KR20120102381A - Liquid fuel composition with improved thermal stability - Google Patents

Liquid fuel composition with improved thermal stability Download PDF

Info

Publication number
KR20120102381A
KR20120102381A KR1020110020508A KR20110020508A KR20120102381A KR 20120102381 A KR20120102381 A KR 20120102381A KR 1020110020508 A KR1020110020508 A KR 1020110020508A KR 20110020508 A KR20110020508 A KR 20110020508A KR 20120102381 A KR20120102381 A KR 20120102381A
Authority
KR
South Korea
Prior art keywords
thermal stability
exo
liquid fuel
thdcp
fuel composition
Prior art date
Application number
KR1020110020508A
Other languages
Korean (ko)
Other versions
KR101297655B1 (en
Inventor
한정식
정병훈
전병희
김성현
박선희
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020110020508A priority Critical patent/KR101297655B1/en
Publication of KR20120102381A publication Critical patent/KR20120102381A/en
Application granted granted Critical
Publication of KR101297655B1 publication Critical patent/KR101297655B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/183Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds

Abstract

PURPOSE: A liquid fuel composition is provided to improve the thermal stability of exo-tetrahydrodicyclopentadiene(exo-THDCP) by adding a thermal stabilizer into the exo-THDCP. CONSTITUTION: A liquid fuel composition includes exo-THDCP as liquid fuel and a thermal stabilizer. 0.1 to 5.0 weight% of one or more selected from tetrahydroquinoline, benzyl alcohol, and tetrahydroquinoxaline is added into the exo-THDCP as the thermal stabilizer. The tetrahydroquinoline is represented by chemical formula 2. In chemical formula 2, R1 is CH_2; n is 2 or 3; and R2 is H, CH_3, or C_2H_5. The tetrahydroquinoxaline is represented by chemical formula 4. In chemical formula 4, R1 is H, CH_3, or C_2H_5; and R2 is H, CH_3, or C_2H_5.

Description

열안정성이 향상된 액체연료 조성물{Liquid fuel composition with improved thermal stability} Liquid fuel composition with improved thermal stability

본 발명은 액체연료로 사용 가능한 엑소-테트라히드로디시클로펜타디엔(exo-tetrahydrodicyclopentadiene; 이하 exo-THDCP)에 열안정 향상제를 첨가함으로써 열안정성이 향상된 액체연료 조성물에 관한 것이다. The present invention relates to a liquid fuel composition having improved thermal stability by adding a heat stabilizer to exo-tetrahydrodicyclopentadiene (EXO-THDCP) which can be used as a liquid fuel.

초음속으로 이동하는 항공기, 로켓 기술이 발전함에 따라, 비행체들에 사용되는 연료들은 발사체가 초음속 이상으로 비행할 경우 발생되는 마찰열과 발사체 내부의 엔진이나 제어장치 등에서 발생되는 열에 의해 발사체 부속품들의 변성이 생기는 문제가 발생한다. 또한 발사체 내부의 고온, 고압조건으로 인하여 연료가 변성될 경우 화학구조가 변화되어 물성치가 변하여 연료성능이 저하될 수 있으며, 또한 연료분해로 쉽게 타르(tar)가 형성되어 연료계통 막힘 현상 등의 문제를 초래하여, 심각한 경우 시스템의 오작동을 가져올 수 있으므로 연료는 고온에서 열분해에 대한 안정성을 필요로 한다. As aircraft and rocket technology moves at supersonic speeds, the fuels used in the aircrafts are deformed by the frictional heat generated when the projectile flies above the supersonic speed and the heat generated by the engines and controls inside the projectile. A problem arises. In addition, if the fuel is denatured due to the high temperature and high pressure conditions inside the projectile, the chemical structure may be changed, the physical properties may be changed, and the fuel performance may be degraded. Also, tar may be easily formed due to fuel decomposition, causing problems in fuel system clogging. The fuel requires stability to pyrolysis at high temperatures as it can lead to malfunction of the system in severe cases.

이렇게 연료의 온도가 상승하는 것을 제어하기 위해 단열재를 사용하는 방법이 있으나, 많은 열적부하를 해결하기에는 부족하며, 추진기관의 무게를 증가시키는 단점이 있으므로 최근에는 연료를 냉각제로 활용하는 방법이 효과적인 대책으로 연구되고 있는데, 이러한 경우에 있어서도 고온에서 연료의 열안정성이 유지되어야 한다. 열안정성은 일반적으로 고온에서 연료의 초기 화학적 성분의 분해가 일어나지 않는 것을 의미하며, 분해시작이 일어나는 온도, 고온에서 시간에 따른 분해율 또는 분해에 의한 침적물 형성정도 등으로 평가할 수 있다.There is a method of using insulation to control the rise of the temperature of the fuel, but it is not enough to solve many thermal loads, and there is a disadvantage of increasing the weight of the propulsion engine, so in recent years, the method of using the fuel as a coolant is an effective measure. In this case, the thermal stability of the fuel should be maintained at high temperatures. Thermal stability generally means that the decomposition of the initial chemical components of the fuel does not occur at high temperatures, and can be evaluated by the temperature at which decomposition starts, the decomposition rate with time at high temperatures, or the degree of deposit formation by decomposition.

연료의 열안정성을 향상시키기 위한 선행기술인 미국특허 제7,589,243호와 제7,671,245호에서는 케로신형 제트연료 조성 중 첨가제로서 산화방지제와는 별도로 열안정제(thermal stability improver)의 사용을 언급하고 있고, 함량은 0.001?5중량%가 가능하다고 설명하였으나, 자세한 구성물질에 대한 언급이 없다. Prior art US Pat. Nos. 7,589,243 and 7,671,245 to improve the thermal stability of fuels refer to the use of thermal stability improvers apart from antioxidants as additives in kerosene type jet fuel compositions, with a content of 0.001 Although 5% by weight is described as possible, there is no mention of a detailed composition.

그리고 미국특허 제4,330,302호에서는 케로신형 제트연료의 열안정성 향상을 위한 첨가제로서 질소를 포함한 화합물로서 퀴놀린이 가능하다고 제시하였다.In addition, U.S. Patent No. 4,330,302 suggests that quinoline is possible as a compound containing nitrogen as an additive for improving the thermal stability of kerosine jet fuel.

또한 외국문헌(Emily M. Yoon et al, "High-Temperature Stabilizers for Jet Fuels and Similar Hydrocarbon Mixtures. 1. Comparative Studies of Hydrogen Donors", Energy & Fuels 1996, 10, 806-811)에서는 케로신형 제트연료의 열안정성 향상을 위한 첨가제로 테트라히드로퀴놀린(THQ)의 효과와 작용 메카니즘을 제시하였다.Also in foreign literature (Emily M. Yoon et al, "High-Temperature Stabilizers for Jet Fuels and Similar Hydrocarbon Mixtures. 1. Comparative Studies of Hydrogen Donors", Energy & Fuels 1996, 10, 806-811). The effects and mechanism of action of tetrahydroquinoline (THQ) as an additive for improving thermal stability were presented.

단일 성분의 exo-THDCP는 열안정성 향상제가 없을 때에 370℃에서 분해가 시작되며, 온도가 증가할수록 분해율이 증가하여 380℃에서 10.5시간 유지시 exo-THDCP의 10%, 390℃에서는 20%, 그리고 400℃에서는 35%가 분해되어 다른 물질로 변하므로 연료물성 및 특성이 변화되어 연료의 성능이 저하되며, 또한 고온에서 열을 흡수하는 냉각제로의 기능도 할 수 없는 심각한 문제점을 지니고 있다.Single component exo-THDCP starts to decompose at 370 ° C in the absence of a thermal stability enhancer, and the decomposition rate increases with increasing temperature, keeping 10% of exo-THDCP at 380 ° C, 20% at 390 ° C, and At 400 ° C., 35% is decomposed and changed into other materials, so the fuel properties and properties are changed, thereby degrading the performance of the fuel, and also having a serious problem in that it cannot function as a coolant that absorbs heat at high temperatures.

이와 같은 현상을 개선하여 고온에서 연료의 성능을 유지하기 위해서는 exo-THDCP의 분해율을 낮추어야 하나, 기존에 케로신형 제트연료용 첨가제로서 THQ와 같은 일부 화합물만이 알려져 있고, 다른 기능의 첨가제와 혼합한 패키지 형태로 판매 관리하고 있어, 정확한 구성물질을 확인할 수 없었다. In order to improve the phenomena and maintain fuel performance at high temperatures, the decomposition rate of exo-THDCP should be lowered. However, only some compounds such as THQ are known as kerosine type jet fuel additives, and mixed with other functional additives. The product was managed in the form of a package, so the exact composition could not be confirmed.

따라서 첨가제를 이용한 exo-THDCP의 열안정성 향상연구는 활발히 이루어지지 않았으며, 연구결과도 보고된 바 없어, 최근의 고속비행체 발전추세에 따라 고온에서 exo-THDCP의 사용이 증가함에 따라 exo-THDCP의 열안정성 개선이 시급한 실정이었다.Therefore, studies on the improvement of thermal stability of exo-THDCP using additives have not been actively conducted, and the results of the studies have not been reported. As the use of exo-THDCP at high temperatures increases with the recent development of high-speed aircraft, Improvement of thermal stability was urgent.

본 발명의 목적은 상기와 같은 문제점을 해결하기 위하여, 액체연료로 사용 가능한 exo-THDCP에 특정의 열안정 향상제를 첨가함으로써 열안정성을 향상시킨 액체연료 조성물을 제공하는 것이다. It is an object of the present invention to provide a liquid fuel composition having improved thermal stability by adding a specific thermal stability enhancer to exo-THDCP usable as a liquid fuel.

본 발명의 액체연료 조성물은 exo-THDCP에 열안정 향상제로서 테트라히드로퀴놀린(Tetrahydroquinoline; 이하 THQ), 벤질알코올(Benzyl alcohol; 이하 BnOH) 및 테트라히드로퀴녹살린(Tetrahydroquinoxaline; 이하 THQox)으로부터 선택되는 1종 또는 2종 이상을 포함하여 이루어지며, 상기 열안정 향상제는 조성물 전체 중량을 기준으로 0.1~5.0중량% 포함되는 것을 특징으로 한다.The liquid fuel composition of the present invention is one selected from tetrahydroquinoline (THQ), benzyl alcohol (BnOH) and tetrahydroquinoxaline (THQox) as a heat stabilizer for exo-THDCP. Or it consists of two or more, the thermal stability improver is characterized in that it comprises 0.1 to 5.0% by weight based on the total weight of the composition.

본 발명에서 사용되는 exo-THDCP(exo-tetrahydrodicyclopentadiene, C10H16)는 하기의 화학식 1과 같은 구조를 가지고 있으며, 낮은 독성, 적당한 인화 온도(55℃), 높은 체적 에너지량(39.6MJ/리터) 및 우수한 물리화학적 특성 뿐만 아니라, 저비용 생산이 가능하기 때문에 특수 액체연료 외에 반도체용 세척제, 계면활성제의 희석제, 윤활유, 절삭유 등으로 널리 사용되고 있다. Exo-THDCP (exo-tetrahydrodicyclopentadiene, C 10 H 16 ) used in the present invention has a structure as shown in Formula 1 below, low toxicity, moderate ignition temperature (55 ℃), high volume energy (39.6MJ / liter ) And excellent physicochemical properties, as well as low-cost production, it is widely used as a cleaning agent for semiconductors, diluents of surfactants, lubricants, cutting oils, etc. in addition to special liquid fuels.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

본 발명에서 열안정성 향상제로서 사용되는 THQ, BnOH 및 THQox의 구조는 각각 하기 [화학식 2], [화학식 3] 및 [화학식4]와 같다.The structures of THQ, BnOH and THQox used as thermal stability enhancers in the present invention are as shown in [Formula 2], [Formula 3] and [Formula 4], respectively.

[화학식 2][Formula 2]

Figure pat00002
(여기에서, R1=CH2, n=2 또는 3, R2=H, CH3 또는 C2H5)
Figure pat00002
Where R 1 = CH 2 , n = 2 or 3, R 2 = H, CH 3 or C 2 H 5

[화학식 3] (3)

Figure pat00003
(여기에서, R1=CH2OH, R2=H 또는 CH2OH)
Figure pat00003
Wherein R 1 = CH 2 OH, R 2 = H or CH 2 OH

[화학식 4][Formula 4]

Figure pat00004
(여기에서, R1=H, CH3 또는 C2H5, R2=H, CH3 또는 C2H5)
Figure pat00004
Where R 1 = H, CH 3 or C 2 H 5 , R 2 = H, CH 3 or C 2 H 5

상기 열안정성 향상제를 2종 이상 사용할 경우, 그 혼합비율에는 특별히 제한이 없고, 예를 들어 동일 중량비로 혼합되는 것이 바람직하다.When using 2 or more types of said thermal stability improvers, there is no restriction | limiting in particular in the mixing ratio, For example, it is preferable to mix in the same weight ratio.

본 발명의 액체 연료 조성물에 있어서, 상기 열안정 향상제의 함량(총량)은 액체 연료 조성물의 전체량을 100중량%로 할 때, 0.1~5.0중량%인 것이 바람직하고, 0.1~0.5중량%인 것이 더욱 바람직하다. 상기 함량이 0.1중량% 미만인 경우에는 첨가제에 의한 열안정 효과가 크지 않으므로 바람직하지 않고, 5.0중량%를 초과하는 경우에는 첨가제에 의한 열안정 효과가 증가하지만 연료의 성능저하 등 다른 물성에 영향을 끼치므로 바람직하지 않다.In the liquid fuel composition of the present invention, the content (total amount) of the heat stabilizer is preferably 0.1 to 5.0% by weight, and preferably 0.1 to 0.5% by weight when the total amount of the liquid fuel composition is 100% by weight. More preferred. If the content is less than 0.1% by weight, it is not preferable because the thermal stability effect by the additive is not large, and when the content exceeds 5.0% by weight, the thermal stability effect by the additive increases, but it affects other physical properties such as deterioration of fuel performance. Is not preferred.

본 발명의 액체연료 조성물은 액체연료로 사용 가능한 exo-THDCP에 열안정 향상제로서 THQ, BnOH 및 THQox로부터 선택되는 1종 또는 2종 이상을 혼합함으로써, exo-THDCP의 열안정성을 향상시킬 수 있다. The liquid fuel composition of the present invention can improve the thermal stability of exo-THDCP by mixing one or two or more selected from THQ, BnOH and THQox as a thermal stability enhancer to exo-THDCP usable as a liquid fuel.

도 1은 본 발명의 실시예 및 비교예에서 사용된 열안정성 시험장치의 구조도이고,
도 2는 본 발명의 실시예 및 비교예에 따른 열안정성 분석결과로서, exo-THDCP에 열안정 향상제로서 BnOH, THQ, BnOH+THQ(무게비=1:1), THQox를 각각 0.1중량% 첨가했을 때에 390℃에서의 exo-THDCP의 분해속도 및 총 분해율이 열안정 향상제를 첨가하지 않았을 경우에 비해 감소되는 것을 나타낸 그래프이고,
도 3은 본 발명의 실시예 및 비교예에 따른 열안정성 분석결과로서, exo-THDCP에 열안정 향상제로서 BnOH, THQ, BnOH+THQ(무게비=1:1), THQox를 각각 0.5중량% 첨가했을 때에 390℃에서의 exo-THDCP의 분해속도 및 총 분해율이 열안정 향상제를 첨가하지 않았을 경우에 비해 감소되는 것을 나타낸 그래프이고,
도 4는 비교예에 따른 열안정성 분석 결과로서, 질소압력을 45bar로 유지한 상태에서의 온도에 따른 exo-THDCP의 분해도의 비교 결과를 나타낸 그래프이고,
도 5는 비교예에 다른 열안정성 분석 결과로서, 질소압력을 45bar로 유지한 상태에서의 380℃(a), 390℃(b), 400℃(c) 각각의 온도에 따른 exo-THDCP의 색변화 비교 결과를 나타낸 그래프이다.
1 is a structural diagram of a thermal stability test apparatus used in Examples and Comparative Examples of the present invention,
Figure 2 shows the results of thermal stability analysis according to Examples and Comparative Examples of the present invention, 0.1 wt% of BnOH, THQ, BnOH + THQ (weight ratio = 1: 1), THQox was added to exo-THDCP as a thermal stability enhancer, respectively. It is a graph showing that the decomposition rate and total decomposition rate of exo-THDCP at 390 ℃ is reduced compared to the case without addition of the thermal stability enhancer,
FIG. 3 shows the results of thermal stability analysis according to Examples and Comparative Examples of the present invention, wherein 0.5 wt% of BnOH, THQ, BnOH + THQ (weight ratio = 1: 1), and THQox were respectively added to exo-THDCP as a thermal stability enhancer. It is a graph showing that the decomposition rate and total decomposition rate of exo-THDCP at 390 ℃ is reduced compared to the case without addition of the thermal stability enhancer,
Figure 4 is a thermal stability analysis results according to the comparative example, a graph showing a comparison result of the decomposition of exo-THDCP with temperature in a state of maintaining the nitrogen pressure 45bar,
5 is a thermal stability analysis result according to the comparative example, the color of exo-THDCP according to the temperature of 380 ℃ (a), 390 ℃ (b), 400 ℃ (c) at a nitrogen pressure of 45bar It is a graph showing the result of comparison of change.

이하, 본 발명을 하기 실시예 및 비교예에 의하여 보다 구체적으로 설명한다. 하기의 실시예는 본 발명을 실시하기 위한 예에 지나지 않으며, 본 발명의 보호범위를 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following Examples and Comparative Examples. The following examples are merely examples for carrying out the present invention, and are not intended to limit the protection scope of the present invention.

실시예 및 비교예Examples and Comparative Examples

1. 실험조건1. Experimental conditions

도 1에 나타낸 시험장치를 사용하여 실시예와 비교예의 각 액체연료 조성물의 열분해율을 분석하여 열안정성을 평가하였다.Thermal stability was evaluated by analyzing the thermal decomposition rate of each liquid fuel composition of Example and Comparative Example using the test apparatus shown in FIG.

도 1에는 액체연료 조성물에 대한 열안정성 시험장치를 나타내었다. 여기에서 회분식 반응기(6)는 가용압력 200bar의 스테인리스 스틸 316 재질이나, 반응기 재질에 의한 영향을 배제하기 위해 내부에 석영 재질의 플라스크를 장착하였다. 또한 고온에서 반응기내의 연료가 액체상태를 유지하기 위한 질소가압장치(1, 2)와, 내부온도를 증가시킬 수 있도록 반응기 외부에서 가열할 수 있는 히팅자켓(8)으로 구성된다. 반응도중 실시간으로 시료를 채취할 수 있는 응축조(9)와 채취기(10), 그리고 기상 생성물 분리기(11) 및 이를 정성분석 및 정량분석을 할 수 있는 GC/MS(Agilent 5975C, column: HP-5ms)가 연결되었다. 도 3에 도시된 열안정성 시험 장치에는 필요에 따라 도 1에 도시되지 않는 기타 장비를 더 포함하여 이루어질 수 있다.1 shows a thermal stability test apparatus for the liquid fuel composition. Here, the batch reactor 6 is made of stainless steel 316 at an available pressure of 200 bar, or a quartz flask is mounted therein to exclude the influence of the reactor material. In addition, it is composed of a nitrogen pressurization device (1, 2) for maintaining the liquid state of the fuel in the reactor at a high temperature, and a heating jacket (8) that can be heated outside the reactor to increase the internal temperature. Condensation tank (9) and collector (10), and gas phase product separator (11), which can collect samples in real time during the reaction, and GC / MS (Quality Analysis and Quantitative Analysis) (Agilent 5975C, column: HP-) 5ms) is connected. The thermal stability test apparatus shown in FIG. 3 may further include other equipment not shown in FIG. 1 as needed.

열안정성 평가 실험준비에 있어서, 실험 전에 각각의 성분들을 하기 표 1에 나타낸 중량비로 혼합하여 완전히 용해시켜 액체 연료 조성물을 준비하였으며, 반응기와 라인에 대한 세척작업을 통하여 반응에 영향을 줄 수 있는 이물질 등을 최소화하였다.In the thermal stability evaluation experiment preparation, the liquid fuel composition was prepared by completely dissolving each component in the weight ratio shown in Table 1 before the experiment, and foreign substances that may affect the reaction through the washing operation on the reactor and the line. Etc. was minimized.

준비된 각 액체 연료 조성물 100mL를 회분식 반응기(160mL)에 각각 주입하고, N2를 사용하여 45bar로 가압한 상태에서, 단계적으로 반응기 주위의 히팅자켓으로 가열하여 반응기 내부 온도를 증가시킨 후, 이 온도에서 총 10.5시간 동안 반응을 진행하였으며, 반응 진행 중 90분 간격으로 반응에 영향을 주지 않도록 1mL의 연료를 추출하여, GC-MS로 exo-THDCP와 분해 생성물의 성분 및 조성에 대해 정성분석 및 정량분석을 실시하였다.Inject 100 mL of each prepared liquid fuel composition into a batch reactor (160 mL), and pressurized to 45 bar using N 2 , gradually heating the heating jacket around the reactor to increase the temperature inside the reactor, and then at this temperature. The reaction was carried out for a total of 10.5 hours, 1mL of fuel was extracted at 90 minutes interval during the reaction, and qualitative and quantitative analysis of the composition and composition of exo-THDCP and decomposition products by GC-MS Was carried out.

성분 분석시 질량검출기(Mass Detector)에 나타난 해당 성분의 스펙트럼 피크가 질량검출기 라이브러리의 주 피크와 두 개 이상 상응하지 않는 것은 성분 규명이 불분명하므로 잔여성분으로 간주하였다.In the component analysis, the spectral peaks of the corresponding components in the mass detector did not correspond more than two of the main peaks in the mass detector library.

상기의 실험결과를 통하여 열안정 향상제 종류에 따라, 열분해에 의한 exo-THDCP의 다른 물질로의 전환율과 속도의 차이정도를 기초로 하여 exo-THDCP의 열안정성 평가를 하였다.Through the above experimental results, the thermal stability of exo-THDCP was evaluated based on the degree of difference between the conversion rate and the rate of exo-THDCP to other materials by pyrolysis depending on the type of thermal stability enhancer.

비교예와 각 실시예별 액체 연료 조성 및 시험조건을 하기 표 1에 나타내었고, 사용된 열안정 향상제의 구체 내용은 하기 표 2에 나타낸 바와 같다.Comparative Examples and liquid fuel compositions and test conditions for each example are shown in Table 1 below, and specific contents of the thermal stability improver used are shown in Table 2 below.

Figure pat00005
Figure pat00005

Figure pat00006
Figure pat00006

2. 실험결과2. Experimental results

비교예 1Comparative Example 1

비교예 1의 액체 연료의 열안정성 실험 결과, exo-THDCP가 분해물질로 전환되는 전환율(분해율)을 확인하여 390℃에서의 결과는 하기 표 3 및 도 2와 도 3에 나타내었고, 370~400℃에서의 전체 결과를 미분해 잔존량의 그래프로 도 4에 나타내었고, 연료의 색변화는 도 5에 나타내었다.As a result of the thermal stability test of the liquid fuel of Comparative Example 1, the conversion rate (decomposition rate) exo-THDCP is converted to the decomposition material was confirmed, and the results at 390 ° C are shown in Table 3 below and FIGS. 2 and 3, and 370 to 400 The overall results at ° C are shown in FIG. 4 as a graph of undecomposed residual amount, and the color change of the fuel is shown in FIG. 5.

도 4에 나타난 바와 같이, 열안정 향상제가 없는 단일 성분의 exo-THDCP는 370℃에서 분해가 시작되며, 온도가 증가할수록 분해율이 증가하여 380℃에서 10.5시간 유지시 exo-THDCP의 10중량%, 390℃에서는 19.5중량%, 그리고 400℃에서는 35중량%가 열분해되어 다른 물질로 변하며, 도 5에서 확인되는 바와 같이, 열분해 정도에 따라 색이 변하는 것을 알 수 있었다.As shown in Figure 4, the exo-THDCP of a single component without a thermal stability improver starts the decomposition at 370 ℃, the decomposition rate increases with increasing temperature, 10% by weight of exo-THDCP when maintained for 10.5 hours at 380 ℃, At 390 ° C., 19.5% by weight, and at 400 ° C., 35% by weight are pyrolyzed to change to other materials. As shown in FIG. 5, the color is changed according to the degree of thermal decomposition.

실시예 1~8Examples 1-8

표 1의 실시예 1~8의 조건과 같이 열안정 향상제를 혼합한 액체연료의 열안정성 실험을 390℃에서 진행한 결과를 exo-THDCP가 분해물질로 전환되는 전환율(분해율)로 확인하여 하기 표 3 및 도 2와 3에 나타내었다.As a result of the thermal stability test of the liquid fuel mixed with the thermal stability improver at 390 ° C. as shown in Examples 1 to 8 of Table 1, the conversion rate (decomposition rate) at which exo-THDCP is converted into a decomposition material was determined. 3 and shown in FIGS. 2 and 3.

Figure pat00007
Figure pat00007

상기 표 3 및 도 2로부터 알 수 있는 바와 같이, 본 발명의 실시예 1?4에 의하면, 본 발명에 따른 BnOH, THQ, BnOH+THQ(무게비 1:1 혼합물), THQox 각각의 열안정 향상제를 각각 0.1중량%씩 첨가시 exo-THDCP의 시간별 분해율 및 총 분해율이 열안정 향상제를 사용하지 않았을 때의 결과인 비교예 1에 비해 대폭 감소되는 것을 알 수 있었다. As can be seen from Table 3 and Figure 2, according to Examples 1 to 4 of the present invention, the thermal stability enhancer of each of the BnOH, THQ, BnOH + THQ (weight ratio 1: 1 mixture), THQox according to the present invention When 0.1 wt% of each was added, it was found that the hourly decomposition rate and total decomposition rate of exo-THDCP were significantly reduced compared to Comparative Example 1, which is a result of not using a thermal stability enhancer.

그리고 상기 표 3 및 도 3으로부터 알 수 있는 바와 같이, 본 발명의 실시예 5?8에 의하면, 본 발명에 따른 BnOH, THQ, BnOH+THQ(무게비 1:1 혼합물), THQox 각각의 열안정 향상제를 각각 0.5중량%씩 첨가시 exo-THDCP의 시간별 분해율 및 총 분해율이 상기한 각각의 열안정 향상제를 0.1중량% 첨가했을 때의 결과인 실시예 1?4에 비해 더욱 감소되는 것을 알 수 있었다.And as can be seen from Table 3 and Figure 3, according to Examples 5 to 8 of the present invention, the thermal stability enhancer of each BnOH, THQ, BnOH + THQ (weight ratio 1: 1 mixture), THQox according to the present invention When 0.5 wt% of each of the exo-THDCP degradation rate and total decomposition rate of the time was found to be further reduced compared to Examples 1 to 4 as a result of adding 0.1% by weight of each of the thermal stability enhancer described above.

따라서 본 발명의 실시예 1?8에서, 본 발명에 의해 제안된 BnOH, THQ, BnOH+THQ(무게비 1:1 혼합물), THQox 각각의 열안정 향상제를 각각 0.1?0.5중량%씩 첨가시 exo-THDCP의 시간별 분해율 및 총 분해율이 열안정 향상제를 사용하지 않았을 때의 결과인 비교예 1에 비해 대폭 감소되므로 exo-THDCP의 열안정성이 개선됨을 확인할 수 있었다.
Therefore, in Examples 1 to 8 of the present invention, each of the thermal stability enhancers of BnOH, THQ, BnOH + THQ (weight ratio 1: 1 mixture) and THQox proposed by the present invention was added in an amount of exo- by 0.1 to 0.5% by weight, respectively. It was confirmed that the thermal stability of exo-THDCP is improved since the time-dependent decomposition rate and total decomposition rate of THDCP are significantly reduced compared to Comparative Example 1, which is a result of not using the thermal stability enhancer.

Claims (5)

액체연료인 엑소-테트라히드로디시클로펜타디엔(exo-THDCP)과 열안정 향상제를 포함하여 이루어지고, 상기 열안정 향상제로서 테트라히드로퀴놀린(THQ), 벤질알코올(BnOH) 및 테트라히드로퀴녹살린(THQox)으로 이루어진 군으로부터 선택되는 1종 또는 2종 이상을, 전체 조성물의 중량 기준으로 0.1~5.0중량% 포함하는 것을 특징으로 하는 액체연료 조성물.It comprises a liquid fuel exo-tetrahydrodicyclopentadiene (exo-THDCP) and a heat stability improver, tetrahydroquinoline (THQ), benzyl alcohol (BnOH) and tetrahydroquinoxaline (THQox) as the heat stability enhancer A liquid fuel composition comprising one or two or more selected from the group consisting of 0.1 to 5.0% by weight based on the total weight of the composition. 제 1항에 있어서, 상기 열안정 향상제는, 전체 조성물의 중량 기준으로 0.1~0.5중량% 포함하는 것을 특징으로 하는 액체연료 조성물.The liquid fuel composition of claim 1, wherein the thermal stability enhancer comprises 0.1 to 0.5% by weight based on the weight of the total composition. 제 1항에 있어서, 상기 테트라히드로퀴놀린은 하기 화학식 2로 표시되는 것을 특징으로 하는 액체연료 조성물.
[화학식 2]
Figure pat00008
(여기에서, R1=CH2, n=2 또는 3, R2=H, CH3 또는 C2H5)
According to claim 1, wherein the tetrahydroquinoline is a liquid fuel composition, characterized in that represented by the formula (2).
(2)
Figure pat00008
Where R 1 = CH 2 , n = 2 or 3, R 2 = H, CH 3 or C 2 H 5
제 1항에 있어서, 상기 벤질알코올은 하기 화학식 3으로 표시되는 것을 특징으로 하는 액체연료 조성물.
[화학식 3]
Figure pat00009
(여기에서, R1=CH2OH, R2=H 또는 CH2OH)
According to claim 1, wherein the benzyl alcohol is a liquid fuel composition, characterized in that represented by the formula (3).
(3)
Figure pat00009
Wherein R 1 = CH 2 OH, R 2 = H or CH 2 OH
제 1항에 있어서, 상기 테트라히드로퀴녹살린은 하기 화학식 4로 표시되는 것을 특징으로 하는 액체연료 조성물.
[화학식 4]
Figure pat00010
(여기에서, R1=H, CH3 또는 C2H5, R2=H, CH3 또는 C2H5)



According to claim 1, wherein the tetrahydroquinoxaline is a liquid fuel composition, characterized in that represented by the formula (4).
[Chemical Formula 4]
Figure pat00010
Where R 1 = H, CH 3 or C 2 H 5 , R 2 = H, CH 3 or C 2 H 5



KR1020110020508A 2011-03-08 2011-03-08 Liquid fuel composition with improved thermal stability KR101297655B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110020508A KR101297655B1 (en) 2011-03-08 2011-03-08 Liquid fuel composition with improved thermal stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110020508A KR101297655B1 (en) 2011-03-08 2011-03-08 Liquid fuel composition with improved thermal stability

Publications (2)

Publication Number Publication Date
KR20120102381A true KR20120102381A (en) 2012-09-18
KR101297655B1 KR101297655B1 (en) 2013-08-19

Family

ID=47110931

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110020508A KR101297655B1 (en) 2011-03-08 2011-03-08 Liquid fuel composition with improved thermal stability

Country Status (1)

Country Link
KR (1) KR101297655B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019034584A1 (en) * 2017-08-14 2019-02-21 Bp Oil International Limited Methods for controlling deposits
WO2019034582A1 (en) * 2017-08-14 2019-02-21 Bp Oil International Limited Methods for blending fuels
WO2019034581A1 (en) * 2017-08-14 2019-02-21 Bp Oil International Limited Methods for reducing oxidation
WO2019129588A1 (en) * 2017-12-27 2019-07-04 Bp Oil International Limited Methods for preparing fuel additives
WO2019129592A1 (en) * 2017-12-27 2019-07-04 Bp Oil International Limited Methods for preparing fuel additives
WO2019129594A1 (en) * 2017-12-27 2019-07-04 Bp Oil International Limited Methods for preparing fuel additives
WO2019129593A3 (en) * 2017-12-27 2019-08-22 Bp Oil International Limited Methods for preparing fuel additives
US11359151B2 (en) 2017-12-27 2022-06-14 Bp Oil International Limited Methods for preparing fuel additives
US11384057B2 (en) 2017-12-27 2022-07-12 Bp Oil International Limited Methods for preparing fuel additives
US11421168B2 (en) 2017-12-27 2022-08-23 Bp Oil International Limited Methods for preparing fuel additives

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3205701A1 (en) * 2016-02-11 2017-08-16 Bp Oil International Limited Fuel compositions
EP3205703A1 (en) 2016-02-11 2017-08-16 Bp Oil International Limited Fuel additives
EP3205702A1 (en) * 2016-02-11 2017-08-16 Bp Oil International Limited Fuel compositions with additives

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410749A (en) * 1981-10-13 1983-10-18 The United States Of America As Represented By The Secretary Of The Navy Liquid hydrocarbon air breather fuel
US7589243B1 (en) * 2008-09-17 2009-09-15 Amyris Biotechnologies, Inc. Jet fuel compositions

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339343B2 (en) 2017-08-14 2022-05-24 Bp Oil International Limited Methods for blending fuels
WO2019034582A1 (en) * 2017-08-14 2019-02-21 Bp Oil International Limited Methods for blending fuels
WO2019034581A1 (en) * 2017-08-14 2019-02-21 Bp Oil International Limited Methods for reducing oxidation
CN111278955B (en) * 2017-08-14 2023-02-10 英国石油国际有限公司 Method for blending fuels
CN111465676B (en) * 2017-08-14 2023-01-06 英国石油国际有限公司 Method for reducing oxidation
CN111133080B (en) * 2017-08-14 2022-09-20 英国石油国际有限公司 Method for controlling deposits
US11447709B2 (en) 2017-08-14 2022-09-20 Bp Oil International Limited Methods for controlling deposits
CN111133080A (en) * 2017-08-14 2020-05-08 英国石油国际有限公司 Method for controlling deposits
CN111278955A (en) * 2017-08-14 2020-06-12 英国石油国际有限公司 Method for blending fuels
CN111465676A (en) * 2017-08-14 2020-07-28 英国石油国际有限公司 Method for reducing oxidation
WO2019034584A1 (en) * 2017-08-14 2019-02-21 Bp Oil International Limited Methods for controlling deposits
US11332682B2 (en) 2017-08-14 2022-05-17 Bp Oil International Limited Methods for reducing oxidation
US11230680B2 (en) 2017-12-27 2022-01-25 Bp Oil International Limited Methods for preparing fuel additives
US11359151B2 (en) 2017-12-27 2022-06-14 Bp Oil International Limited Methods for preparing fuel additives
US11384057B2 (en) 2017-12-27 2022-07-12 Bp Oil International Limited Methods for preparing fuel additives
US11384302B2 (en) 2017-12-27 2022-07-12 Bp Oil International Limited Methods for preparing fuel additives
US11421168B2 (en) 2017-12-27 2022-08-23 Bp Oil International Limited Methods for preparing fuel additives
WO2019129593A3 (en) * 2017-12-27 2019-08-22 Bp Oil International Limited Methods for preparing fuel additives
WO2019129594A1 (en) * 2017-12-27 2019-07-04 Bp Oil International Limited Methods for preparing fuel additives
WO2019129592A1 (en) * 2017-12-27 2019-07-04 Bp Oil International Limited Methods for preparing fuel additives
WO2019129588A1 (en) * 2017-12-27 2019-07-04 Bp Oil International Limited Methods for preparing fuel additives

Also Published As

Publication number Publication date
KR101297655B1 (en) 2013-08-19

Similar Documents

Publication Publication Date Title
KR101297655B1 (en) Liquid fuel composition with improved thermal stability
Bailey et al. Diethyl ether (DEE) as a renewable diesel fuel
EP1218472B2 (en) Motor fuel for diesel, gas-turbine and turbojet engines, comprising at least four different oxygen-containing functional groups selected from alcohol, ether, aldehyde, ketone, ester, inorganic ester, acetal, epoxide and peroxide
US6534685B1 (en) Liquid mixture consisting of diesel gas oils and oxygenated compounds
US20070204506A1 (en) Adjustable fuel power booster component composition
Badia et al. New octane booster molecules for modern gasoline composition
EP3853192B1 (en) Process for the production of fuel additives
Hasanah et al. The chemical composition and physical properties of the light and heavy tar resulted from coconut shell pyrolysis
EP2868737A1 (en) High octane unleaded aviation gasoline
Tarazanov et al. Assessment of the chemical stability of furfural derivatives and the mixtures as fuel components
CN106687566A (en) Aviation fuel with a renewable oxygenate
WO2008135801A2 (en) Adjustable fuel power booster component composition
US9528058B2 (en) Aviation fuel composition
RU2451718C2 (en) Additive for increasing cetane number of diesel fuel
Wu et al. Unveiling the low-temperature oxidation mechanism of a carbon-neutral fuel–Monoglyme via theoretical study
JP5128633B2 (en) Kerosene composition
CN110846091B (en) Oxalate novel oxygen-containing fuel oil or fuel oil additive and application thereof
US2266776A (en) Diesel fuel
US3113426A (en) Cyclododecane as a high energy fuel
US20130133245A1 (en) Oxygenate additive for internal combustion engine fuel, fuel composition comprising the same and improved process for producing highly methylated glycerol ethers
US20050284019A1 (en) Novel hydrocarbon fuel additives and fuel formulations exhibiting improved combustion properties
Farkhani et al. Alkyl Imidazolines and Their Ethoxylated Derivatives as Antioxidants for Hydrocarbon Products
Tiunov et al. The effect of methylfurans on the physicochemical and performance characteristics of finished motor gasoline
RU2132359C1 (en) Multifunctional additive for preparing automobile gasolines
US2267701A (en) Diesel fuel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170801

Year of fee payment: 5