier
JP2011131115A (en) Sludge treating agent and sludge treatment method
KR100948658B1 (en) Method for solidifying sewage sludge
KR20190102801A (en) Composition for Promoting Stabilization, Improvement, Hardening of Soil Containing Contaminated Sediment And/Or Waste and Method of Manufacturing the Same
JP2003321676A (en) Soil solidifier

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application
A107 Divisional application of patent