KR20120096451A - The process of manufacturing of electrically conductive silicone rubber heater - Google Patents

The process of manufacturing of electrically conductive silicone rubber heater Download PDF

Info

Publication number
KR20120096451A
KR20120096451A KR1020120088116A KR20120088116A KR20120096451A KR 20120096451 A KR20120096451 A KR 20120096451A KR 1020120088116 A KR1020120088116 A KR 1020120088116A KR 20120088116 A KR20120088116 A KR 20120088116A KR 20120096451 A KR20120096451 A KR 20120096451A
Authority
KR
South Korea
Prior art keywords
conductive
silicone rubber
yarn
heating element
fabric
Prior art date
Application number
KR1020120088116A
Other languages
Korean (ko)
Inventor
박상구
Original Assignee
박상구
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박상구 filed Critical 박상구
Priority to KR1020120088116A priority Critical patent/KR20120096451A/en
Publication of KR20120096451A publication Critical patent/KR20120096451A/en
Priority to KR1020130028350A priority patent/KR20140021473A/en
Priority to KR1020130028349A priority patent/KR20140021472A/en
Priority to KR1020130028347A priority patent/KR20140021470A/en
Priority to KR1020130028351A priority patent/KR20140021474A/en
Priority to KR1020130028352A priority patent/KR20140021475A/en
Priority to KR1020130028348A priority patent/KR20140021471A/en
Priority to JP2013078318A priority patent/JP2014037666A/en
Priority to CN201310119394.8A priority patent/CN103572453A/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/342Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
    • H05B3/347Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles woven fabrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Resistance Heating (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Surface Heating Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Woven Fabrics (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Road Paving Structures (AREA)

Abstract

PURPOSE: A method for manufacturing a conductive silicon rubber heating element is provided to obtain a conductive silicon rubber heating element with uniform temperature distribution using an extrusion die. CONSTITUTION: A method for manufacturing a conductive silicon rubber heating element comprises the steps of: producing a conductive silicon rubber composition by dispersing one or more kinds of conductive carbon in silicon rubber by 4-100 weight%(11), coating the conductive silicon rubber composition on core yarn through extrusion to obtain extruded conductive yarn(12), and weaving the extruded conductive yarn(13).

Description

도전성 실리콘고무 발열체의 제조방법{The process of manufacturing of electrically conductive silicone rubber heater}The process of manufacturing of electrically conductive silicone rubber heater

본 발명은 발열체의 제조방법에 관한 것으로서, 구체적으로는 전도성 탄소를 실리콘고무에 분산시켜 도전성 실리콘고무 조성물을 제조하고, 상기 실리콘고무 조성물을 압출 성형으로 심사(core yarn)에 피복되어 압출 도전사(extruding electrically conductive yarn)가 제조되고, 상기 압출 도전사가 직물 형태로 이루어지므로써 발열체를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a heating element, specifically, to prepare a conductive silicone rubber composition by dispersing the conductive carbon in the silicone rubber, the silicone rubber composition is coated with a core yarn by extrusion molding (extruding) An electrically conductive yarn) is produced, and the extruded conductive yarn is made in the form of a fabric, to a method for producing a heating element.

종래의 도전성 액상 실리콘고무의 발열체에서, 액상 실리콘고무는 저온특성과 내열성 면에서 우수하여, 액상 실리콘 고무를 전도성 바인더로 하여 메쉬 형태 등의 지지체에 코팅하여 도전성 도막이 형성되게 하여 발열체가 이루어지고 있다. 즉 지지체 상에 코팅하여 도전성 피막이 형성되므로 도전통로는 메쉬 형태인 사방향으로 흐르는 구조이다.In the heating element of the conventional conductive liquid silicone rubber, the liquid silicone rubber is excellent in low temperature characteristics and heat resistance, the liquid silicone rubber as a conductive binder is coated on a support such as a mesh form to form a conductive coating film to form a heating element. That is, since the conductive coating is formed by coating on the support, the conductive passage is a structure flowing in four directions in the form of a mesh.

그러나, 액상 실리콘 고무로 형성된 실리콘 고무계 도전층은 지지체 섬유나 금속단자와의 계면접착력이 낮아서 반복적인 열적, 물리적 응력에 연결부위의 도전성 도막이 쉽게 벗겨지거나 파괴되어 전기적으로 단선되고, 단선된 주변으로 우회 전류가 집중되어 과열되는 문제점이 있고, 액상 실리콘 고무 상에 전도성 탄소가 분산되어 있어 코팅 공정 중에 침전 문제가 발생하여 메쉬 형태 등의 지지체에 형성되는 도막의 두께 및 전기적인 도전성에 차이가 발생하고 있다. 또한, 지지체 상의 도전성 피막을 건조시키는 공정 중에 유기 용제가 휘발하며 미세한 기공이 도전성 피막에 형성되고, 형성된 기공 속으로 이물질이 침투하여 팽윤시키는 문제점도 있다.However, the silicone rubber-based conductive layer formed of liquid silicone rubber has low interfacial adhesion with support fibers or metal terminals, so that the conductive coating film of the connecting portion is easily peeled off or destroyed due to repeated thermal and physical stresses, and thus is electrically disconnected and bypassed to the disconnected periphery. There is a problem that the current is concentrated and overheated, and conductive carbon is dispersed on the liquid silicone rubber, so that a precipitation problem occurs during the coating process, thereby causing a difference in thickness and electrical conductivity of the coating film formed on a support such as a mesh form. . In addition, organic solvents volatilize during the process of drying the conductive film on the support, fine pores are formed in the conductive film, and foreign matter penetrates into the formed pores and swells.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여, 압출 성형으로 압출 도전사로 제조하고, 상기 압출 도전사를 병렬식으로 일방향으로만 도전통로가 형성되는 발열체를 제조하는데 목적이 있다. 또한 유기 용제를 사용하지 않게 되어 친환경적인 발열체를 제공하는데 목적이 있다.In order to solve the problems of the prior art as described above, an object of the present invention is to manufacture an extruded conductive yarn by extrusion molding, and to produce a heating element in which the conductive conductive passage is formed only in one direction in parallel with the extruded conductive yarn. In addition, the organic solvent is not used to provide an environmentally friendly heating element.

본 발명은 전도성 탄소를 실리콘고무에 분산시켜 도전성 실리콘고무 조성물을 제조하고, 상기 도전성 실리콘고무 조성물을 압출 성형으로 심사(core yarn)에 피복되어 압출 도전사(extrusion electrically conductive yarn)가 제조되고, 상기 압출 도전사가 직물 형태로 이루어지는 것을 포함하는 발열체의 제조방법을 제공한다.The present invention provides a conductive silicone rubber composition by dispersing conductive carbon in silicone rubber, and coating the conductive silicone rubber composition on a core yarn by extrusion molding to produce an extrusion conductive conductive yarn, and the extrusion It provides a method for producing a heating element comprising a conductive yarn in the form of a fabric.

본 발명에 의한 도전성 실리콘고무 발열체는 기존의 액상 실리콘고무나 용제형 바인더를 사용한 발열체보다 친환경적이면서, 압출 다이에 의한 균일한 피복을 형성시키는 압출 공정으로 균일한 온도 분포와 안전한 발열체를 제공할 수 있다.The conductive silicone rubber heating element according to the present invention is more environmentally friendly than conventional liquid silicone rubber or a heating element using a solvent binder, and can provide a uniform temperature distribution and a safe heating element by an extrusion process for forming a uniform coating by an extrusion die. .

도 1은 본 발명에 따른 도전성 실리콘고무 발열체의 제조 공정도이다.
도 2는 본 발명에 따른 압출 도전사가 제조되는 심사 피복 다이(die)의 단면도이다.
도 3은 본 발명에 따른 도전성 실리콘고무 발열체의 상태도이다.
도 4는 본 발명에 따른 일방향 도전통로와 기존 발열체의 사방향 도전통로의 비교도이다.
1 is a manufacturing process chart of the conductive silicone rubber heating element according to the present invention.
2 is a cross-sectional view of a screening die from which an extruded conductive yarn according to the present invention is produced.
3 is a state diagram of the conductive silicone rubber heating element according to the present invention.
Figure 4 is a comparison of the four-way conductive passage of the one-way conductive passage and the existing heating element according to the present invention.

본 발명은 도전성 실리콘고무 발열체의 제조방법에 관한 것으로서, 카본블랙, 흑연분말, 탄소나노튜브, 잘게 썬(chopped) 탄소섬유로부터 선택되는 1종 이상의 전도성 탄소를 실리콘 고무를 기준으로 4중량부 내지 100중량부의 범위에서 실리콘 고무에 분산시켜 도전성 실리콘고무 조성물을 제조하는 단계;The present invention relates to a method for producing a conductive silicone rubber heating element, wherein the conductive carbon selected from carbon black, graphite powder, carbon nanotubes, and chopped carbon fibers is 4 parts by weight to 100 based on silicone rubber. Dispersing in the silicone rubber in the range of parts by weight to prepare a conductive silicone rubber composition;

상기 도전성 실리콘고무 조성물을 압출 성형으로 심사(core yarn)에 피복되어 압출 도전사(extrusion electrically conductive yarn)가 제조되는 단계;Coating the conductive silicone rubber composition on a core yarn by extrusion molding to produce an extrusion conductive conductive yarn;

상기 압출 도전사는 전기적 병렬식인 일방향으로만 도전통로가 형성되는 직물 형태로 이루어지는 것을 포함하는 도전성 실리콘고무 발열체의 제조방법을 제공한다.The extruded conductive yarn provides a method for manufacturing a conductive silicone rubber heating element comprising a fabric form in which a conductive passage is formed only in one direction that is electrically parallel.

이하에서 본 발명을 더욱 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

도 1은 본 발명에 따른 도전성 실리콘고무 발열체의 제조 공정도로서, 카본블랙, 흑연분말, 탄소나노튜브, 잘게 썬(chopped) 탄소섬유로부터 선택되는 1종 이상의 전도성 탄소를 실리콘 고무를 기준으로 4중량부 내지 100중량부의 범위에서 실리콘 고무에 분산시켜 도전성 실리콘고무 조성물을 제조하는 혼합단계(11), 상기 도전성 실리콘고무 조성물을 압출 성형으로 심사(core yarn)에 피복되어 압출 도전사(extruding electrically conductive yarn)가 제조되는 압출단계(12) 및 상기 압출 도전사는 전기적 병렬식인 일방향으로만 도전통로가 형성되는 직물 형태로 이루어지게 하는 직조단계(13)를 포함한다.1 is a manufacturing process chart of the conductive silicone rubber heating element according to the present invention, at least one conductive carbon selected from carbon black, graphite powder, carbon nanotubes, chopped carbon fibers based on silicon rubber 4 parts by weight In the mixing step (11) of preparing a conductive silicone rubber composition by dispersing in a silicone rubber in the range of 100 parts by weight, the conductive silicone rubber composition is coated on a core yarn by extrusion molding, thereby extruding electrically conductive yarn The extrusion step 12 to be manufactured and the extrusion conductive yarn includes a weaving step 13 to be made of a fabric form in which the conductive passage is formed only in one direction that is electrically parallel.

상기 본 발명에 사용될 수 있는 전도성 탄소는 카본블랙, 흑연, 탄소나노튜브, 잘게 썬(chopped) 탄소섬유가 적당하며, 각각의 단일 물질을 사용하거나 이들을 상호 혼용하는 것도 가능하다.The conductive carbon that can be used in the present invention is carbon black, graphite, carbon nanotubes, chopped carbon fibers are suitable, it is also possible to use each single material or to mix them.

특히 카본블랙에 흑연 분말이나 탄소나노튜브, 잘게 썬(chopped) 탄소섬유를 공용할 경우 도전성을 크게 향상시킬 수 있을 뿐만 아니라 카본블랙이 서로 융착하는 현상을 크게 줄일 수 있고, 보강효과도 있다. 카본블랙의 특성은 입자크기, 비표면적, 구조, 표면성상 등으로부터 나타나게 되는데, 본 발명에 적용되기 위해서는 일반적으로 입자가 작고, 다공질이어서 표면적이 넓으며, 구조가 고도로 발달되어 있고 불순물을 적게 함유할수록 좋으며, 제조방법에 대해서는 제한이 없다.In particular, when graphite powder, carbon nanotubes, and chopped carbon fibers are used in combination with carbon black, not only the conductivity can be greatly improved, but also the phenomenon in which the carbon black is fused to each other can be greatly reduced, and there is also a reinforcing effect. The characteristics of carbon black are shown from particle size, specific surface area, structure, surface properties, etc. In order to apply to the present invention, generally, the particles are small, porous and have a large surface area, and the structure is highly developed and contains less impurities. It is good and there is no restriction on the manufacturing method.

본 발명에 사용될 수 있는 카본블랙의 1차 입경은 30㎚ 내지 70㎚인 것이 바람직하며, DBP(프탈산 디부틸) 흡유량이 120㎖/100g 내지 500㎖/100g인 것이 바람직하다. 입경이 30㎚미만이거나 DBP 흡유량이 120㎖/100g 미만인 경우 원하는 전기 전도도를 맞출 수 없다.It is preferable that the primary particle diameter of the carbon black which can be used for this invention is 30 nm-70 nm, and it is preferable that DBP (dibutyl phthalate) oil absorption amount is 120 mL / 100 g-500 mL / 100 g. If the particle diameter is less than 30 nm or the DBP oil absorption is less than 120ml / 100g, the desired electrical conductivity cannot be achieved.

DBP 흡유량이란 카본블랙의 각 입자간의 화학적, 물리적 결합에 의한 복잡한 응집인 스트럭처(구조)의 정도를 나타내는 것으로서, 카본블랙 100g당 포함되는 DBP의 ㎖ 수를 말한다.DBP oil absorption amount shows the degree of the structure (structure) which is a complex aggregation by the chemical and physical bonding between each particle of carbon black, and means the number of ml of DBP contained per 100 g of carbon black.

상기 흑연분말의 입자 크기는 0.5㎛ 내지 10㎛이며, 전지비저항은 0.005Ω?㎝ 내지 0.08Ω?㎝인 것이 바람직하다. 상기 범위를 벗어나는 경우 전기적 안정성을 유지하기에 부적절하다.The particle size of the graphite powder is 0.5㎛ to 10㎛, battery specific resistance is preferably 0.005Ω? Cm to 0.08Ω? Cm. It is inappropriate to maintain electrical stability if it is out of the above range.

본 발명에 사용될 수 있는 탄소나노튜브는 입경이 5㎚ 내지 90㎚인 것이 바람직하다. 상기 범위를 벗어날 경우 분산안정성이 현격히 떨어지기 때문이다.Carbon nanotubes that can be used in the present invention preferably has a particle diameter of 5nm to 90nm. If it is out of the above range because the dispersion stability is significantly reduced.

상기 chopped 상태의 탄소섬유의 길이는 50㎛ 내지 10㎜인 것이 바람직하다. 상기 길이가 50㎛미만은 보강효과가 나타나지 않고, 10㎜초과하면 압출 도전사의 길이 방향으로 배향이 어렵다. 첨가량은 실리콘 고무에 대해서 1중량부 내지 10중량부가 바람직하다.The length of the carbon fiber in the chopped state is preferably 50㎛ to 10mm. If the length is less than 50 μm, the reinforcing effect does not appear, and if it exceeds 10 mm, the orientation of the extruded conductive yarn is difficult. The addition amount is preferably 1 part by weight to 10 parts by weight with respect to the silicone rubber.

카본블랙의 첨가량은 상기 실리콘고무 100중량부에 대해서 4 내지 100중량부가 적합하나 특히 7 내지 60중량부로 하는 것이 바람직하다. 첨가량이 4중량부 미만이면 도전성이 낮고, 100중량부를 초과하면 경화물의 기계적 강도가 열화되는 경우가 생긴다.The amount of carbon black added is preferably 4 to 100 parts by weight based on 100 parts by weight of the silicone rubber, but is preferably 7 to 60 parts by weight. If the added amount is less than 4 parts by weight, the conductivity is low, and if it exceeds 100 parts by weight, the mechanical strength of the cured product may deteriorate.

상기 카본블랙의 배합량은 흑연분말, 탄소나노튜브, 잘게 썬 탄소섬유 첨가시 첨가량 만큼 줄인다. 이 혼합물을 2단 롤밀, 밴버리 믹서(banbury mixer), 도우 믹서(kneader) 등의 고무 혼련기를 이용하여 균일하게 혼합하는 것을 특징으로 한다.The blending amount of the carbon black is reduced by the amount of graphite powder, carbon nanotubes, and chopped carbon fiber. The mixture is characterized by uniformly mixing by using a rubber kneader such as a two-stage roll mill, a banbury mixer, a dough mixer, and the like.

상기 2단 롤밀의 롤 간격은 2.5mm 내지 20mm가 바람직하다. 2.5mm미만은 전단력이 높아 카본블랙의 구조가 깨져서 오히려 도전성이 떨어지고, 20mm초과시 전단력이 너무 약해서 분산이 어렵다.The roll spacing of the two-stage roll mill is preferably 2.5 mm to 20 mm. Less than 2.5mm shear strength is high, the structure of the carbon black is broken, rather the conductivity is lowered, when exceeding 20mm shear force is too weak to be difficult to disperse.

본 발명의 도전성 실리콘 고무는 기본적으로 가열 등에 의해 경화시킴으로써 고무 탄성체가 되는 오가노폴리실록산 베이스 폴리머와 경화제를 포함하는 실리콘 고무에 상기한 전도성 탄소 및 필요에 따라 가공조제 등을 배합한 것이다.The conductive silicone rubber of this invention mix | blends said conductive carbon, processing aid, etc. with the silicone rubber containing the organopolysiloxane base polymer which becomes a rubber elastic body by hardening by heating etc. basically, a hardening | curing agent, etc. as needed.

도 2는 본 발명에 따른 압출 도전사가 제조되는 심사(21) 피복 다이(die)의 단면도로서, 상기한 도전성 실리콘 고무를 피복물질로 사용하는 심사(21) 피복 공정에서 심사(21) 피복용 고무의 압출가공은 크게 두 단계로 나누어지는데, 초기 압출에 의해 형태가 갖추어지는 성형공정과 이후 고온으로 경화되는 경화공정으로 나누어진다. 실리콘 고무의 물성을 결정하는 경화공정에서는 성형조건은 특별히 한정되지 않으나, 100℃ 내지 400℃에서 5초 내지 1시간의 범위가 바람직하다. 성형 후에 2차 열처리하는 경우에 있어서는 150℃ 내지 200℃에서 1시간 내지 30시간의 범위에서 열처리가 바람직하다. 열처리는 경화제의 잔류분을 휘발시키거나 도전성 실리콘 고무의 물성을 향상시키기 위함이다.Fig. 2 is a cross-sectional view of a screening die coating die produced by the extrusion conductive yarn according to the present invention, and the screening rubber covering coating 21 in the screening process 21 using the above-mentioned conductive silicone rubber as a coating material. The extrusion process is divided into two stages, which are divided into a molding process formed by an initial extrusion and a curing process that is cured at a high temperature. Although the molding conditions are not specifically limited in the hardening process which determines the physical property of a silicone rubber, the range of 5 second-1 hour is preferable at 100 degreeC-400 degreeC. In the case of secondary heat treatment after molding, heat treatment is preferred in the range of 1 hour to 30 hours at 150 ° C to 200 ° C. The heat treatment is to volatilize the residue of the curing agent or to improve the physical properties of the conductive silicone rubber.

상기 심사는 중심에 들어 있는 실이고, 심사(21)는 크로스헤드(crosshead)의 안내구(tapered guider)를 통해 다이(22)의 중심으로 인출과 함께 심사에 도전성 실리콘 고무가 피복되어 압출 도전사(23)가 제조된다.The screening is a thread in the center, and the screening 21 is pulled out to the center of the die 22 through a tapered guider and a conductive silicone rubber is coated on the screening, thereby extruded conductive yarns ( 23) is made.

상기 심사의 재질은 특별히 한정하는 것은 아니지만, 전기 전도도가 없는 폴리에스터사, 유리섬유, 아라미드섬유, 고강도PVA섬유 등이 바람직하다.Although the material of the said examination is not specifically limited, Polyester yarn, glass fiber, aramid fiber, high strength PVA fiber, etc. which do not have electrical conductivity are preferable.

심사의 섬도는 500데니어 내지 10000데니어가 바람직하다. 500데니어 미만은 발열체의 기계적 강도가 취약하고, 10000데니어 초과시 발열체의 메쉬 구멍이 작아 절연 코팅시 눈 막힘이 일어난다.The fineness of the screening is preferably 500 denier to 10,000 denier. If less than 500 denier, the mechanical strength of the heating element is weak, and when the excess of 10,000 denier mesh hole of the heating element is small, clogging occurs in the insulation coating.

상기 압출 도전사(23)의 도전층 두께는 0.2mm 내지 2mm가 바람직하다. 0.2mm미만시 도전층이 얇아 기계적 강도가 취약하고, 2mm초과시 발열체의 메쉬 구멍이 작아 절연 코팅시 눈 막힘이 일어난다.The conductive layer thickness of the extruded conductive yarn 23 is preferably 0.2 mm to 2 mm. If the conductive layer is thinner than 0.2mm, the mechanical strength is weak, and when the thickness exceeds 2mm, the mesh hole of the heating element is small, which causes clogging during the insulation coating.

도 3은 본 발명에 따른 도전성 실리콘고무 발열체의 상태도로서, 상기한 직물 형태는 제직기 종광의 개구 운동에 의해 날실(31)을 상하 그룹으로 개구시키고, 개구된 날실 속을 북침 운동에 의해 씨실을 위입하고, 바디가 개구 내에 위입된 씨실을 제직된 직물 앞까지 밀어주어 날실과 씨실의 조직을 완성시키는 바디침 운동의 연속 반복으로 제직되어 직물이 형성되고, 상기 직물의 날실은 익조직으로 형성되고, 상기 직물의 양측에 여러 가닥의 날실을 전기 도체 선(33)으로 대체 배열되고, 상기 씨실은 압출 도전사(23)로 구성되는 것을 특징으로 한다.Figure 3 is a state diagram of the conductive silicone rubber heating element according to the present invention, the fabric type is the warp yarn 31 is opened in the upper and lower groups by the opening motion of the weaving machine heald, the weft yarn is opened by the drum motion The fabric is formed by weaving and weaving the weft in which the body is enclosed in the opening to the front of the woven fabric to complete the warp and weft tissue to form a fabric, the warp of the fabric being formed into the blade tissue And, on both sides of the fabric is arranged to replace the warp of several strands with an electrical conductor line 33, the weft is characterized in that composed of an extruded conductive yarn (23).

직물(textile fabric)은 실로부터 제직(製織,weaving) 또는 편성(編成, knitting) 등에 의해 실을 서로 지지시킴으로써 형성된다. 실이 인접 실들 위로 그리고 아래로 안내되는 제직 및 편성 방법으로 직물이 형성된다.Textile fabrics are formed by supporting the threads from each other by weaving or knitting from the threads. The fabric is formed in a weaving and knitting manner in which the thread is guided above and below adjacent yarns.

직물의 한 실시 예로서, 제직은 날실와 씨실이 서로 아래위로 교차하여 어떤 넓이의 평면체가 된 천이다. 직기로 짜여지며 날실와 씨실의 교차 방법에 따라 여러 가지 직물 조직이 된다.In one embodiment of the fabric, weaving is a fabric in which warp and weft yarns cross each other up and down to form a planar body of any width. It is woven into looms and is made into various fabrics depending on how the warp and weft intersect.

제직 공정의 주운동은 직물에 따라 날실을 2개 층으로 분리하여 개구(shed)라고 하는 터널(tunnel)을 형성하는 과정인 개구 운동(shedding motion), 직물 폭에 따라 씨실을 개구 된 날실 사이를 통과시키는 북침 운동(picking motion), 그리고 개구를 통과한 씨실을 바디로써 제직된 직물 앞까지 밀어주어 날실과 씨실의 조직을 완성시키는 바디침 운동(beating motion)으로 구성된다. 또한 제직을 연속적으로 하려면 날실을 경사빔에서 풀어 필요한 속도와 적당한 일정 장력으로써 제직 부분에 공급하는 송출운동(let-off)과 필요한 씨실 간격 만큼 일정한 양의 직물을 제직 부분에서 빼내어 직물을 롤러에 감는 권취운동(take-up)이 필요하다.The main motion of the weaving process is the shedding motion, which is the process of separating the warp into two layers according to the fabric and forming a tunnel called shed, and weaving the weft through the warp according to the width of the fabric. It consists of a picking motion to pass through and a beating motion to push the weft through the opening to the front of the woven fabric as a body to complete the warp and weft tissue. In order to continue the weaving, the warp is released from the warp beam, and a certain amount of fabric is removed from the weaving area by the required speed and proper tension to the weaving part (let-off) and the required weft spacing, and the fabric is wound on the roller. Take-up is necessary.

상기 직물의 양측에 여러 가닥의 날실을 전기 도체 선(33)으로 대체 배열되는 것을 특징으로 한다.It is characterized in that the warp of several strands on both sides of the fabric is arranged to replace the electrical conductor wire (33).

상기 전기 도체 선(33)은 압출 도전사(23)인 씨실에 전원 인가용 전극 선의 역할을 한다.The electrical conductor wire 33 serves as an electrode wire for applying power to the weft yarn, which is an extruded conductive yarn 23.

상기 전기 도체 선의 재질은 구리 선, 알루미늄 선, 스테인리스강 선 등이 바람직하다.The material of the electrical conductor wire is preferably a copper wire, an aluminum wire, a stainless steel wire, or the like.

상기 전기 도체 선은 직물의 익조직으로 형성하는 것이 바람직하다.The electrical conductor wire is preferably formed of the blade structure of the fabric.

본 발명의 직물 조직은 익조직(레노직)이 바람직하다. 익조직은 날실이 서로 평행하지 않고, 2본의 날실이 서로 꼬여져 8자형을 만들면서 씨실을 삽입한다. 그러므로서, 그물망 모양의 익직물이 형성된다.As for the textile structure of this invention, a blade structure (lenojig) is preferable. The wing tissues are not parallel to each other, and the two warp yarns are twisted together to form an eight-shaped weft. Thus, a mesh-like crop is formed.

특히, 전기 도체 선이 서로 꼬여진 개구 속에서 압출 도전사가 접촉하고 있어, 전기 도체 선과 압출 도전사 간에 접촉성을 향상시킨다.In particular, the extruded conductive yarns are in contact in the openings in which the electric conductor wires are twisted with each other, thereby improving contact between the electric conductor wires and the extruded conductive yarns.

상기 날실은 일반 섬유 실로서, 재질은 한정하지 않지만, 특히 아라미드섬유, 불소섬유, 플론섬유, 초고장력 PVA와 같은 슈퍼섬유 또는 유리섬유, 나일론, 폴리에스터섬유 등이 바람직하다. 특히, 유리섬유는 연사된 실을 여러 가닥으로 합사되어진 실이 바람직하다. 실에 꼬임이 있어야 내굴곡성이 좋아지기 때문이다.The warp yarn is a general fiber yarn, but the material is not limited, and particularly, aramid fiber, fluorine fiber, flon fiber, superfiber such as ultra high tensile PVA or glass fiber, nylon, polyester fiber and the like are preferable. In particular, the glass fiber is preferably a yarn in which the yarn is twisted in several strands. This is because the twist resistance is good when the thread is twisted.

상기 직물을 다음 수지로 절연 피복 처리한 직물 구조를 갖는 것을 특징으로 한다.The fabric is characterized by having a fabric structure insulated and coated with the following resin.

상기 수지 종류는 에폭시, 폴리우레탄, 실리콘, 불소, EPDM, 폴리에스테르, 역청질, 올레오레진, 페놀, 알키드, PVC 수지 등이 바람직하다. 특히, 실리콘 고무, EPDM 고무 또는 불소 고무가 바람직하다.The resin type is preferably epoxy, polyurethane, silicone, fluorine, EPDM, polyester, bituminous, oleoresin, phenol, alkyd, PVC resin and the like. In particular, silicone rubber, EPDM rubber or fluorine rubber is preferable.

도 4는 본 발명에 따른 일방향 도전통로와 기존 발열체의 사방향 도전통로의 비교도로서, 기존 발열체의 사방향 도전통도 상태도(41)와 본 발명에 따른 일방향 도전통로 상태도(42)를 비교한 비교도이다. 기존의 사방향 도전통로를 갖는 메쉬 형태의 지지체에 코팅된 도전통로는 결함 시에도 통전은 유지되고, 결함 인근으로 우회 전류가 흘러, 집중 전류에 의한 과열을 일으킬 수 있는 위험성이 내재하고 있으나, 본 발명에 따른 일방향 도전통로 구조는 결함 발생시에 단선되어 과열을 예방할 수 있다.4 is a comparison diagram of the one-way conductive passage and the four-way conductive passage of the existing heating element according to the present invention, comparing the four-way conductive passage state diagram 41 of the existing heating element and the one-way conductive passage state diagram 42 according to the present invention. One comparison is. The conductive path coated on the mesh support having the conventional four-way conductive path maintains the energization even in the case of a defect, and a bypass current flows to the vicinity of the defect, causing a risk of overheating due to the concentrated current. The one-way conductive passage structure according to the invention can be disconnected at the time of occurrence of a defect to prevent overheating.

<실시 예><Examples>

(1) 도전성 실리콘 고무 조성물 제조(1) Preparation of conductive silicone rubber composition

실리콘 고무 100중량부에 카본블랙은 덴카블랙 입상품으로 20중량부, 경화제는 4중량부로 조성된 혼합물을 2단 롤밀의 롤 간격을 3mm 간격으로 조정하여 혼련 시간을 5분정도 하여 도전성 실리콘 고무 조성물을 제조하였다.100 parts by weight of silicone rubber, carbon black is a denka black product, 20 parts by weight, and 4 parts by weight of a curing agent. Was prepared.

(2) 압출 도전사의 제조(2) Preparation of Extruded Conductive Yarn

심사는 폴리에스터사 1000데니어, 상기 (1)에서 조성된 조성물을 압출기의 다이의 구멍 1mm 직경으로 압출 도전사을 제조하였다. 경화시간은 200℃에 60초간 경화시켰다.In the screening, a 1000 denier of polyester yarn and the composition prepared in the above (1) were produced by extrusion extrusion yarn with a diameter of 1 mm in the hole of the die of the extruder. The curing time was cured at 200 ° C. for 60 seconds.

(3) 도전성 실리콘고무 발열체의 제조(3) Preparation of conductive silicone rubber heating element

씨실은 상기 (2)에서 제조된 압출 도전사로 사용하고, 날실은 폴리에스터 500데니어(섬도) 2가닥을 한 올로 직조하고, 상기 양 측의 날씰을 0.32mm 직경의 동선 10가닥씩 대체 배열하고, 직물 폭은 30센티미터로 제직하고, 직물 밀도는 1인치당 3칸으로 제직함. 상기 직물 상에 전기 절연 목적으로 액상실리콘고무로 0.5mm두께로 피복시켰다.Weft yarn is used as the extruded conductive yarn prepared in the above (2), and the warp yarn is woven into two strands of polyester 500 denier (fineness), and the warp seals on both sides are alternately arranged by 10 strands of copper wire having a diameter of 0.32 mm, Weaving width 30 centimeters, weaving density 3 squares per inch. The fabric was coated with liquid silicone rubber at 0.5 mm thickness for electrical insulation purposes.

(4) 상기 (3)에서 직조된 압출 도전사의 도전층 두께는 0.5mm 정도이다.(4) The thickness of the conductive layer of the extruded conductive yarn woven in the above (3) is about 0.5 mm.

상기 (1)에서 (4)까지 공정으로 제조된 도전성 실리콘 고무 발열체의 소비 전력은 1미터당 70와트(정격전압 220V) 정도였다. 220V 전원 인가시 평균 50.3℃ 정도로 상승함(주변 온도 20℃)The power consumption of the conductive silicone rubber heating element manufactured by the process (1) to (4) was about 70 watts (rated voltage 220V) per meter. Average rises to 50.3 ℃ when 220V power is applied (ambient temperature 20 ℃)

(5) 상기 (4)에 제조된 발열체의 길이 1m에서 상?중?하로 균등분배하여 온도를 측정한 결과 상단부에서 50.5℃, 중간부에서 50.9℃, 하단부에서 49.5℃로 나타내었다. 최고치와 최저치의 편차는 1.4℃로 2.7% 편차율을 나타내었다.(5) The temperature was measured by equally distributing the phase of the heating element manufactured in (4) above and below the length of 1m, 50.5 ℃ at the top, 50.9 ℃ at the middle, 49.5 ℃ at the bottom. The maximum and minimum deviations were 1.4 ° C, representing a 2.7% deviation.

이상에서 살펴본 바와 같이 본 발명의 바람직한 실시예에 대해 상세히 기술되었지만 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구 범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시 예의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.Although described in detail with respect to preferred embodiments of the present invention as described above, those of ordinary skill in the art, without departing from the spirit and scope of the invention as defined in the appended claims Various modifications may be made to the invention. Therefore, changes in the future embodiments of the present invention will not depart from the technology of the present invention.

11: 혼합단계
12: 압출단계
13: 직조단계
21: 심사(core yarn)
22: 다이(die)
23: 압출 도전사(extruding electrically conductive yarn)
31: 날실
33: 전기 도체 선
41: 기존 발열체의 사방향 도전통도 상태도
42: 본 발명에 따른 일방향 도전통로 상태도
11: Mixing step
12: extrusion step
13: weaving stage
21: core yarn
22: die
23: extruding electrically conductive yarn
31: warp
33: electrical conductor wire
41: Four-way conduction state diagram of the existing heating element
42: one-way conductive path state diagram according to the present invention

Claims (5)

카본블랙, 흑연분말, 탄소나노튜브, 잘게 썬(chopped) 탄소섬유로부터 선택되는 1종 이상의 전도성 탄소를 실리콘 고무를 기준으로 4중량부 내지 100중량부의 범위에서 실리콘 고무에 분산시켜 도전성 실리콘고무 조성물을 제조하는 혼합단계;
상기 도전성 실리콘고무 조성물을 압출 성형으로 심사(core yarn)에 피복되어 압출 도전사(extrusion electrically conductive yarn)가 제조되는 압출단계;
상기 압출 도전사는 전기적 병렬식인 일방향으로만 도전통로가 형성되는 직물 형태로 이루어지는 직조단계;
를 포함하는 도전성 실리콘고무 발열체의 제조방법.
The conductive silicone rubber composition is dispersed by dispersing at least one conductive carbon selected from carbon black, graphite powder, carbon nanotube, and chopped carbon fiber in the silicone rubber in a range of 4 parts by weight to 100 parts by weight based on the silicone rubber. A mixing step of preparing;
An extrusion step of coating the conductive silicone rubber composition on a core yarn by extrusion molding to produce an extrusion conductive conductive yarn;
The extrusion conductive yarn weaving step consisting of a fabric form in which the conductive passage is formed only in one direction that is electrically parallel type;
Method for producing a conductive silicone rubber heating element comprising a.
제 1항에 있어서,
상기 심사는 폴리에스터사, 유리섬유, 아라미드섬유, 고강도PVA섬유 중에서 어느 하나 이상인 것이고, 심사 섬도는 500데니어 내지 10000데니어인 것을 특징으로 하는 도전성 실리콘고무 발열체의 제조방법.
The method of claim 1,
The screening is any one or more of polyester yarn, glass fiber, aramid fiber, high-strength PVA fiber, the screening fineness is 500 to 10000 denier manufacturing method of a conductive silicone rubber heating element.
제 1항에 있어서,
상기한 압출 도전사의 도전층 두께는 0.2mm 내지 2mm인 것을 특징으로 하는 도전성 실리콘고무 발열체의 제조방법.
The method of claim 1,
The conductive layer thickness of the extruded conductive yarn is 0.2mm to 2mm manufacturing method of the conductive silicone rubber heating element, characterized in that.
제 1항에 있어서,
상기한 직물 형태는 제직기 종광의 개구 운동에 의해 날실(32)을 상하 그룹으로 개구시키고, 개구된 날실 속을 북침 운동에 의해 씨실을 위입하고, 바디가 개구 내에 위입된 씨실을 제직된 직물 앞까지 밀어주어 날실과 씨실의 조직을 완성시키는 바디침 운동의 연속 반복으로 제직되어 직물이 형성되고, 상기 직물의 날실은 익조직으로 형성되고, 상기 직물의 양측에 여러 가닥의 날실을 전기 도체 선(33)으로 대체 배열되고, 상기 씨실은 압출 도전사(23)로 구성되는 것을 특징으로 하는 도전성 실리콘고무 발열체의 제조방법.
The method of claim 1,
The above-described fabric type is the opening of the warp 32 in the upper and lower groups by the opening movement of the weaving heald, the weft through the opening of the warp through the weft movement, the weft of the body in the opening in front of the woven fabric The fabric is formed by successive repetition of body needle movement to complete the tissue of warp and weft by pushing it up to form a fabric, and the warp of the fabric is formed into a blade structure, and the warp of several strands on both sides of the fabric is connected to the electric conductor wire ( 33) and a method of manufacturing a conductive silicone rubber heating element, characterized in that the weft is composed of an extruded conductive yarn (23).
제 1항에 있어서,
잘게 썬 탄소섬유의 길이는 50㎛ 내지 10㎜인 것을 특징으로 하는 도전성 실리콘고무 발열체의 제조방법.
The method of claim 1,
The length of the finely chopped carbon fiber is a method for producing a conductive silicone rubber heating element, characterized in that 50㎛ to 10mm.
KR1020120088116A 2012-08-12 2012-08-12 The process of manufacturing of electrically conductive silicone rubber heater KR20120096451A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020120088116A KR20120096451A (en) 2012-08-12 2012-08-12 The process of manufacturing of electrically conductive silicone rubber heater
KR1020130028350A KR20140021473A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for antifreezing of pipe
KR1020130028349A KR20140021472A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for drying or anti-freeze of runway or road
KR1020130028347A KR20140021470A (en) 2012-08-12 2013-03-16 Electrically conductive silicone rubber heater and the manufacturing method of the same
KR1020130028351A KR20140021474A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for clothes including the wearing goods for rescue, leisure and medical treatment
KR1020130028352A KR20140021475A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for the device of transferring the patients
KR1020130028348A KR20140021471A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for cultivation
JP2013078318A JP2014037666A (en) 2012-08-12 2013-04-04 Conductive silicone rubber heating element and method for producing the same
CN201310119394.8A CN103572453A (en) 2012-08-12 2013-04-08 Conductive silicone rubber heating element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120088116A KR20120096451A (en) 2012-08-12 2012-08-12 The process of manufacturing of electrically conductive silicone rubber heater

Publications (1)

Publication Number Publication Date
KR20120096451A true KR20120096451A (en) 2012-08-30

Family

ID=46886434

Family Applications (7)

Application Number Title Priority Date Filing Date
KR1020120088116A KR20120096451A (en) 2012-08-12 2012-08-12 The process of manufacturing of electrically conductive silicone rubber heater
KR1020130028350A KR20140021473A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for antifreezing of pipe
KR1020130028349A KR20140021472A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for drying or anti-freeze of runway or road
KR1020130028348A KR20140021471A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for cultivation
KR1020130028352A KR20140021475A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for the device of transferring the patients
KR1020130028347A KR20140021470A (en) 2012-08-12 2013-03-16 Electrically conductive silicone rubber heater and the manufacturing method of the same
KR1020130028351A KR20140021474A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for clothes including the wearing goods for rescue, leisure and medical treatment

Family Applications After (6)

Application Number Title Priority Date Filing Date
KR1020130028350A KR20140021473A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for antifreezing of pipe
KR1020130028349A KR20140021472A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for drying or anti-freeze of runway or road
KR1020130028348A KR20140021471A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for cultivation
KR1020130028352A KR20140021475A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for the device of transferring the patients
KR1020130028347A KR20140021470A (en) 2012-08-12 2013-03-16 Electrically conductive silicone rubber heater and the manufacturing method of the same
KR1020130028351A KR20140021474A (en) 2012-08-12 2013-03-16 Heater using conductive silicone for clothes including the wearing goods for rescue, leisure and medical treatment

Country Status (2)

Country Link
JP (1) JP2014037666A (en)
KR (7) KR20120096451A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447517B1 (en) * 2013-07-01 2014-10-06 주식회사 휴비스 Fabric for Military Combat Uniform with Excellent Camouflage and Moisture Permeability
KR20190029385A (en) * 2017-09-12 2019-03-20 주식회사 웨이브컴퍼니 Smart cloth having integrally formed-wire coated with electric conductive silicon rubber
US10777367B2 (en) 2016-03-03 2020-09-15 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Fibrous electrode with buckle structure, method of manufacturing the same, and supercapacitor including the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167134A1 (en) * 2014-04-30 2015-11-05 서울대학교 산학협력단 Rubber heating element containing silver nanowire
WO2016017765A1 (en) * 2014-07-31 2016-02-04 バンドー化学株式会社 Elastomer heater
KR200485371Y1 (en) * 2015-11-16 2017-12-28 지철남 Heating table mat for heat and keeping warm of food
CN106928725A (en) * 2015-12-31 2017-07-07 蓝星有机硅(上海)有限公司 conductive curable organic silicon rubber
KR101681921B1 (en) * 2016-04-28 2016-12-02 주식회사 쓰리제이 Heating system for preventing freeze
CN106817783B (en) * 2016-08-30 2023-02-17 元然(苏州)新能源科技有限公司 Polymerization nanometer energy heating wire and manufacturing method thereof
KR102149190B1 (en) 2018-04-09 2020-08-28 경상대학교산학협력단 Micro-jet drug delivery apparatus using discharge in liquid
KR102073683B1 (en) * 2018-04-10 2020-02-05 (주)씨엔티솔루션 Steering handle containing composite material having piezo-electric and heating function, and manufacturing method thereof
JP2021082456A (en) * 2019-11-18 2021-05-27 ライオン株式会社 Heating element
CN114293306A (en) * 2021-11-19 2022-04-08 未来穿戴技术股份有限公司 One-way heat conduction fabric and wearable massage equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846508A (en) * 1981-09-14 1983-03-18 日本石油化学株式会社 Conductive material and method of producing same
JPH0240274B2 (en) * 1984-12-14 1990-09-11 Yokohama Rubber Co Ltd DODENSEINETSUKOKAGATASETSUCHAKUSOSEIBUTSU
JPS63270874A (en) * 1987-04-28 1988-11-08 東レ株式会社 Production of yarn like heat generator
JPH0261098U (en) * 1988-10-28 1990-05-07
JPH07242827A (en) * 1994-03-08 1995-09-19 Toshiba Silicone Co Ltd Electroconductive silicone rubber composition, its production and planar heating element
JPH0896938A (en) * 1994-09-28 1996-04-12 Saitou Shinsou:Kk Planar heater having air permeability
WO2006004282A1 (en) * 2004-03-29 2006-01-12 Centech Co., Ltd. Conductive composition for producing carbon flexible heating structure, carbon flexible heating structure using the same, and manu¬ facturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447517B1 (en) * 2013-07-01 2014-10-06 주식회사 휴비스 Fabric for Military Combat Uniform with Excellent Camouflage and Moisture Permeability
US10777367B2 (en) 2016-03-03 2020-09-15 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Fibrous electrode with buckle structure, method of manufacturing the same, and supercapacitor including the same
KR20190029385A (en) * 2017-09-12 2019-03-20 주식회사 웨이브컴퍼니 Smart cloth having integrally formed-wire coated with electric conductive silicon rubber

Also Published As

Publication number Publication date
KR20140021471A (en) 2014-02-20
KR20140021474A (en) 2014-02-20
JP2014037666A (en) 2014-02-27
KR20140021475A (en) 2014-02-20
KR20140021470A (en) 2014-02-20
KR20140021472A (en) 2014-02-20
KR20140021473A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
KR20120096451A (en) The process of manufacturing of electrically conductive silicone rubber heater
US20090282802A1 (en) Carbon nanotube yarn, thread, rope, fabric and composite and methods of making the same
CN103572453A (en) Conductive silicone rubber heating element and manufacturing method thereof
CN205179392U (en) Fabric formula electric heat membrane
KR20140120657A (en) Stomach band for use of medical or beauty treatment with heater
KR20130032890A (en) Electro-conductive textile
KR20110121670A (en) Carbon nano tube heating element
JP2014001266A (en) Polyester molded article and method for manufacturing the same
KR20140120658A (en) Blankit for life-saving, medical or daily life equipped with heater
KR101393264B1 (en) electro-conductive textile for low voltage
KR100750874B1 (en) Manufacturing method for planar resistance heating element
KR101424883B1 (en) Method for preparing electrically conductive hollow fiber and electrically conductive hollow fiber prepared thereby
KR20120028962A (en) Thermo-sensitive grid-heater
JP2012079538A (en) Planar heating element
KR101172013B1 (en) Heating fabric and Method for making the same
KR101804872B1 (en) Manufacturing method of carbon fiber for sheet heater and carbon fiber for sheet heater manufactured thereby
KR20110118757A (en) Carbon nanotube heating mesh
CN217509055U (en) Novel waterproof graphene electrothermal film
CN103558715A (en) Friction cloth and friction device
RU2182406C1 (en) Electric heating cloth (alternatives) and electricity conducting thread for this cloth; method for manufacturing this thread
KR20140120659A (en) Lifeboat with heater
KR20120028946A (en) Conductive coating fiber and fabric thereof
RU2187907C1 (en) Electric heating fabric
JP7340183B1 (en) Core-sheath type polyester composite fiber and its manufacturing method
KR20120038952A (en) Geogrid heater

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant