KR20120090562A - 빔 포밍 방법 및 이를 이용한 다중 안테나 시스템 - Google Patents
빔 포밍 방법 및 이를 이용한 다중 안테나 시스템 Download PDFInfo
- Publication number
- KR20120090562A KR20120090562A KR1020110011050A KR20110011050A KR20120090562A KR 20120090562 A KR20120090562 A KR 20120090562A KR 1020110011050 A KR1020110011050 A KR 1020110011050A KR 20110011050 A KR20110011050 A KR 20110011050A KR 20120090562 A KR20120090562 A KR 20120090562A
- Authority
- KR
- South Korea
- Prior art keywords
- antennas
- level
- transmitter
- receiver
- training sequence
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0634—Antenna weights or vector/matrix coefficients
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0639—Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Radio Transmission System (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
빔 포밍 방법 및 이를 이용한 다중 안테나 시스템이 개시된다. 상기 다중 안테나 시스템은 다수의 안테나들을 각각 구비하는 송신기와 수신기간 트레이닝 수열(training sequence)의 전송을 통해 최적의 빔을 형성하는 다중 안테나 시스템에 있어서, 레벨에 따라 활성화될 안테나들을 선택하고, 선택된 안테나들을 통해 수신기로 트레이닝 수열을 전송하는 송신기와, 레벨에 따라 활성화될 안테나들을 선택하고, 송신기로부터 전송된 트레이닝 수열에 기초하여 비용 함수를 최소화시키는 최적의 송신 가중 백터(transmit weight vector)의 인덱스를 송신기로 전송하는 수신기를 포함하며, 송신기는 q(q: 상기 레벨의 인덱스) 번째 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들이 q+1 번째 레벨에서 선택된 안테나들에 의해 형성된 빔 패턴들을 포함하도록 안테나들을 선택할 수 있다. 이를 통해 트레이닝 수열의 전송 횟수를 감소시킬 수 있는 효과가 있다.
Description
본 발명은, 트레이닝 수열의 전송 횟수를 감소시킬 수 있는 빔 포밍 방법 및 이를 이용한 다중 안테나 시스템에 관한 것이다.
최근 주파수 자원의 부족을 해소하기 위한 방안이 모색되고 있다. 이러한 방안들 중 하나인 밀리미터파 대역 통신은 광대역을 이용하여 높은 전송률을 얻을 수 있는 장점으로 인해 크게 각광을 받고 있다. 또한 짧은 파장으로 인해 RF 소자의 소형화 및 경량화가 가능하기 때문에 무선랜(WLAN: Wireless Local Area Network), 근거리 무선 개인 통신망(WPAN: Wireless Personal Area Network)을 위한 국제 표준화 작업이 진행중에 있다.
이러한 밀리미터파 대역 통신에서는 일반적으로 다중 안테나를 이용한 빔 포밍(beamforming) 기술을 채택하고 있으며, 특히 밀리미터파 대역 채널의 높은 공간적 상관관계로 인하여 직교 주파수 분할 다중화(OFDM: Orthogonal frequency-division multiplexing)와 다중 입력 다중 출력(MIMO: Multi Input Multi Output)이 결합된 MIMO-OFDM 시스템이 사용되고 있다. MIMO-OFDM 시스템에서 사용되는 빔 포밍 기술로 코드북을 기반으로 한 심볼 빔 포밍 기술이 있다. 여기서, 빔포밍이란 스마트 안테나(smart antena)의 한 방식으로 안테나의 빔이 해당 단말에만 국한되어 비취도록 하는 기술이다. 스마트 안테나는 효율성을 높이기 위해 다수의 안테나를 사용해서 구현될 수 있으며, 다수의 안테나를 송신기와 수신기 모두에 구현한 경우를 MIMO(Multi Input Multi Output)이라 한다.
이러한 코드북을 기반으로 한 심볼 빔 포밍 기술은 채널 정보의 추정없이 트레이닝 수열의 전송을 통해 비용 함수(cost function)를 최적화시키는 송수신 가중벡터를 선택하는 기술이다. 즉, 데이터를 전송하기 전에 송수신 가중백터를 선택하기 위한 트레이닝 수열의 전송 절차가 필수적이다. 하지만, 트레이닝 수열의 전송 절차를 수행함에 있어 트레이닝 수열의 전송 횟수가 많아 시간이 많이 소요된다는 문제점이 있다.
본 발명은 트레이닝 수열의 전송 횟수를 감소시킬 수 있는 빔 포밍 방법 및 이를 이용한 다중 안테나 시스템을 제공하는 것을 해결하고자 하는 기술적 과제로 한다.
상기 기술적 과제를 해결하기 위한 수단으로서 본 발명은, 다수의 안테나들을 각각 구비하는 송신기와 수신기간 트레이닝 수열(training sequence)의 전송을 통해 최적의 빔을 형성하는 다중 안테나 시스템에 있어서, 최적의 빔 패턴의 형성을 위해 단계적으로 증가하는 레벨에 따라 미리 정해진 활성화될 안테나들을 선택하고, 선택된 안테나들을 통해 수신기로 트레이닝 수열을 전송하는 송신기와, 레벨에 따라 미리 정해진 활성화될 안테나들을 선택하고, 송신기로부터 전송된 트레이닝 수열에 기초하여 비용 함수를 최소화시키는 최적의 송신 가중 백터(transmit weight vector)의 인덱스를 송신기로 전송하는 수신기를 포함하며, 송신기는 q(q: 상기 레벨의 인덱스) 번째 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들이 q+1 번째 레벨에서 선택된 안테나들에 의해 형성된 빔 패턴들을 포함하도록 안테나들을 선택하는 다중 안테나 시스템을 제공한다.
본 발명의 실시 형태에 의하면, 상기 송신기는 q번째 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들 중 어느 하나의 빔 패턴이 q+1번째 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들 중 2 개의 빔 패턴들의 합과 동일하도록 안테나들을 선택할 수 있다.
본 발명의 실시 형태에 의하면, 상기 다수의 안테나들은, 송신기와 수신기 각각에 대하여, 균일하게 공간적으로 선형 배치된 안테나 어레이(uniformly spaced linear antenna array)를 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 각 레벨에서 2q개의 안테나를 선택하며, 각 레벨에서 선택되는 안테나들 사이의 간격(D)은 다음의 수학식:
D = 2n-(q+1)λ
에 의하며, q은 레벨의 인덱스를, n은 총 레벨의 수, λ는 반송파 파장의 길이일 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 송신기는, 각 레벨에서 트레이닝 수열을 2 방향으로 전송하되, 각 방향에 대해서 동일한 트레이닝 수열을 각각 2번씩 수신기로 전송할 수 있다.
상기 기술적 과제를 달성하기 위한 다른 수단으로서 본 발명은, 다수의 안테나들을 각각 구비하는 송신기와 수신기간 트레이닝 수열(training sequence)의 전송을 통해 최적의 빔을 형성하는 빔 포밍 방법에 있어서, (a) 최적의 빔 패턴의 형성을 위해 단계적으로 증가하는 레벨에 따라 활성화될 송신기의 안테나들과 수신기의 안테나들을 선택하는 단계와, (b) 선택된 안테나들을 통해 송신기로부터 수신기로 트레이닝 수열을 전송하는 단계와, (c) 수신기에서 수신된 트레이닝 수열에 기초하여 비용 함수를 최소화시키는 최적의 송신 가중 백터(transmit weight vector)의 인덱스를 송신기로 전송하는 단계를 포함하며, 상기 (a) 단계는, q(q: 상기 레벨의 인덱스) 번째 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들이 q+1 번째 레벨에서 선택된 안테나들에 의해 형성된 빔 패턴들을 포함하도록 안테나들을 선택하는 단계를 포함하는 빔 포밍 방법을 제공한다.
본 발명의 실시 형태에 의하면, 상기 (a) 단계는, q번째 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들 중 어느 하나의 빔 패턴이 q+1번째 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들 중 2 개의 빔 패턴들의 합과 동일하도록 안테나들을 선택하는 단계를 포함할 수 있다.
본 발명의 실시 형태에 의하면, 상기 다수의 안테나들은, 송신기와 수신기 각각에 대하여, 균일하게 공간적으로 선형 배치된 안테나 어레이(uniformly spaced linear antenna array)를 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 (a) 단계에서, 각 레벨에서 2q개의 안테나가 선택되며, 각 레벨에서 선택되는 안테나들 사이의 간격(D)은 다음의 수학식:
D = 2n-(q+1) λ
에 의하며, q은 레벨의 인덱스를, n은 총 레벨의 수, λ는 반송파의 파장의 길이일 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 (b) 단계는, 송신기는 각 레벨에서 트레이닝 수열을 2 방향으로 전송하되, 각 방향에 대해서 동일한 트레이닝 수열을 각각 2번씩 수신기로 전송하는 단계를 포함할 수 있다.
본 발명에 따르면, 레벨이 증가함에 따라 안테나의 선택 개수를 증가시키고, 이전 레벨에서 선택된 안테나들에 의해 형성된 빔의 패턴이 다음 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들을 포함하도록 함으로써, 트레이닝 수열의 전송 횟수를 감소시킬 수 있으며, 이를 통해 성능 이득(performance gain)의 손실없이도 가중 벡터를 송수신함에 의해 소요되는 셋업 시간을 획기적으로 줄일 수 있는 효과가 있다.
도 1은 본 발명의 실시 형태에 따른 다중 안테나 시스템의 구성도이다.
도 2는 본 발명의 실시 형태에 따른 빔 포밍 방법을 설명하기 위한 흐름도이다.
도 3은 본 발명의 실시 형태에 따라 안테나의 수가 8인 경우 형성되는 빔 패턴을 도시한 도면이다.
도 4는 본 발명의 실시 형태에 따라 안테나의 수가 8인 경우 레벨에 따른 안테나 선택방법을 도시한 도면이다.
도 5는 본 발명의 실시 형태와 종래 기술에 따른 트레이닝 수열의 전송 횟수를 비교한 그래프이다.
도 6은 본 발명의 실시 형태와 종래 기술에 따른 유효 신호 대 잡음비 이득을 비교한 그래프이다.
도 2는 본 발명의 실시 형태에 따른 빔 포밍 방법을 설명하기 위한 흐름도이다.
도 3은 본 발명의 실시 형태에 따라 안테나의 수가 8인 경우 형성되는 빔 패턴을 도시한 도면이다.
도 4는 본 발명의 실시 형태에 따라 안테나의 수가 8인 경우 레벨에 따른 안테나 선택방법을 도시한 도면이다.
도 5는 본 발명의 실시 형태와 종래 기술에 따른 트레이닝 수열의 전송 횟수를 비교한 그래프이다.
도 6은 본 발명의 실시 형태와 종래 기술에 따른 유효 신호 대 잡음비 이득을 비교한 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 다양한 실시형태를 보다 상세하게 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명되는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에 도시된 구성요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다는 점을 유념해야 할 것이다.
도 1은 본 발명의 실시 형태에 따른 다중 안테나 시스템의 구성도이다. 다중 안테나 시스템은 송신기(100)와 수신기(200)를 포함한다.
구체적으로, 송신기(100)의 역고속 푸리에 변환부(IFFT: Inver Fast Fourier Transformer)(101)는 전송될 신호에 대해 역고속 푸리에 변환을 수행하고, 그 결과를 D/A 및 믹서(102)로 전달한다.
한편, 송신기(100)의 D/A 및 믹서(102)는 역고속 푸리에 변환된 신호를 아날로그 신호로 변환하고, 변환된 신호를 믹싱한다. 믹싱된 신호는 빔 포밍부(103)로 전달된다.
송신기(100)의 빔 포밍부(103)는 D/A 및 믹서(102)로부터 전달받은 믹싱된 신호에 송신 가중 벡터(transmitting weight vector)(W1,...WM)를 곱한 후 안테나 어레이(104)로 전달한다. 안테나 어레이(104)로 전달된 신호는 채널(H)을 통해 수신기(200)로 전송된다. 한편, 안테나 어레이는 도시된 바와 같이 다수의 안테나들을 포함할 수 있다. 본 발명에 의하면, 안테나 어레이(104)는 균일하게 공간적으로 선형 배치된 다수의 안테나들(uniformly spaced linear antennas)을 포함할 수 있다.
특히, 본 발명의 실시 형태에 의하면, 빔 포밍부(103)는 데이터를 전송하기 전에 최적의 빔 포밍을 위한 트레이닝 수열의 전송 절차를 수행한다. 이를 위해 빔 포밍부(103)는 레벨에 따라 활성화될 안테나들을 선택한다. 이후 빔 포밍부(103)는 트레이닝 수열에 송신 가중 벡터(W1,...WM)를 곱한 후 선택된 안테나들을 통해 전송한다. 빔 패턴 형성을 위한 다수의 송신 가중 벡터들은 코드북에 미리 저장되며, 특정한 송신 가중 벡터가 트레이닝 수열에 곱해져 전송됨으로써, 특정 방향의 빔 패턴을 형성하게 된다.
한편, 안테나들 사이의 간격(D)은 다음의 수학식 (1)에 의해 결정될 수 있다.
[수학식 1]
D = 2n-(q+1)λ
여기서, q은 레벨의 인덱스를, n은 총 레벨의 수, λ는 반송파의 길이를 의미한다. 수학식 (1)의 의미에 대해서는 도 2를 참조하여 후술한다.
한편, 수신기(200)의 안테나 어레이(201)는 채널(H)을 통해 송신기(100)로부터 전송된 신호를 수신하고, 수신된 신호를 빔 포밍부(202)로 전달한다. 수신기(200)의 안테나 어레이 역시, 도 1에 도시된 바와 같이, 균일하게 공간적으로 선형 배치된 다수의 안테나들(uniformly spaced linear antennas)을 포함할 수 있다. 수신기(200)의 안테나 어레이(201)의 간격 역시 수학식 (1)에 의해 결정될 수 있다.
수신기(200)의 빔 포밍부(202)는 안테나 어레이(201)로부터 전달받은 신호에 수신 가중 벡터(receiving weight vector)(C1,....CM)를 곱한 후 믹서 및 A/D 변환부(203)로 전달한다. 구체적으로, 안테나 어레이(201)에 포함된 각 안테나에 의해 수신된 신호에 각각에 대해, 수신 가중 벡터(C1,....CM)를 곱하여 믹서 및 A/D 변환부(203)로 전달한다. 특히 본 발명의 실시 형태에 의하면, 빔 포밍부(202)는 레벨에 따라 활성화될 안테나들을 선택하고, 선택된 안테나들을 통해 송신기(100)로부터 전송되는 신호들을 수신하도록 한다.
수신기(200)의 믹서 및 A/D 변환부(203)는 안테나 어레이(201)로부터 전달받은 신호들을 믹싱한 후, 믹싱된 신호를 디지털 신호로 변환한다. 변환된 신호는 고속 푸리에 변환부(FFT: Fast Fourier Transformer)(204)로 전달된다.
수신기(200)의 고속 푸리에 변환부(204)는 믹서 및 A/D 변환부(203)로부터 전달된 신호를 고속 푸리에 변환한 후, 출력한다.
한편, 수신기(200)의 가중 벡터 선택부(205)는 믹서 및 A/D 변환부(203)로부터 믹싱된 신호를 전달받아 비용 함수(cost function)를 최소화시키는 최적의 송신 가중 벡터를 선택한다. 선택된 최적의 송신 가중 벡터의 인덱스를 피드백 채널(206)을 통해 송신기(100)의 빔 포밍부(103)로 전달한다.
한편, 도 2는 본 발명의 실시 형태에 따른 빔 포밍 방법을 설명하기 위한 흐름도이며, 도 3은 본 발명의 실시 형태에 따라 안테나의 수가 8인 경우 형성되는 빔 패턴을 도시한 도면이며, 도 4는 본 발명의 실시 형태에 따라 안테나의 수가 8인 경우 레벨에 따른 안테나 선택방법을 도시한 도면이다.
이하 도 1 내지 도 4를 참조하여 본 발명의 실시 형태를 상세하게 설명한다.
도 1 내지 도 4를 참조하면, 우선 단계 200에서, 송신기(100)의 빔 포밍부(103) 및 수신기(200)의 빔 포밍부(202)는 레벨 인덱스(q)를 1로 초기화한다.
단계 201에서, 송신기(100)의 빔 포밍부(103)는 레벨 인덱스(q)에 따라 안테나 어레이(104)에 포함된 다수의 안테나들 중 활성화될 안테나를 선택한다. 마찬가지로, 수신기(200)의 빔 포밍부(202)도 레벨 인덱스(q)에 따라 안테나 어레이(201)에 포함된 다수의 안테나들 중 활성화될 안테나를 선택한다.
이하 각 레벨에 따른 안테나 선택에 대해 상세하게 설명한다. 본 발명의 실시 형태를 설명함에 있어 송신기(100)의 안테나 어레이(104)에 포함된 안테나들의 수(M)가 8개, 마찬가지로 수신기(200)의 안테나 어레이(201)에 포함된 안테나들의 수(M)가 8개로, 송신기(100)의 안테나 개수와 수신기(200)의 안테나 개수는 동일하다고 가정한다. 이때, 총 레벨(n)은 다음의 수학식 (2)에 따라 결정될 수 있다.
[수학식 2]
M = 2n
여기서, M은 안테나 어레이에 포함된 안테나들의 수이며, 송신기(100)와 수신기(200) 모두 동일하게 8개이다. 그리고, n은 총 레벨의 수이다. 본 발명의 실시 형태에 의하면, 각 레벨에서는 2q개의 안테나를 선택하게 된다. 따라서, 레벨 인덱스(q)가 증가함에 따라 선택되는 안테나의 개수는 증가하며, 안테나 사이의 간격(D)은 줄어들게 된다. 이때 선택되는 안테나들은 동일한 간격을 유지할 수 있다. 각 레벨에서의 안테나 간격은 다음의 표 1과 같이 나타낼 수 있다.
레벨 인덱스(q) | 선택된 안테나 개수 | 안테나 간격(D) |
1 | 21 | D = 2n-2λ |
2 | 22 | D = 2n-3λ |
3 | 23 | D = 2n-4λ |
.. | .. | .. |
q | 2q | D = 2n-(q+1)λ |
.. | .. | .. |
n | M=2n | D = 2-1λ |
도 1 및 도 4를 참조하면, 첫번째 레벨(q=1)에서는 2개(21)의 송신 안테나와 2개의 수신 안테나(도 4의 1, 5)가 선택된다. 이때 안테나 사이의 간격(D)은 2λ가 될 수 있다(도 4의 400 참조). 두번째 레벨(q=2)에서는 4개(22)의 송신 안테나와 4개(22)의 수신 안테나(도 4의 1, 3, 5 및 7)가 선택된다. 이때 안테나 사이의 간격(D)은 λ가 될 수 있다(도 4의 410 참조). 세번째 레벨(q=3)에서는 8개(23)의 송신 안테나와 8개(23)의 수신 안테나(도 4의 1 내지 8)가 모두 선택된다. 이때 안테나 사이의 간격(D)은 λ/2가 될 수 있다(도 4의 420 참조). 상술한 바와 같은 안테나 선택에 의해 q번째 레벨에서 생성되는 빔 패턴이 q+1 번째 레벨에서 생성되는 빔 패턴을 포함하도록 할 수 있다. 이에 대해서 도 3을 참조하여 상세하게 설명한다.
도 3 및 도 4를 참조하면, 첫번째 레벨(q=1)에서 선택된 안테나들(1, 5)에 의해 2개의 빔 패턴들(301 및 302)이 형성된다(도면부호 300 참조). 두번째 레벨(q=2)에서 선택된 안테나들(1, 3, 5, 7)에 의해 4개의 빔 패턴들(311 내지 314)이 형성된다(도면부호 310 참조). 한편, 세번째 레벨(q=3)에서 선택된 안테나들(1 내지 8)에 의해 8개의 빔 패턴들(321 내지 338)이 형성된다(도면부호 320 참조). 이때 q+1번째 레벨에서 생성된 빔 패턴들 중 2개의 빔 패턴들의 합이 q번째 레벨에서 생성된 빔 패턴들 중 어느 하나의 빔 패턴과 동일할 수 있다. 예를 들면, 첫번째 레벨에서 형성된 빔 패턴들(301, 302) 중 하나의 빔 패턴(301)은 다음 레벨인 두번째 레벨에서 형성된 빔 패턴들(311 내지 314) 중 2개의 빔 패턴들(312, 314)의 합과 동일할 수 있다. 또한, 두번째 레벨(q=2)에서 형성된 빔 패턴들(311 내지 314) 중 하나의 빔 패턴(312)은 다음 레벨인 세번째 레벨(q=3)에서 형성된 빔 패턴들(321 내지 328) 중 2개의 빔 패턴들(324, 328)의 합과 동일할 수 있다.
단계 202에서, 송신기(100)의 빔 포밍부(103)는 해당 레벨의 빔 패턴들을 사용해서 트레이닝 수열을 전송한다. 구체적으로 각 레벨에서 송신기(100)의 빔 포밍부(103)는 트레이닝 수열을 2 방향으로 전송하되, 각 방향에 대해서 동일한 트레이닝 수열을 각각 2번씩 전송하게 된다. 이에 따라 수신기(200)의 빔 포밍부(202)는 하나의 방향에 대해 2번씩 총 4개의 트레이닝 수열을 수신하게 된다.
단계 203에서, 수신기(200)의 가중 벡터 선택부(205)는 수신된 트레이닝 수열에 기초하여 비용 함수(cost function)를 최소화시키는 최적의 송신 가중 벡터의 인덱스를 선택한다.
이후, 단계 204에서, 수신기(200)의 가중 벡터 선택부(205)는 선택된 최적의 송신 가중 벡터의 인덱스를 피드백 채널(206)을 통해 송신기(100)의 빔 포밍부(103)로 전송한다.
단계 205에서, 송신기(100)의 빔 포밍부(103)는 레벨 인덱스(q)가 미리 정해진 총 인덱스(log2M)와 같은지 판단하고, 판단결과 총 인덱스(n=log2M) 보다 작은 경우 단계 201 내지 단계 205를 반복적으로 수행한다. 이 경우 이전 레벨에서 선택된 최적의 송신 가중 벡터에 해당하는 방향만이 트레이닝 수열의 전송에 이용될 수 있다. 따라서, 본 발명의 실시 형태에 의하면, 안테나의 개수가 8인 경우, 각 레벨마다 4번의 트레이닝 수열이 전송되므로 총 16번 트레이닝 수열의 전송으로 최적의 송신 가중 벡터를 선택할 수 있음을 알 수 있다. 이와 같은 본 발명의 실시 형태에 의한 트레이닝 수열의 전송 횟수를 종래 기술과 비교하여 도 5에서 도시하고 있다.
도 5는 본 발명의 실시 형태와 종래 기술에 따른 트레이닝 수열의 전송 횟수를 비교한 그래프로, X 축은 안테나 개수를, Y 축은 송신기(100)에서 전송하는 트레이닝 수열의 전송 횟수를 도시하고 있다.
도 5를 참조하면, 도면부호 501은 철저 검색을 기반으로 한 심볼 빔 포밍(SB-ES: Symbol-wise Beamforming with Exhaustive Search), 도면부호 502는 2개의 레벨로 구성된 심볼 빔 포밍(SB-2T: Symbol-wise Beamforming with Two level Traning), 도면부호 500은 본 발명의 실시 형태에 따른 다수의 레벨과 안테나 선택을 기반으로 한 심볼 빔 포밍(SB-MTAS: Symbol-wise Beamforming with Multi-level Training and Antenna Selection)을 의미한다. 도 5에 도시된 바와 같이, 본 발명의 실시 형태에 의한 SB-MTAS(500) 방법에 의할 경우 종래 기술(501, 502)에 의하는 경우보다 트레이닝 수열의 전송 횟수를 줄일 수 있다는 것을 알 수 있다.
또한, 도 6은 본 발명의 실시 형태와 종래 기술에 따른 유효 신호 대 잡음비 이득을 비교한 그래프로, X축은 안테나 개수를, Y축은 유효신호대잡음비이득(Effective SNR gain)을 도시하고 있다.
도 6에 도시된 바와 같이, 본원 발명의 실시 형태인 SB-MTAS(601)의 유효신호대잡음비이득(effective SNR gain)은 SB-ES(602)에 근접하며, 부반송파 빔포밍(subcarrier-wise BF)(603)에 비해서는 못하나, SB-2T(600)에 비해서는 우월한 것을 알 수 있다.
상술한 바와 같이, 레벨이 증가함에 따라 안테나의 선택 개수를 증가시키고, 이전 레벨에서 선택된 안테나들에 의해 형성된 빔의 패턴이 다음 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들을 포함하도록 함으로써, 트레이닝 수열의 전송 횟수를 감소시킬 수 있으며, 이를 통해 성능 이득(performance gain)의 손실없이도 가중 벡터를 송수신함에 의해 소요되는 셋업시간을 획기적으로 줄일 수 있는 효과가 있다.
본 발명의 상세한 설명에서는 구체적인 실시예에 관하여 설명하였으나 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되지 않으며, 후술되는 특허청구의 범위 및 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.
100: 송신기
101: IFFT
102, 203: D/A 및 믹서
103, 202: 빔 포밍부
104, 201: 안테나 어레이
200: 수신기
204: FFT
205: 가중벡터 선택부
206: 피드백 채널
101: IFFT
102, 203: D/A 및 믹서
103, 202: 빔 포밍부
104, 201: 안테나 어레이
200: 수신기
204: FFT
205: 가중벡터 선택부
206: 피드백 채널
Claims (10)
- 다수의 안테나들을 각각 구비하는 송신기와 수신기간 트레이닝 수열(training sequence)의 전송을 통해 최적의 빔 패턴을 형성하는 다중 안테나 시스템에 있어서,
상기 최적의 빔 패턴의 형성을 위해 단계적으로 증가하는 레벨에 따라 미리 정해진 활성화될 안테나들을 선택하고, 선택된 안테나들을 통해 수신기로 트레이닝 수열을 전송하는 송신기;
상기 레벨에 따라 미리 정해진 활성화될 안테나들을 선택하고, 상기 송신기로부터 전송된 트레이닝 수열에 기초하여 비용 함수를 최소화시키는 최적의 송신 가중 백터(transmit weight vector)의 인덱스를 상기 송신기로 전송하는 수신기를 포함하며,
상기 송신기는 q(q: 상기 레벨의 인덱스) 번째 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들이 q+1 번째 레벨에서 선택된 안테나들에 의해 형성된 빔 패턴들을 포함하도록 안테나들을 선택하는 다중 안테나 시스템. - 제1항에 있어서,
상기 송신기는 q번째 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들 중 어느 하나의 빔 패턴이 q+1번째 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들 중 2 개의 빔 패턴들의 합과 동일하도록 안테나들을 선택하는 다중 안테나 시스템. - 제1항에 있어서,
상기 다수의 안테나들은,
상기 송신기와 상기 수신기 각각에 대하여, 균일하게 공간적으로 선형 배치된 안테나 어레이(uniformly spaced linear antenna array)를 포함하는 다중 안테나 시스템. - 제2항에 있어서, 상기 송신기는,
각 레벨에서 2q개의 안테나를 선택하며,
각 레벨에서 선택되는 안테나들 사이의 간격(D)은 다음의 수학식:
D = 2n-(q+1)λ
에 의하며, q은 레벨의 인덱스를, n은 총 레벨의 수, λ는 반송파 파장의 길이인 다중 안테나 시스템. - 제1항에 있어서, 상기 송신기는,
각 레벨에서 상기 트레이닝 수열을 2 방향으로 전송하되, 각 방향에 대해서 동일한 트레이닝 수열을 각각 2번씩 상기 수신기로 전송하는 다중 안테나 시스템. - 다수의 안테나들을 각각 구비하는 송신기와 수신기간 트레이닝 수열(training sequence)의 전송을 통해 최적의 빔 패턴을 형성하는 빔 포밍 방법에 있어서,
(a) 상기 최적의 빔 패턴의 형성을 위해 단계적으로 증가하는 레벨에 따라 미리 정해진 활성화될 송신기의 안테나들과 수신기의 안테나들을 선택하는 단계;
(b) 상기 선택된 안테나들을 통해 상기 송신기로부터 상기 수신기로 트레이닝 수열을 전송하는 단계; 및
(c) 상기 수신기에서 상기 수신된 트레이닝 수열에 기초하여 비용 함수를 최소화시키는 최적의 송신 가중 백터(transmit weight vector)의 인덱스를 상기 송신기로 전송하는 단계를 포함하며,
상기 (a) 단계는, q(q: 상기 레벨의 인덱스) 번째 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들이 q+1 번째 레벨에서 선택된 안테나들에 의해 형성된 빔 패턴들을 포함하도록 안테나들을 선택하는 단계를 포함하는 빔 포밍 방법. - 제6항에 있어서,
상기 (a) 단계는, q번째 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들 중 어느 하나의 빔 패턴이 q+1번째 레벨에서 선택된 안테나들에 의해 형성되는 빔 패턴들 중 2 개의 빔 패턴들의 합과 동일하도록 안테나들을 선택하는 단계를 포함하는 빔 포밍 방법. - 제6항에 있어서,
상기 다수의 안테나들은,
상기 송신기와 상기 수신기 각각에 대하여, 균일하게 공간적으로 선형 배치된 안테나 어레이(uniformly spaced linear antenna array)를 포함하는 빔 포밍 방법. - 제7항에 있어서,
상기 (a) 단계에서,
각 레벨에서 2q개의 안테나가 선택되며,
각 레벨에서 선택되는 안테나들 사이의 간격(D)은 다음의 수학식:
D = 2n-(q+1) λ
에 의하며, q은 레벨의 인덱스를, n은 총 레벨의 수, λ는 반송파의 파장의 길이인 심볼 빔 포밍 방법. - 제6항에 있어서,
상기 (b) 단계는,
상기 송신기는 각 레벨에서 상기 트레이닝 수열을 2 방향으로 전송하되, 각 방향에 대해서 동일한 트레이닝 수열을 각각 2번씩 상기 수신기로 전송하는 단계를 포함하는 빔 포밍 방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110011050A KR101197867B1 (ko) | 2011-02-08 | 2011-02-08 | 빔 포밍 방법 및 이를 이용한 다중 안테나 시스템 |
US13/165,266 US8583055B2 (en) | 2011-02-08 | 2011-06-21 | Beam forming method and multiple antenna system using the same |
CN201110182655.1A CN102629883B (zh) | 2011-02-08 | 2011-06-30 | 波束成形方法和使用该方法的多天线系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110011050A KR101197867B1 (ko) | 2011-02-08 | 2011-02-08 | 빔 포밍 방법 및 이를 이용한 다중 안테나 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120090562A true KR20120090562A (ko) | 2012-08-17 |
KR101197867B1 KR101197867B1 (ko) | 2012-11-05 |
Family
ID=46588050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110011050A KR101197867B1 (ko) | 2011-02-08 | 2011-02-08 | 빔 포밍 방법 및 이를 이용한 다중 안테나 시스템 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8583055B2 (ko) |
KR (1) | KR101197867B1 (ko) |
CN (1) | CN102629883B (ko) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11316688B2 (en) | 2006-12-29 | 2022-04-26 | Kip Prod P1 Lp | Multi-services application gateway and system employing the same |
US9602880B2 (en) | 2006-12-29 | 2017-03-21 | Kip Prod P1 Lp | Display inserts, overlays, and graphical user interfaces for multimedia systems |
US11783925B2 (en) | 2006-12-29 | 2023-10-10 | Kip Prod P1 Lp | Multi-services application gateway and system employing the same |
US9569587B2 (en) | 2006-12-29 | 2017-02-14 | Kip Prod Pi Lp | Multi-services application gateway and system employing the same |
US20170344703A1 (en) | 2006-12-29 | 2017-11-30 | Kip Prod P1 Lp | Multi-services application gateway and system employing the same |
WO2008085205A2 (en) | 2006-12-29 | 2008-07-17 | Prodea Systems, Inc. | System and method for providing network support services and premises gateway support infrastructure |
JP5923786B2 (ja) * | 2012-03-16 | 2016-05-25 | シャープ株式会社 | 基地局装置及び通信方法 |
US10396880B2 (en) * | 2014-02-06 | 2019-08-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Beam-forming selection |
WO2016184214A1 (en) * | 2015-05-20 | 2016-11-24 | Mediatek Inc. | Methods for efficient beam training and communications apparatus and network control device utilizing the same |
WO2017111883A1 (en) * | 2015-12-21 | 2017-06-29 | Intel IP Corporation | Methods for communication and communication devices |
WO2017129225A1 (en) * | 2016-01-25 | 2017-08-03 | Telefonaktiebolaget Lm Ericsson (Publ) | A method and a network node for muting antenna elements of an active antenna system |
CN107800467A (zh) * | 2016-09-05 | 2018-03-13 | 株式会社Ntt都科摩 | 波束选择方法及装置 |
CN114902782A (zh) * | 2020-01-10 | 2022-08-12 | 索尼集团公司 | 通信设备和通信方法 |
CN113013583B (zh) * | 2021-01-29 | 2023-08-18 | 中国电子科技集团公司第三十八研究所 | 毫米波雷达封装模组 |
CN114614240B (zh) * | 2022-03-14 | 2022-11-08 | 湖南澳德信息科技有限公司 | 一种应用于导航卫星的智能天线系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100957354B1 (ko) * | 2003-11-10 | 2010-05-12 | 삼성전자주식회사 | 스마트 안테나 시스템에서 순방향 빔 형성 장치 및 방법 |
KR20060081194A (ko) | 2005-01-07 | 2006-07-12 | 삼성전자주식회사 | 다중 안테나 시스템에서 섹터 구성 장치 및 방법 |
US8165595B2 (en) | 2008-01-25 | 2012-04-24 | Samsung Electronics Co., Ltd. | System and method for multi-stage antenna training of beamforming vectors |
US8351521B2 (en) * | 2008-03-17 | 2013-01-08 | Qualcomm Incorporated | Multi-resolution beamforming based on codebooks in MIMO systems |
EP2211483B1 (en) * | 2009-01-23 | 2016-05-25 | Sony Corporation | Iterative beam selection method with receiver and transmitter diversity |
-
2011
- 2011-02-08 KR KR1020110011050A patent/KR101197867B1/ko active IP Right Grant
- 2011-06-21 US US13/165,266 patent/US8583055B2/en active Active
- 2011-06-30 CN CN201110182655.1A patent/CN102629883B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20120200459A1 (en) | 2012-08-09 |
CN102629883B (zh) | 2014-10-01 |
US8583055B2 (en) | 2013-11-12 |
KR101197867B1 (ko) | 2012-11-05 |
CN102629883A (zh) | 2012-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101197867B1 (ko) | 빔 포밍 방법 및 이를 이용한 다중 안테나 시스템 | |
US10333602B2 (en) | Apparatus and method for selecting beam in wireless communication system | |
KR102100462B1 (ko) | 밀리미터파 시스템에서 채널 미세 조정 및 다중 스트림 전송을 지원하기 위한 방법 및 장치 | |
CA2968202C (en) | Efficient beam scanning for high-frequency wireless networks | |
US9591645B2 (en) | Method and apparatus for operating control channels for beamforming-based wireless communication | |
KR102193357B1 (ko) | 무선 통신 시스템의 하이브리드 프리코딩 제공 방법 및 그 전자 장치 | |
Tsang et al. | Coding the beams: Improving beamforming training in mmwave communication system | |
US10305660B2 (en) | Method and apparatus for allocating wireless resources | |
US10250303B2 (en) | System and selecting method for flexible allocations of antenna sub-arrays in multiple input multiple output systems | |
US9853702B1 (en) | Methods for channel estimation in OFDMA based hybrid beamforming (HBF) systems | |
US10742274B2 (en) | Radio communication device | |
US11838079B2 (en) | MIMO systems | |
KR101772040B1 (ko) | 이동통신 시스템에서 빠른 빔 링크 형성을 위한 방법 및 장치 | |
US20140003481A1 (en) | Method for determining beamforming parameters in a wireless communication system and to a wireless communication system | |
US20130172002A1 (en) | Beamforming method and apparatus for acquiring transmission beam diversity in a wireless communication system | |
Blandino et al. | Multi-user hybrid MIMO at 60 GHz using 16-antenna transmitters | |
KR20150114855A (ko) | 무선 통신 시스템에서 단일 스트림 다중 빔 송수신 방법 및 장치 | |
CN114039636B (zh) | 网络设备、波束成形方法及无线通信系统 | |
CN114039638A (zh) | 一种混合波束成形器与模数转换器联合设计方法 | |
EP4057517A1 (en) | Antenna transceiver module, multi-input multi-output antenna transceiver system, and base station | |
JP4260653B2 (ja) | 空間多重伝送用送信装置 | |
Gheorghe et al. | Massive MIMO technology for 5G adaptive networks | |
KR101539533B1 (ko) | 다중 안테나/반송파 시스템을 위한 증폭 후 전달 릴레이 방법 및 장치 | |
US11588528B2 (en) | Optimal hybrid beamformer in a multi antenna wireless systems | |
KR20240128340A (ko) | Miso 시스템에서 하이브리드 프리코딩 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20151005 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20161004 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20171011 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20181002 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20191001 Year of fee payment: 8 |