KR20120119446A - In-plane switching mode liquid crystal display device - Google Patents

In-plane switching mode liquid crystal display device Download PDF

Info

Publication number
KR20120119446A
KR20120119446A KR1020110037376A KR20110037376A KR20120119446A KR 20120119446 A KR20120119446 A KR 20120119446A KR 1020110037376 A KR1020110037376 A KR 1020110037376A KR 20110037376 A KR20110037376 A KR 20110037376A KR 20120119446 A KR20120119446 A KR 20120119446A
Authority
KR
South Korea
Prior art keywords
liquid crystal
display device
crystal display
electric field
compensation layer
Prior art date
Application number
KR1020110037376A
Other languages
Korean (ko)
Other versions
KR101730850B1 (en
Inventor
문홍만
이태일
명재민
Original Assignee
엘지디스플레이 주식회사
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사, 연세대학교 산학협력단 filed Critical 엘지디스플레이 주식회사
Priority to KR1020110037376A priority Critical patent/KR101730850B1/en
Publication of KR20120119446A publication Critical patent/KR20120119446A/en
Application granted granted Critical
Publication of KR101730850B1 publication Critical patent/KR101730850B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE: An in-plane switching mode liquid crystal display device is provided to compensate for a phase difference. CONSTITUTION: A light compensating layer(200) is located on an external surface of a second substrate. The light compensating layer is made of a transparent inorganic film. The transparent inorganic film has a uniaxial crystallization feature. A first polarization plate(119a) is formed on an external surface of a first substrate. A second polarization plate(119b) is located on the light compensating layer.

Description

횡전계방식 액정표시장치{In-plane switching mode liquid crystal display device}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a liquid crystal display (LCD)

본 발명은 횡전계방식 액정표시장치에 관한 것으로, 특히 액정층의 위상지연을 보상하는 광보상층을 포함하는 횡전계방식 액정표시장치에 관한 것이다.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transverse electric field type liquid crystal display device, and more particularly, to a transverse electric field type liquid crystal display device including an optical compensation layer that compensates for a phase delay of a liquid crystal layer.

동화상 표시에 유리하고 콘트라스트비(contrast ratio)가 큰 특징을 보여 TV, 모니터 등에 활발하게 이용되는 액정표시장치(liquid crystal display device : LCD)는 액정의 광학적이방성(optical anisotropy)과 분극성질(polarization)에 의한 화상구현원리를 나타낸다. Liquid crystal display devices (LCDs), which are used for TVs and monitors due to their high contrast ratio and are advantageous for displaying moving images, are characterized by optical anisotropy and polarization of liquid crystals. The principle of image implementation by

이러한 액정표시장치는 나란한 두 기판(substrate) 사이로 액정층을 개재하여 합착시킨 액정패널(liquid crystal panel)을 필수 구성요소로 하며, 액정패널 내의 전기장으로 액정분자의 배열방향을 변화시켜 투과율 차이를 구현한다.Such a liquid crystal display is an essential component of a liquid crystal panel bonded through a liquid crystal layer between two side-by-side substrates, and realizes a difference in transmittance by changing an arrangement direction of liquid crystal molecules with an electric field in the liquid crystal panel. do.

최근에는 상-하로 형성된 전기장으로 액정을 구동하는 능동행렬 액정표시장치가 해상도 및 동영상 구현능력이 우수하여 많이 사용되고 있으나, 상-하로 걸리는 전기장에 의한 액정구동은 시야각 특성이 떨어지는 단점을 가지고 있다. Recently, an active matrix liquid crystal display device that drives liquid crystal with an electric field formed up-down has been widely used because of its excellent resolution and video performance. However, liquid crystal driving due to an electric field that is applied up-down has a disadvantage in that the viewing angle characteristics are inferior.

이에, 시야각이 좁은 단점을 극복하기 위해 여러 가지 방법이 제시되고 있는데, 그 중 횡전계에 의한 액정 구동방법이 주목받고 있다. Accordingly, various methods have been proposed in order to overcome the disadvantage that the viewing angle is narrow. Among them, a liquid crystal driving method by a transverse electric field is attracting attention.

도 1은 일반적인 횡전계방식 액정표시장치의 단면을 도시한 도면이다.1 is a cross-sectional view of a general transverse electric field type liquid crystal display device.

도시한 바와 같이, 어레이기판인 하부기판(1)과 컬러필터기판인 상부기판(3)이 서로 이격되어 대향하고 있으며, 이 상부 및 하부기판(1, 3)사이에는 액정층(5)이 개재되어 있다. As shown in the figure, the lower substrate 1, which is an array substrate, and the upper substrate 3, which is a color filter substrate, are spaced apart from each other and face each other. A liquid crystal layer 5 is interposed between the upper and lower substrates 1, .

하부기판(1) 상에는 화소전극(21)과 공통전극(25)이 동일 평면상에 형성되어 있으며, 액정층(5)은 화소전극(21)과 공통전극(25)에 의한 수평전계(L)에 의해 작동된다.On the lower substrate 1, the pixel electrode 21 and the common electrode 25 are formed on the same plane, and the liquid crystal layer 5 has a horizontal electric field L formed by the pixel electrode 21 and the common electrode 25. Works by.

이러한 횡전계방식 액정표시장치(10)의 하부기판(1)에는 게이트배선(미도시) 및 데이터배선(미도시)에 의해 정의된 각 화소영역에 박막트랜지스터(TFT:Thin Film Transistor)가 형성되며, 상부기판(3)에는 컬러필터층(미도시)과 블랙매트릭스(미도시)가 형성되어, 에폭시 수지와 같은 씨일재(미도시)에 의해 합착된다.A thin film transistor (TFT) is formed in each pixel area defined by a gate wiring (not shown) and a data wiring (not shown) in the lower substrate 1 of the transverse electric field type liquid crystal display device 10. In the upper substrate 3, a color filter layer (not shown) and a black matrix (not shown) are formed and bonded by a seal material (not shown) such as an epoxy resin.

이와 같이 구동하는 횡전계방식 액정표시장치(10)는 제 1 및 제 2 기판(1, 2)의 각 외측에 제 1 및 제 2 편광판(20, 30)이 위치하게 된다. In the transverse electric field type liquid crystal display device 10 which is driven as described above, the first and second polarizing plates 20 and 30 are positioned on each outside of the first and second substrates 1 and 2.

도 2는 횡전계방식 액정표시장치에 사용되는 편광판의 투과축을 도시한 도면이다.2 is a diagram illustrating a transmission axis of a polarizing plate used in a transverse electric field type liquid crystal display device.

도시한 바와 같이, 제 1 및 2 편광판(도 1의 20, 30)의 투과축은 서로 직교한다. 횡전계방식 액정표시장치(도 1의 10)는 노멀리블랙모드(normally black mode)로 동작하는 경우에 전압 오프(off) 상태에서 블랙을 구현하게 된다. As shown, the transmission axes of the first and second polarizing plates (20, 30 in Fig. 1) are perpendicular to each other. The transverse electric field type liquid crystal display device 10 of FIG. 1 implements black in a voltage off state when operating in a normally black mode.

즉, 제 1 편광판(도 1의 20)에 입사된 빛 중 제 1 편광판(도 1의 20)의 투과축과 일치하는 성분의 빛이 통과하게 되는데, 제 2 편광판(도 1의 30)의 투과축은 제 1 편광판(도 1의 20)의 투과축과 수직하기 때문에, 제 1 편광판(도 1의 20)을 통과한 빛은 제 2 편광판(도 1의 30)을 통과하지 못하게 되어 블랙 상태가 구현된다.That is, light of a component coinciding with the transmission axis of the first polarizing plate (20 in FIG. 1) among the light incident on the first polarizing plate (20 in FIG. 1) passes, and the second polarizing plate (30 in FIG. 1) transmits. Since the axis is perpendicular to the transmission axis of the first polarizing plate (20 in FIG. 1), light passing through the first polarizing plate (20 in FIG. 1) cannot pass through the second polarizing plate (30 in FIG. 1) to realize a black state. do.

그런데, 편광판(도 1의 20, 30)에 수직한 H 방향인 횡전계방식 액정표시장치(도 1의 10)의 정면에서는 제 1 및 2 편광판(도 1의 20, 30)의 투과축이 직교하게 보이지만, H 방향에서 α도 만큼 기울어진 A 방향에서는 제 1 및 2 편광판(도 1의 20, 30)의 투과축이 직교하지 않게 보인다. By the way, the transmission axes of the first and second polarizing plates 20 and 30 of FIG. In the A direction inclined by α degrees in the H direction, the transmission axes of the first and second polarizing plates 20 and 30 in FIG. 1 do not appear to be orthogonal.

따라서, A 방향에서는 제 1, 2 투과축이 직교하게 보이지 않아 빛샘이 발생하게 된다. 특히, 이와 같은 빛샘은 제 1 편광판(도 1의 20)의 투과축에서 β도(azimuthal angle) 만큼 회전한 방향, 즉 직교하는 제 1 및 2 편광판(도 1의 20, 30)의 투과축의 사이의 방향에서 심하게 발생한다. Therefore, in the A direction, the first and second transmission axes do not appear orthogonal to each other, and light leakage occurs. In particular, such light leakage is rotated by β degrees (azimuthal angle) in the transmission axis of the first polarizing plate (20 in FIG. 1), that is, between transmission axes of the first and second polarizing plates (20 and 30 in FIG. 1) orthogonal to each other. Occurs badly in the direction of.

따라서, 시야각에 따라 대비비(contrast ratio)의 변화, 색상 변이(color shift), 계조 반전(gray inversion) 등의 현상이 발생하게 된다. Therefore, a change in contrast ratio, color shift, gray inversion, etc. may occur according to the viewing angle.

이와 같이 횡전계방식 액정표시장치(도 1의 10)는 액정층(도 1의 5)에 횡전계가 인가되는 방식으로 전압에 따른 액정의 위상지연(retardation) 변화가 작고 상하 좌우방향에서 제 1 및 2 편광판(도 1의 20, 30)의 광축이 수직 상태를 유지하기 때문에 시야각이 우수하지만 제 1 및 2 편광판(도 1의 20, 30)의 광축이 수직 상태가 깨지는 대각방향에서는 빛샘이 발생하여 화질 저하를 야기하게 된다.As described above, the transverse electric field type liquid crystal display device (10 of FIG. 1) has a small change in phase retardation of liquid crystal according to voltage in a manner in which a transverse electric field is applied to the liquid crystal layer (5 of FIG. And the viewing angle is excellent because the optical axes of the two polarizers 20 and 30 of FIG. 1 remain vertical, but light leakage occurs in the diagonal direction where the optical axes of the first and second polarizers 20 and 30 of FIG. 1 are broken vertically. This causes the deterioration of image quality.

이와 같은 대각방향의 화질 저하를 개선하기 위해서는 보상필름(compensation film : 미도시)을 적용하여야 하는데, 보상필름(미도시)은 액정층(도 1의 5) 내부에서의 빛의 위상의 변화를 보상필름(미도시)에서 반대 방향으로 보상해 줌으로써 시야각 문제를 해결하게 된다. In order to improve such deterioration of image quality in a diagonal direction, a compensation film (compensation film: not shown) should be applied, and the compensation film (not shown) compensates for the change in phase of light inside the liquid crystal layer (5 in FIG. 1). Compensation in the opposite direction in the film (not shown) solves the viewing angle problem.

이러한 보상필름(미도시)은 편광판(도 1의 20, 30)에 부착시켜 사용하는 것이 일반적이었으나, 이 경우에는 편광판(도 1의 20, 30)에 보상필름(미도시)을 접착하는 공정이 포함되어 공정이 복잡해지고 또한 접착층(미도시)이 포함되어 편광판(도 1의 20, 30)의 전체 두께가 두꺼워져서 박형화 및 경량화가 어려워지는 문제점이 발생한다.Such a compensation film (not shown) was generally used by attaching to a polarizing plate (20, 30 of Figure 1), in this case, the process of adhering a compensation film (not shown) to the polarizing plate (20, 30 of Figure 1) The process is complicated, and the adhesive layer (not shown) is included, so that the overall thickness of the polarizing plates 20 and 30 of FIG. 1 becomes thick, thereby making it difficult to reduce thickness and weight.

또한, 보상필름(미도시)은 다층으로 이루어지는데, 각 층들의 열이나 수분 등의 환경에 대한 특성이 상이하여, 고온고습의 환경하에 방치되어 있으면 막들의 박리 현상이나, 뒤틀림 및 얼룩 등이 발생하게 된다. 이를 통해 위상지연 값이 변동하여, 복굴절 보상에 편차(declination)가 생기는 경우가 발생하게 된다.
In addition, the compensation film (not shown) is made of a multi-layer, the characteristics of the environment, such as heat or moisture of each layer is different, and if left in a high temperature and high humidity environment, peeling of the film, distortion and stains, etc. Done. As a result, the phase delay value fluctuates, causing a deviation in birefringence compensation.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 위상차 보상 기능을 가지며 박형화 및 경량화가 가능하고 제조공정을 단순화하여 제조비용을 절감할 수 있는 횡전계방식 액정표시장치를 제공하고자 하는 것을 목적으로 한다.
An object of the present invention is to provide a transverse electric field type liquid crystal display device having a phase difference compensation function, which can be thinner and lighter, and which can reduce manufacturing costs by simplifying a manufacturing process. .

전술한 바와 같은 목적을 달성하기 위해, 본 발명은 제 1 및 제 2 기판과, 상기 제 1 및 제 2 기판 사이에 개재되는 액정층을 포함하는 액정패널과; 상기 제 2 기판의 외면에 위치하며, 일축성의 결정을 갖는 투명한 무기막으로 이루어지는 광보상층과; 상기 제 1 기판의 외면에 위치하는 제 1 편광판과, 상기 광보상층 상부에 위치하는 제 2 편광판을 포함하며, 상기 액정층의 위상차값(Δnd)과 상기 광보상층의 위상차값(Δn'd')은 동일한 횡전계방식 액정표시장치를 제공한다. In order to achieve the above object, the present invention provides a liquid crystal panel comprising a liquid crystal layer interposed between the first and second substrates and the first and second substrates; An optical compensation layer disposed on an outer surface of the second substrate and formed of a transparent inorganic film having a uniaxial crystal; A first polarizing plate positioned on an outer surface of the first substrate and a second polarizing plate positioned above the optical compensation layer, wherein the phase difference value Δnd of the liquid crystal layer and the phase difference value Δn'd of the optical compensation layer ') Provides the same transverse electric field type liquid crystal display device.

이때, 상기 광보상층은 나노와이어 또는 나노막대와 같은 결정성을 가지며, 상기 제 1 및 제 2 기판에 대하여 수직인 방향으로 연장되며, 상기 광보상층은 nz>nx=ny(nx, ny는 평면의 XY방향의 굴절율, nz는 법선 방향에서의 굴절율)의 관계를 갖는다. In this case, the optical compensation layer has a crystallinity such as nanowires or nanorods, and extends in a direction perpendicular to the first and second substrates, wherein the optical compensation layer is nz> nx = ny (nx, ny is The refractive index in the XY direction of the plane, nz is the refractive index in the normal direction).

또한, 상기 광보상층은 GaN, AIN, Al2O3, BeO, SiO2, TeO2, TiO2, ZnO, BaTiO3 중 선택된 하나로 이루어지며, 상가 광보상층은 투명 도전성 산화물(transparent conductive oxide : TCO)로 이루어진다. In addition, the light compensation layer is made of one selected from GaN, AIN, Al2O3, BeO, SiO2, TeO2, TiO2, ZnO, BaTiO3, the additional light compensation layer is made of a transparent conductive oxide (TCO).

상기 투명성 도전성 산화물은 ITO(indium tin oxide), GaZnO, AlZnO, InZnO 중 선택된 하나이다.
The transparent conductive oxide is one selected from indium tin oxide (ITO), GaZnO, AlZnO, and InZnO.

위에 상술한 바와 같이, 본 발명에 따라 제 2 기판의 외면에 일축성의 결정을 갖는 투명 무기막으로 이루어지는 광보상층을 형성함으로써, 이를 통해, 액정층의 위상차를 보상할 수 있어, 특정한 시야각에서 빛샘이 발생하는 것을 감소시켜, 콘트라스트비의 저하를 방지하며 시야각에 따른 색반전을 개선할 수 있는 효과가 있다. As described above, according to the present invention, by forming an optical compensation layer made of a transparent inorganic film having a uniaxial crystal on the outer surface of the second substrate, thereby making it possible to compensate the phase difference of the liquid crystal layer, at a specific viewing angle By reducing the generation of light leakage, it is possible to prevent the lowering of the contrast ratio and to improve color inversion according to the viewing angle.

특히, 보상필름을 편광판에 부착시켰던 기존에 비해 총 편광판의 부피 및 무게를 줄 일 수 있어, 공정비용을 절감할 수 있는 효과가 있으며, 다층으로 이루어지는 보상필름의 박리 현상, 뒤틀림 및 얼룩 등에 의해 위상지연 값이 변동하여 복굴절 보상에 편차가 발생하는 것을 방지할 수 있는 효과가 있다. In particular, the volume and weight of the total polarizing plate can be reduced compared to the conventional one in which the compensation film is attached to the polarizing plate, thereby reducing the process cost, and the phase due to the peeling phenomenon, distortion, and staining of the compensation film made of the multilayer. The delay value fluctuates, thereby preventing the deviation of the birefringence compensation.

또한, 광보상층이 도전성을 갖도록 함으로써, 제 2 기판이 정전기나 외부의 전하로부터 손상되는 것을 방지할 수 있는 효과가 있다.
In addition, by making the light compensation layer have conductivity, there is an effect that the second substrate can be prevented from being damaged from static electricity or external charges.

도 1은 일반적인 횡전계방식 액정표시장치의 단면을 도시한 도면.
도 2는 횡전계방식 액정표시장치에 사용되는 편광판의 투과축을 도시한 도면.
도 3은 본 발명의 실시예에 따른 횡전계방식 액정표시장치를 개략적으로 도시한 단면도.
도 4a ~ 4b는 본 발명의 실시예에 따른 횡전계방식 액정표시장치의 전계 인가 여부에 따른 동작을 각각 도시한 단면도.
도 5는 광보상층의 일축성 결정의 배열 상태를 도시한 도면.
도 6a ~ 6b는 최대 휘도일 때의 빛샘을 측정한 시뮬레이션 결과.
1 is a cross-sectional view of a general transverse electric field type liquid crystal display device.
2 is a diagram showing a transmission axis of a polarizing plate used in a transverse electric field type liquid crystal display device.
3 is a cross-sectional view schematically showing a transverse electric field type liquid crystal display device according to an embodiment of the present invention.
4A to 4B are cross-sectional views illustrating operations according to whether an electric field is applied to a transverse electric field type liquid crystal display device according to an exemplary embodiment of the present invention.
Fig. 5 is a diagram showing an arrangement state of uniaxial crystals of the light compensation layer.
6A and 6B are simulation results of measuring light leakage at maximum luminance.

이하, 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.

도 3은 본 발명의 실시예에 따른 횡전계방식 액정표시장치를 개략적으로 도시한 단면도이다. 3 is a schematic cross-sectional view of a transverse electric field type liquid crystal display device according to an exemplary embodiment of the present invention.

도시한 바와 같이, 횡전계방식 액정표시장치(100)는 어레이기판인 제 1 기판(101)과 컬러필터기판인 제 2 기판(102)이 서로 이격되어 대향하고 있으며, 제 1 및 제 2 기판(101, 102) 사이에는 액정층(103)이 개재되어 있다. As illustrated, in the transverse electric field type liquid crystal display device 100, the first substrate 101, which is an array substrate, and the second substrate 102, which is a color filter substrate, face each other and are spaced apart from each other. The liquid crystal layer 103 is interposed between 101 and 102.

이때, 제1 기판(101) 상에는 소정간격 이격되어 평행하게 구성된 다수의 게이트배선(미도시)과 게이트배선(미도시)에 근접하여 게이트배선(미도시)과 평행하게 구성된 공통배선(미도시)과, 두 배선(미도시, 미도시)과 교차하며 특히 게이트배선(미도시)과는 교차하여 화소영역(P)을 정의하는 데이터배선(미도시)이 구성되어 있다. In this case, the plurality of gate wirings (not shown) and the common wirings (not shown) disposed in parallel with the gate wirings (not shown) are arranged on the first substrate 101 in parallel with a predetermined interval. And data wirings (not shown) that cross the two wirings (not shown and not shown), and particularly intersect with the gate wirings (not shown) to define the pixel region P.

이때, 각 화소영역(P)의 게이트배선(미도시)과 데이터배선(미도시)의 교차지점인 스위칭영역(TrA)에는 박막트랜지스터(Tr)가 형성되며, 실질적으로 화상이 구현되는 표시영역(AA)에는 공통전극(112)과 화소전극(114)이 형성되어 있다. In this case, a thin film transistor Tr is formed in the switching region TrA, which is an intersection point of the gate wiring (not shown) and the data wiring (not shown) of each pixel region P, and the display area (not shown) The common electrode 112 and the pixel electrode 114 are formed in AA.

여기서, 박막트랜지스터(Tr)는 게이트전극(111), 게이트절연막(113), 반도체층(115), 소스 및 드레인전극(117, 119)으로 이루어진다. Here, the thin film transistor Tr includes a gate electrode 111, a gate insulating film 113, a semiconductor layer 115, and source and drain electrodes 117 and 119.

그리고, 박막트랜지스터(Tr)를 포함하는 제 1 기판(101)의 전면에는 보호층(116)이 형성되어 있으며, 화소전극(114)은 박막트랜지스터(Tr)의 드레인전극(119)과 전기적으로 연결된다. A protective layer 116 is formed on the front surface of the first substrate 101 including the thin film transistor Tr, and the pixel electrode 114 is electrically connected to the drain electrode 119 of the thin film transistor Tr. do.

그리고, 표시영역(AA)의 화소전극(114)의 일측에는 일정간격 이격하여 공통전극(112)이 형성되어, 화소전극(114)과 공통전극(112)은 교대로 위치하며, 그사이에 횡전계를 발생시킨다.The common electrode 112 is formed at one side of the pixel electrode 114 in the display area AA at a predetermined interval, and the pixel electrode 114 and the common electrode 112 are alternately positioned, with a transverse electric field therebetween. Generates.

그리고 제 1 기판(101)과 마주보는 제 2 기판(102) 상에는 각 화소영역(P)에 대응하는 개구부를 가지는 블랙매트릭스(121)가 형성되어 있으며, 이들 개구부에 대응하여 순차적으로 반복 배열된 R, G, B 컬러필터패턴을 포함하는 컬러필터층(123)이 형성되어 있다. On the second substrate 102 facing the first substrate 101, a black matrix 121 having openings corresponding to the pixel regions P is formed, and R sequentially arranged to correspond to these openings. The color filter layer 123 including the G, B color filter patterns is formed.

그리고, 블랙매트릭스(121)와 컬러필터층(123) 상부에는 오버코트층(125)이 형성되어 있다. An overcoat layer 125 is formed on the black matrix 121 and the color filter layer 123.

이와 같이 횡전계방식 액정표시장치(100)는 제 1 기판(101) 상에 공통전극(112)과 화소전극(114)을 형성하고, 두 전극(112, 114) 사이에 수평전계를 생성하여 액정분자가 기판(101, 102)에 평행한 수평전계와 나란하게 배열되도록 함으로써, 액정표시장치의 시야각을 넓게 할 수 있다. As described above, the horizontal electric field type liquid crystal display device 100 forms a common electrode 112 and a pixel electrode 114 on the first substrate 101, and generates a horizontal electric field between the two electrodes 112 and 114 to form a liquid crystal. By arranging the molecules in parallel with the horizontal electric field parallel to the substrates 101 and 102, the viewing angle of the liquid crystal display device can be widened.

그리고 제 1, 제 2 기판(101, 102)의 외면으로는 특정 빛만을 선택적으로 투과시키는 제 1 및 제 2 편광판(119a, 119b)이 각각 부착된다. First and second polarizing plates 119a and 119b for selectively transmitting only specific light are attached to the outer surfaces of the first and second substrates 101 and 102, respectively.

이때, 제 1 및 제 2 편광판(119a, 119b)의 편광축은 서로 직교한다. At this time, the polarization axes of the first and second polarizing plates 119a and 119b are perpendicular to each other.

이러한 구성을 갖는 횡전계방식 액정표시장치(100)는 비록 도면상에 명확하게 나타나지는 않았지만 제 1 기판(101)과 제 2 기판(102) 사이에 두 기판(101, 102) 간의 일정한 셀갭을 유지시키기 위해 패턴드 스페이서(미도시)가 형성된다. The transverse electric field type liquid crystal display device 100 having such a configuration maintains a constant cell gap between the two substrates 101 and 102 between the first substrate 101 and the second substrate 102 although not clearly shown in the drawing. To form a patterned spacer (not shown).

또한, 이들 두 기판(101, 102)과 액정층(103)의 경계부분에는 액정의 초기 분자배열 방향을 결정하는 상, 하부 배향막(미도시)이 개재되고, 그 사이로 충진되는 액정층(103)의 누설을 방지하기 위해 양 기판(101, 102)의 가장자리를 따라 씰패턴(seal pattern : 미도시)이 형성된다. In addition, a liquid crystal layer 103 filled with an upper and lower alignment layer (not shown) interposed between the two substrates 101 and 102 and the liquid crystal layer 103 to determine an initial molecular alignment direction of the liquid crystal. Seal patterns (not shown) are formed along the edges of both substrates 101 and 102 in order to prevent leakage.

특히, 본 발명의 횡전계방식 액정표시장치(100)는 제 2 기판(102)의 외면에 무기재료로 이루어지는 광보상층(200)이 형성되는 것을 특징으로 한다. In particular, the transverse electric field type liquid crystal display device 100 of the present invention is characterized in that the optical compensation layer 200 made of an inorganic material is formed on the outer surface of the second substrate 102.

광보상층(200)은 액정층(103) 내부에서의 빛의 위상의 변화를 반대방향으로 보상해 줌으로써, 제 1 및 제 2 편광판(119a, 119b)의 광축이 수직 상태가 깨지는 대각방향에서의 빛샘이 발생하는 것을 방지하는 역할을 한다. 이에 대해 아래 도 4a ~ 4b를 참조하여 좀더 자세히 살펴보도록 하겠다. The optical compensation layer 200 compensates for the change in the phase of light in the liquid crystal layer 103 in the opposite direction, so that the optical axes of the first and second polarizing plates 119a and 119b are diagonally broken. It prevents light leakage from occurring. This will be described in more detail with reference to FIGS. 4A to 4B below.

도 4a ~ 4b는 본 발명의 실시예에 따른 횡전계방식 액정표시장치의 전계 인가 여부에 따른 동작을 각각 도시한 단면도이며, 도 5는 광보상층의 일축성 결정의 배열 상태를 도시한 도면이다. 4A to 4B are cross-sectional views illustrating an operation according to whether an electric field is applied to a transverse electric field type liquid crystal display device according to an exemplary embodiment of the present invention. .

동작 특성을 설명하기 전 구성을 간략히 설명하면, 도시한 바와 같이, 공통전극(112)과 화소전극(114)이 형성된 제 1 기판(101)과 액정층(103)을 사이에 두고 제 2 기판(102)이 구성되며, 제 1 기판(101)과 제 2 기판(102)의 바깥 면에는 각각 제 1 편광판(119a)과 제 2 편광판(119b)이 위치한다. Before briefly describing the operating characteristics, the configuration will be described. As shown in the drawing, the first substrate 101 and the liquid crystal layer 103 having the common electrode 112 and the pixel electrode 114 interposed therebetween. 102 is configured, and the first polarizing plate 119a and the second polarizing plate 119b are positioned on the outer surfaces of the first substrate 101 and the second substrate 102, respectively.

그리고, 제 1 편광판(119a)의 하부에는 횡전계방식 액정표시장치(도 3의 100)에서 나타내는 투과율의 차이가 외부로 발현되도록 빛을 공급하는 백라이트 유닛(130)이 구비된다.In addition, a backlight unit 130 is provided below the first polarizing plate 119a to supply light such that a difference in transmittance shown in the transverse electric field type liquid crystal display device 100 (FIG. 3) is expressed to the outside.

이러한 구성을 가진 횡전계방식 액정표시장치(도 3의 100)는 어느 한 편광판(119a, 119b)의 투과축과 동일한 방향으로 초기 배향된 액정분자(103a)에 충분한 전압을 걸어주면, 액정분자(103a)의 장축이 전기장(L)에 나란하도록 배열된다. The transverse electric field type liquid crystal display device (100 in FIG. 3) having such a configuration applies a sufficient voltage to the liquid crystal molecules 103a initially oriented in the same direction as the transmission axis of one of the polarizing plates 119a and 119b. The long axis of 103a is arranged to be parallel to the electric field L.

만일, 액정층(103)의 유전율 이방성이 음(-)이면 액정분자(103a)의 단축이 전기장(L)에 나란하게 배열된다.If the dielectric anisotropy of the liquid crystal layer 103 is negative (-), the short axis of the liquid crystal molecules 103a is arranged side by side in the electric field (L).

구체적으로, 대향 합착된 제 1 기판(101) 및 제 2 기판(102)의 외면에 각각 부착된 제 1 및 제 2 편광판(119a, 119b)은 그 투과축이 서로 직교하도록 배치하고, 제 1 기판(101) 상에 형성된 배향막(미도시)의 러빙방향은 어느 한 편광판(119a, 119b)의 투과축과 나란하게 함으로써 노멀리 블랙 모드(normally black mode)가 된다. Specifically, the first and second polarizing plates 119a and 119b attached to the outer surfaces of the opposing first and second substrates 101 and 102, respectively, are disposed such that their transmission axes are perpendicular to each other, and the first substrate The rubbing direction of the alignment film (not shown) formed on the 101 is parallel to the transmission axis of one of the polarizing plates 119a and 119b to be normally black mode.

즉, 전압을 인가하지 않으면, 도 4a에 도시된 바와 같이 액정분자(103a)의 배열방향은 초기 배향막(미도시)의 배열방향과 동일한 방향으로 배열되어 블랙(black) 상태를 표시한다. That is, when no voltage is applied, the alignment direction of the liquid crystal molecules 103a is arranged in the same direction as the alignment direction of the initial alignment layer (not shown) to display a black state as shown in FIG. 4A.

이때, 제 1 편광판(119a)에 입사된 빛 중 제 1 편광판(119a)의 투과축과 일치하는 성분의 빛이 통과하게 되는데, 제 2 편광판(119b)의 투과축은 제 1 편광판(119a)의 투과축과 수직하기 때문에, 제 1 편광판(119a)을 통과한 빛은 제 2 편광판(119b)을 통과하지 못하게 되어 블랙 상태가 구현된다.At this time, the light of the component coinciding with the transmission axis of the first polarizing plate 119a among the light incident on the first polarizing plate 119a passes, and the transmission axis of the second polarizing plate 119b transmits the first polarizing plate 119a. Since it is perpendicular to the axis, the light passing through the first polarizing plate 119a does not pass through the second polarizing plate 119b, thereby implementing a black state.

그리고, 공통전극(112)과 화소전극(114)에 전압을 인가하여, 공통전극(112)과 화소전극(114) 사이에 전계(L)가 형성될 경우, 도 4b에 도시된 바와 같이 액정분자(103a)는 전기장이 인가되는 방향과 나란한 방향으로 액정분자(103a)의 장축이 배열하게 되어 화이트(white) 상태를 표시한다.When a voltage is applied to the common electrode 112 and the pixel electrode 114 to form an electric field L between the common electrode 112 and the pixel electrode 114, the liquid crystal molecules as shown in FIG. 4B. A major axis of the liquid crystal molecules 103a is arranged in a direction parallel to the direction in which the electric field is applied, so that the 103a indicates a white state.

이때, 제 1 및 제 2 기판(101, 102) 사이에 개재되는 액정층(103)은 액정분자(103a)의 장축방향과 단축방향으로의 굴절율이 서로 다른 복굴절성을 가지게 된다. At this time, the liquid crystal layer 103 interposed between the first and second substrates 101 and 102 has birefringence different in refractive index in the major axis direction and the minor axis direction of the liquid crystal molecule 103a.

따라서, 복굴절성에 의해 바라보는 위치에 따라 굴절율 차이가 발생하게 되고, 이를 통해 빛이 액정층(103)을 통과하면서 편광상태가 바뀔 때 위상차가 생겨 정면에서 벗어난 위치에서 볼 때의 제 1 및 제 2 편광판(119a, 119b)의 편광축이 직교하지 않게 됨으로써, 특정 시야각에서 바라 볼 때의 빛의 양과 정면에서 볼 때의 빛의 양이 달라지는 빛샘이 발생하게 된다. Accordingly, a difference in refractive index occurs depending on the position viewed by birefringence, through which the phase difference occurs when the polarization state is changed while the light passes through the liquid crystal layer 103, and thus the first and second views when viewed from a position off the front face. Since the polarization axes of the polarizing plates 119a and 119b are not orthogonal, light leakage occurs in which the amount of light when viewed from a specific viewing angle and the amount of light when viewed from the front are different.

따라서, 시야각에 따라 대비비(contrast ratio)의 변화, 색상 변이(color shift), 계조 반전(gray inversion) 등의 현상이 발생하게 되는데, 본 발명의 횡전계방식 액정표시장치(도 3의 100)는 제 2 기판(102)의 외면에 광보상층(200)을 형성함으로써, 빛샘이 발생하는 것을 방지하게 된다. Accordingly, a change in contrast ratio, color shift, gray inversion, and the like may occur according to the viewing angle. The transverse electric field type liquid crystal display device (100 in FIG. 3) of the present invention occurs. By forming the light compensation layer 200 on the outer surface of the second substrate 102, the light leakage is prevented from occurring.

광보상층(200)은 액정층(103) 내부에서의 빛의 위상의 변화를 반대방향으로 보상해 줌으로써, 제 1 및 제 2 편광판(119a, 119b)의 광축이 수직 상태가 깨지는 대각방향에서의 빛샘이 발생하는 것을 방지하는 역할을 한다. The optical compensation layer 200 compensates for the change in the phase of light in the liquid crystal layer 103 in the opposite direction, so that the optical axes of the first and second polarizing plates 119a and 119b are diagonally broken. It prevents light leakage from occurring.

이에 대해 좀더 자세히 살펴보면, 시야각의 완벽한 보상을 위하여, 광보상층(200)의 위상지연(광보상층의 두께 × 굴절율 이방성)은 원하는 전압 대역에서 액정층(103)의 위상지연과 절대값은 동일하고, 위상은 반대값을 갖거나 액정층(103)의 위상지연값의 절대값과의 차가 0.2um이하로 하여 원하는 전압에서 원하는 정도의 블랙상태를 만듦으로써 구동전압을 조절하는 것이 바람직하다. In detail, the phase delay of the optical compensation layer 200 (thickness of the optical compensation layer × refractive index anisotropy) of the optical compensation layer 200 is equal to the phase delay of the liquid crystal layer 103 in the desired voltage range. In addition, it is preferable to adjust the driving voltage by making a desired black state at a desired voltage so that the phase has the opposite value or the difference between the absolute value of the phase delay value of the liquid crystal layer 103 is 0.2 um or less.

여기서, 횡전계방식 액정표시장치(도 3의 100)의 액정층(103)은 제 1 편광판(119a)을 통과한 입사광을 λ/2(단, λ는 빛의 파장)만큼 위상 지연시켜 입사광의 선편광과 직교하는 광축의 선편광으로 입사광을 변조한다. 즉, 횡전계방식 액정표시장치(도 3의 100)의 액정층(103)의 위상지연값(retardation)이 λ/2이다.Here, the liquid crystal layer 103 of the transverse electric field type liquid crystal display device (100 in FIG. 3) retards incident light passing through the first polarizing plate 119a by λ / 2 (where λ is the wavelength of the light). The incident light is modulated by the linear polarization of the optical axis orthogonal to the linear polarization. That is, the phase retardation of the liquid crystal layer 103 of the transverse electric field type liquid crystal display device (100 in FIG. 3) is λ / 2.

따라서, 본 발명의 광보상층(200)의 위상지연값 또한 λ/2를 갖도록 한다. 이와 같은 광보상층(200)을 통해 완벽하게 시야각을 보상할 수 있다.Therefore, the phase delay value of the optical compensation layer 200 of the present invention also has λ / 2. Through the optical compensation layer 200 can be completely compensated for the viewing angle.

이때, 액정층(103)의 위상지연값은 아래 식(1)의 수식을 정의할 수 있다. In this case, the phase delay value of the liquid crystal layer 103 may define the following formula (1).

λ/2 = Δnd ...............식(1)λ / 2 = Δnd ............... Equation (1)

Δn은 액정층(103)의 굴절율 이방성을 나타내며, d는 액정층(103)의 두께이다. Δn represents the refractive index anisotropy of the liquid crystal layer 103, and d is the thickness of the liquid crystal layer 103.

여기서, 굴절율 이방성인 Δn은 ne-no로 정의할 수 있는데, ne는 액정분자(103a)의 장축 방향에 대하여 빛이 진동하는 방향이며, no는 액정분자(103a)의 단축 방향에 대하여 빛이 진동하는 방향이다. Here, Δn, which is refractive anisotropy, may be defined as ne-no, where ne is a direction in which light vibrates with respect to the long axis direction of the liquid crystal molecules 103a, and no is vibration in light in a short axis direction of the liquid crystal molecules 103a. It is the direction to do it.

횡전계방식 액정표시장치(도 3의 100)의 액정층(103)의 액정분자(103a)는 기판(101, 102) 면과 평행하게 일렬로 누워있는 형태를 가지며, 굴절율이 nx>ny=nz(nx, ny는 평면의 XY방향의 굴절율, nz는 법선 방향에서의 굴절율)의 관계, 즉, ne=nx, no=ny=nz, (nx-ny)= Δn의 관계를 갖는다. The liquid crystal molecules 103a of the liquid crystal layer 103 of the transverse electric field type liquid crystal display device (100 of FIG. 3) have a form lying in parallel with the surfaces of the substrates 101 and 102, and the refractive index is nx> ny = nz (nx, ny is a refractive index in the XY direction of the plane, nz is a refractive index in the normal direction), that is, ne = nx, no = ny = nz, (nx-ny) = Δn.

따라서, 본 발명의 광보상층(200)은 액정층(103)의 위상지연을 보상하기 위하여, 굴절율이 nz>nx=ny(nx, ny는 평면의 XY방향의 굴절율, nz는 법선 방향에서의 굴절율)의 관계, 즉, ne=nx, no=ny=nz, (nz-ny)= Δn의 관계를 갖는다.Therefore, in order to compensate for the phase delay of the liquid crystal layer 103, the optical compensation layer 200 of the present invention has a refractive index of nz> nx = ny (nx, ny represents a refractive index in the XY direction of the plane, and nz represents a normal line direction). Refractive index), that is, ne = nx, no = ny = nz, and (nz-ny) = Δn.

이러한 광보상층(200)은 굴절율 이방성(Δn)이 nz-ny를 갖도록 액정층(103)의 액정분자(103a)에 대해 수직인 방향으로 연장되는 광축을 갖는 일축성 결정(201)으로 이루어지는 것이 바람직하다. The optical compensation layer 200 is composed of a uniaxial crystal 201 having an optical axis extending in a direction perpendicular to the liquid crystal molecules 103a of the liquid crystal layer 103 such that the refractive index anisotropy Δn has nz-ny. desirable.

이에, 본 발명의 실시예에 따른 광보상층(200)은 도 5에 도시한 바와 같이 나노와이어(nano wire) 또는 나노막대(nano rod) 등을 통해 일축성 결정(201)을 갖는 투명한 무기막으로 이루어지며, 이러한 광보상층(200)은 일축성의 광학적 이방성을 갖고, 더욱이 기판(101, 102)에 대하여 수직인 방향으로 연장되는 즉, Z축 방향으로 연장되는 광축을 갖는다. Thus, the optical compensation layer 200 according to the embodiment of the present invention is a transparent inorganic film having a uniaxial crystal 201 through a nano wire (nano wire) or a nano rod (nano rod), as shown in FIG. The optical compensation layer 200 has uniaxial optical anisotropy and further has an optical axis extending in a direction perpendicular to the substrates 101 and 102, that is, extending in the Z-axis direction.

따라서, 광보상층(200)의 굴절율 이방성은 빛이 수직으로 입사할 경우에는 0이지만, 빛이 들어오는 각도에 따라 변화하여, 액정층(103)의 위상지연을 상쇄시키게 된다. 결과적으로 표시된 이미지가 특정한 시야각에서 빛샘이 발생하는 것을 방지하는 것이 가능하다. Accordingly, the refractive index anisotropy of the light compensation layer 200 is zero when light is incident vertically, but changes according to the angle at which light enters, thereby canceling the phase delay of the liquid crystal layer 103. As a result, it is possible for the displayed image to prevent light leakage from occurring at a particular viewing angle.

아래 [표1]은 본 발명의 실시예에 따른 광보상층(200)을 이루는 일축성 결정(201)을 갖는 투명한 무기막의 굴절율 이방성을 나타낸 표이다.Table 1 below shows the refractive index anisotropy of the transparent inorganic film having a uniaxial crystal 201 constituting the optical compensation layer 200 according to an embodiment of the present invention.

굴절율Refractive index nono nene ΔnΔn 액정Liquid crystal 1.4791.479 1.5631.563 0.0840.084 결정decision 질화물(nitride)Nitride GaNGaN 2.4152.415 2.3122.312 -0.103-0.103 AINAIN 2.1592.159 2.2062.206 0.0470.047 산화물(oxide)Oxide Al2O3Al2O3 1.7701.770 1.7621.762 -0.008-0.008 BeOBeO 1.7201.720 1.7361.736 0.0160.016 SiO2SiO2 1.5461.546 1.5551.555 0.0090.009 TeO2TeO2 2.2912.291 2.4502.450 0.1580.158 TiO2TiO2 2.4992.499 2.7672.767 0.2680.268 ZnOZnO 2.0202.020 2.0372.037 0.0170.017 합성물(compound)Compound BaTiO3BaTiO3 2.4522.452 2.4012.401 -0.051-0.051

본 발명의 광보상층(200)은 위의 [표1]의 일축성의 결정(201)을 갖는 투명한 무기막 중 두께 및 액정층(103)의 위상지연값에 대응하여 적절히 선택하여 사용할 수 있다. The light compensation layer 200 of the present invention can be appropriately selected and used in response to the thickness of the transparent inorganic film having the uniaxial crystal 201 of Table 1 and the phase delay value of the liquid crystal layer 103. .

즉, 액정층(103)의 굴절율 이방성(Δn)과 두께(d)에 따른 위상차값과 광보상층(200)의 굴절율 이방성(Δn')과 두께(d')는 다음 식(2)를 만족하도록 결정하는 것이다. That is, the phase difference value according to the refractive index anisotropy Δn and the thickness d of the liquid crystal layer 103, and the refractive index anisotropy Δn ′ and the thickness d ′ of the optical compensation layer 200 satisfy the following equation (2). To decide.

Δnd = Δn'd' ..............식(2)Δnd = Δn'd '.............. Equation (2)

식(2)에서 액정층(103)과 광보상층(200)의 굴절율 이방성과 두께를 설정함으로써, 표시된 이미지가 특정한 시야각에서 빛샘이 발생하는 것을 방지하게 된다. By setting the refractive index anisotropy and thickness of the liquid crystal layer 103 and the optical compensation layer 200 in Equation (2), the displayed image is prevented from generating light leakage at a particular viewing angle.

전술한 바와 같이, 본 발명의 광보상층(200)을 포함하는 횡전계방식 액정표시장치(도 3의 100)는 특정한 시야각에서 빛샘이 발생하는 것을 감소시키며, 이를 통해 콘트라스트비의 저하를 방지하며 시야각에 따른 색반전을 개선할 수 있다. As described above, the transverse electric field type liquid crystal display device (100 of FIG. 3) including the optical compensation layer 200 of the present invention reduces the generation of light leakage at a specific viewing angle, thereby preventing the contrast ratio from being lowered. Color inversion according to the viewing angle can be improved.

특히, 보상필름(미도시)을 편광판(도 1의 20, 30)에 부착시켰던 기존에 비해 총 편광판(119a, 119b)의 부피 및 무게를 줄 일 수 있어, 공정비용을 절감할 수 있으며, 다층으로 이루어지는 보상필름(미도시)의 박리 현상, 뒤틀림 및 얼룩 등에 의해 위상지연 값이 변동하여 복굴절 보상에 편차가 발생하는 것을 방지할 수 있다. In particular, it is possible to reduce the volume and weight of the total polarizing plate (119a, 119b) compared to the conventional attachment of a compensation film (not shown) to the polarizing plate (20, 30 of Figure 1), it is possible to reduce the process cost, multilayer It is possible to prevent the occurrence of a deviation in the birefringence compensation by changing the phase delay value due to peeling phenomenon, distortion and stain of the compensation film (not shown).

도 6a ~ 6b는 최대 휘도일 때의 빛샘을 측정한 시뮬레이션 결과이다. 6A to 6B show simulation results of measuring light leakage at the maximum luminance.

도 6a는 기존의 편광판(도 1의 20, 30)에 보상필름(미도시)을 부착하여 액정층(도 1의 103)의 위상지연을 보상하였을 경우의 빛샘을 특정한 결과로, 보상필름(미도시)은 제 2 편광판(도 1의 30)에 포지티브(positive) 이축성 필름(biaxial film)(137a)과 네거티브(negative) C 성분(137b)이 코팅된 형태로 이루어진다. FIG. 6A illustrates a light leakage when a compensation film (not shown) is attached to a conventional polarizer (20 and 30 of FIG. 1) to compensate for phase delay of the liquid crystal layer (103 of FIG. 1). In the case of FIG. 1, a positive biaxial film 137a and a negative C component 137b are coated on the second polarizing plate 30.

이때, 포지티브 이축성 필름은 95 ~ 100nm의 위상차값을 가지며, 네거티브 C 성분은 90nm의 위상차값을 갖는다. At this time, the positive biaxial film has a phase difference value of 95 to 100 nm, and the negative C component has a phase difference value of 90 nm.

도 6b는 본 발명의 실시예에 따라 액정표시장치(도 3의 100)의 제 2 기판(도 4b의 102)의 외면에 광보상층(도 4b의 200)을 구비하여 액정층(도 4b의 103)의 위상지연을 보상하였을 경우의 빛샘을 측정한 결과로, 이때, 제 2 편광판(도 4b의 119b)에 포지티브 A 성분이 코팅된 형태로 이루어진다. FIG. 6B illustrates an optical compensation layer (200 of FIG. 4B) on the outer surface of the second substrate 102 (FIG. 4B) of the liquid crystal display device 100 of FIG. 3, according to an exemplary embodiment of the present invention. As a result of measuring light leakage when the phase delay of 103 is compensated for, the positive A component is coated on the second polarizing plate 119b of FIG. 4B.

여기서, 광보상층(도 4b의 200)은 -88nm의 위상차값을 가지며, 포지티브 A 성분은 145nm의 위상차값을 갖는다. Here, the light compensation layer (200 in Fig. 4B) has a phase difference value of -88 nm, and the positive A component has a phase difference value of 145 nm.

도시한 바와 같이, 본 발명의 실시예에 따라 광보상층(도 4b의 200)을 포함하는 횡전계방식 액정표시장치(도 3의 100)는 액정표시장치(도 3의 100)의 대각 방향에서 발생하는 빛샘이 기존의 보상필름(미도시)을 사용하였을 때에 비해 크게 감소하는 것을 확인할 수 있다. As shown, the transverse electric field type liquid crystal display device 100 (FIG. 3) including the light compensation layer (200 in FIG. 4B) according to the exemplary embodiment of the present invention is disposed in a diagonal direction of the liquid crystal display device 100 (FIG. 3). It can be seen that the light leakage is greatly reduced compared to when using a conventional compensation film (not shown).

이때, 기존의 보상필름(미도시)을 포함하는 액정표시장치(도 1의 10)는 액정표시장치(도 1의 10)의 대각 방향에서도 특정 방향에서 더욱 빛샘이 많이 발생하는 것을 확인할 수 있는데, 이는 기존의 보상필름(미도시)이 다층으로 이루어짐에 따라 고온고습의 환경에 의해 박리 현상, 뒤틀림 및 얼룩 등이 발생하여, 복굴절 보상에 편차가 발생하기 때문이다. In this case, the liquid crystal display (10 of FIG. 1) including the conventional compensation film (not shown) may be confirmed that more light leakage occurs in a specific direction even in a diagonal direction of the liquid crystal display (10 of FIG. 1). This is because, as the conventional compensation film (not shown) is made of a multilayer, peeling phenomenon, distortion, and staining are generated by an environment of high temperature and high humidity, and a deviation occurs in birefringence compensation.

이에 반해, 본 발명의 광보상층(도 4b의 200)을 포함하는 횡전계방식 액정표시장치(도 3의 100)는 모든 영역에 걸쳐 균일하게 빛샘이 발생하지 않는 것을 확인할 수 있다. On the contrary, in the transverse electric field type liquid crystal display device (100 in FIG. 3) including the light compensation layer (200 in FIG. 4B) of the present invention, it can be confirmed that light leakage does not occur uniformly over all regions.

한편, 본 발명의 광보상층(도 4b의 200)은 도전성을 갖도록 형성할 수 있는데, 이러한 경우, 횡전계방식 액정표시장치(도 3의 100)의 제 2 기판(도 4b의 102)이 정전기와 같은 불필요한 전하가 유입되어 손상되는 것을 방지할 수 있다. On the other hand, the light compensation layer (200 of FIG. 4b) of the present invention can be formed to have a conductivity, in this case, the second substrate (102 of FIG. 4b) of the transverse electric field type liquid crystal display device (100 of FIG. 3) is electrostatic Unnecessary charges such as inflow can be prevented from being damaged.

즉, 횡전계방식 액정표시장치(도 3의 100)는 정전기와 같은 불필요한 전하가 유입되기 쉽고, 이 경우 액정분자(도 4b의 103a) 배열 방향에 영향을 미쳐 정상적인 동작특성을 해치게 된다.That is, the transverse electric field type liquid crystal display device (100 of FIG. 3) easily enters unnecessary charges such as static electricity, and in this case, affects the alignment direction of the liquid crystal molecules (103a of FIG. 4B) to impair normal operating characteristics.

특히, 제 1 기판(도 4b의 101) 상에는 화소전극(도 4b의 114)과 공통전극(도 4b의 112)이 모두 형성되어 있어 이들을 통해 정전기를 외부로 방전할 수 있으나, 제 2 기판(도 4b의 102)에는 정전기를 방전할 수 있는 수단이 형성되어 있지 않아, 정전기에 의해 제 2 기판(도 4b의 102)이 손상 받을 수 있다. In particular, the pixel electrode (114 in FIG. 4B) and the common electrode (112 in FIG. 4B) are both formed on the first substrate (101 in FIG. 4B), so that static electricity can be discharged to the outside through the second substrate (FIG. No means for discharging static electricity is formed in 102 of 4b, and the second substrate (102 in FIG. 4b) may be damaged by static electricity.

따라서, 제 2 기판(2 도 4b의 102)의 외면에 ITO와 같은 투명 도전성 금속층(미도시)을 더욱 형성하는데, 본 발명의 횡전계방식 액정표시장치(도 3의 100)는 제 2 기판(도 4b의 102)의 외면에 형성되는 광보상층(도 4b의 200)이 전도성을 갖도록 함으로써, 광보상층(도 4b의 200)을 통해 제 2 기판(도 4b의 102)으로 유입되는 정전기와 같은 불필요한 전하가 외부로 방전되도록 할 수 있다. Accordingly, a transparent conductive metal layer (not shown) such as ITO is further formed on the outer surface of the second substrate 102 of FIG. 4B, but the transverse electric field type liquid crystal display device 100 of FIG. By making the light compensation layer (200 in FIG. 4B) formed on the outer surface of 102 of FIG. 4B to have conductivity, static electricity flowing into the second substrate (102 in FIG. 4B) through the light compensation layer (200 in FIG. 4B) may be formed. The same unnecessary charge can be discharged to the outside.

이를 통해, 제 2 기판(도 4b의 102)이 정전기와 같은 불필요한 전하로 인해 손상되는 것을 방지할 수 있다. Through this, it is possible to prevent the second substrate (102 of FIG. 4B) from being damaged by unnecessary charge such as static electricity.

이때, 광보상층(도 4b의 200)은 투명 도전성 산화물(transparent conductive oxide : TCO) 계열의 물질을 사용함으로써, 일축성의 결정(도 5의 201)을 가지며, 전도성을 갖게 된다. In this case, the light compensation layer 200 (in FIG. 4B) has a uniaxial crystal (201 in FIG. 5) and has conductivity by using a material of a transparent conductive oxide (TCO) series.

투명 도전성 산화물은 ITO(indium tin oxide), GaZnO, AlZnO, InZnO 등으로 이루어질 수 있다. The transparent conductive oxide may be made of indium tin oxide (ITO), GaZnO, AlZnO, InZnO, or the like.

본 발명은 상기 실시예로 한정되지 않고, 본 발명의 취지를 벗어나지 않는 한도 내에서 다양하게 변경하여 실시할 수 있다.
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

201 : 일축성 결정201: Uniaxiality determination

Claims (6)

제 1 및 제 2 기판과, 상기 제 1 및 제 2 기판 사이에 개재되는 액정층을 포함하는 액정패널과;
상기 제 2 기판의 외면에 위치하며, 일축성의 결정을 갖는 투명한 무기막으로 이루어지는 광보상층과;
상기 제 1 기판의 외면에 위치하는 제 1 편광판과, 상기 광보상층 상부에 위치하는 제 2 편광판
을 포함하며, 상기 액정층의 위상차값(Δnd)과 상기 광보상층의 위상차값(Δn'd')은 동일한 횡전계방식 액정표시장치.
A liquid crystal panel including first and second substrates and a liquid crystal layer interposed between the first and second substrates;
An optical compensation layer disposed on an outer surface of the second substrate and formed of a transparent inorganic film having a uniaxial crystal;
A first polarizing plate positioned on an outer surface of the first substrate, and a second polarizing plate positioned above the optical compensation layer
And a phase difference value [Delta] nd of the liquid crystal layer and a phase difference value [Delta] n'd 'of the optical compensation layer.
제 1 항에 있어서,
상기 광보상층은 나노와이어 또는 나노막대와 같은 결정성을 가지며, 상기 제 1 및 제 2 기판에 대하여 수직인 방향으로 연장되는 횡전계방식 액정표시장치.
The method of claim 1,
The optical compensation layer has a crystallinity such as nanowires or nanorods, and extends in a direction perpendicular to the first and second substrates.
제 1 항에 있어서,
상기 광보상층은 nz>nx=ny(nx, ny는 평면의 XY방향의 굴절율, nz는 법선 방향에서의 굴절율)의 관계를 갖는 횡전계방식 액정표시장치.
The method of claim 1,
The optical compensation layer has a relationship of nz> nx = ny (nx, ny is a refractive index of the XY direction of a plane, nz is a refractive index of a normal line direction).
제 1 항에 있어서,
상기 광보상층은 GaN, AIN, Al2O3, BeO, SiO2, TeO2, TiO2, ZnO, BaTiO3 중 선택된 하나로 이루어지는 횡전계방식 액정표시장치.
The method of claim 1,
The optical compensation layer is a transverse electric field liquid crystal display device comprising one selected from GaN, AIN, Al2O3, BeO, SiO2, TeO2, TiO2, ZnO, BaTiO3.
제 1 항에 있어서,
상가 광보상층은 투명 도전성 산화물(transparent conductive oxide : TCO)로 이루어지는 횡전계방식 액정표시장치.
The method of claim 1,
The horizontal light compensation layer is a transverse electric field type liquid crystal display device made of transparent conductive oxide (TCO).
제 1 항에 있어서,
상기 투명성 도전성 산화물은 ITO(indium tin oxide), GaZnO, AlZnO, InZnO 중 선택된 하나인 횡전계방식 액정표시장치.
The method of claim 1,
The transparent conductive oxide is indium tin oxide (ITO), GaZnO, AlZnO, InZnO is a transverse electric field type liquid crystal display device.
KR1020110037376A 2011-04-21 2011-04-21 In-plane switching mode liquid crystal display device KR101730850B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110037376A KR101730850B1 (en) 2011-04-21 2011-04-21 In-plane switching mode liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110037376A KR101730850B1 (en) 2011-04-21 2011-04-21 In-plane switching mode liquid crystal display device

Publications (2)

Publication Number Publication Date
KR20120119446A true KR20120119446A (en) 2012-10-31
KR101730850B1 KR101730850B1 (en) 2017-05-12

Family

ID=47286690

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110037376A KR101730850B1 (en) 2011-04-21 2011-04-21 In-plane switching mode liquid crystal display device

Country Status (1)

Country Link
KR (1) KR101730850B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150080148A (en) * 2013-12-30 2015-07-09 삼성디스플레이 주식회사 Display panel
KR20160026481A (en) * 2014-09-01 2016-03-09 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device having optical compensation film
KR20170110542A (en) * 2016-03-23 2017-10-11 한국과학기술원 Ultra-thin retradation film using 3-dimensional nanostructures, and display device including the same
KR20190088583A (en) * 2018-01-18 2019-07-29 삼성디스플레이 주식회사 Display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5209233B2 (en) * 2007-05-24 2013-06-12 日東電工株式会社 Retardation film, polarizing plate, liquid crystal panel and liquid crystal display device
JP5568937B2 (en) * 2009-10-02 2014-08-13 セイコーエプソン株式会社 Liquid crystal device, electronic device and projection display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150080148A (en) * 2013-12-30 2015-07-09 삼성디스플레이 주식회사 Display panel
KR20160026481A (en) * 2014-09-01 2016-03-09 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device having optical compensation film
KR20170110542A (en) * 2016-03-23 2017-10-11 한국과학기술원 Ultra-thin retradation film using 3-dimensional nanostructures, and display device including the same
KR20190088583A (en) * 2018-01-18 2019-07-29 삼성디스플레이 주식회사 Display device

Also Published As

Publication number Publication date
KR101730850B1 (en) 2017-05-12

Similar Documents

Publication Publication Date Title
JP2002072219A (en) Liquid crystal display device
JP2003140172A (en) Liquid crystal display device and method of manufacturing liquid crystal display device
JP2014215347A (en) Liquid crystal panel
JP2004206130A (en) Liquid crystal display
KR101044529B1 (en) In plane switching mode liquid crystal display device and method for fabricating the same
JP2014215348A (en) Liquid crystal panel
KR101730850B1 (en) In-plane switching mode liquid crystal display device
KR101152548B1 (en) Liquid crystal display device increasing viewing angle
US9007548B2 (en) Wide view angle liquid crystal display device operating in normally white mode
US8390768B2 (en) Vertically aligned liquid crystal display device
JP5514410B2 (en) Liquid crystal display
KR101948827B1 (en) Transparent Liquid Crystal Display Device
KR100899627B1 (en) In plane switching mode liquid crystal display device
KR100759966B1 (en) liquid crystal display
KR101108387B1 (en) Twisted nematic mode liquid crystal display device and method for manufacturing lcd
KR101868541B1 (en) In-plane switching mode liquid crystal display device
KR101774280B1 (en) In-Plane Switching Mode Liquid Crystal Display Device And Method Of Driving The Same
KR101113782B1 (en) Photo compensation film for liquid crystal display device and liquid crystal display device including the same
KR101744872B1 (en) Liquid crystal display device
TW200407620A (en) Structure of LCD
KR101429902B1 (en) Liquid Crystal Display Device
KR101812542B1 (en) In-Plane Switching Mode Liquid Crystal Display Device And Method Of Driving The Same
KR20120066813A (en) Liquid crystal display device
KR101250783B1 (en) Liquid crystal display device and method for fabricating the same
KR100965578B1 (en) Ferroelectric Liquid Crystal Display Device

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant