KR20120062073A - Preparation of chalcopyrite type complex and its composition - Google Patents

Preparation of chalcopyrite type complex and its composition Download PDF

Info

Publication number
KR20120062073A
KR20120062073A KR1020100123163A KR20100123163A KR20120062073A KR 20120062073 A KR20120062073 A KR 20120062073A KR 1020100123163 A KR1020100123163 A KR 1020100123163A KR 20100123163 A KR20100123163 A KR 20100123163A KR 20120062073 A KR20120062073 A KR 20120062073A
Authority
KR
South Korea
Prior art keywords
group
compound
compounds
elements
chalcopyrite
Prior art date
Application number
KR1020100123163A
Other languages
Korean (ko)
Inventor
이동현
고병선
유홍
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to KR1020100123163A priority Critical patent/KR20120062073A/en
Publication of KR20120062073A publication Critical patent/KR20120062073A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/006Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE: A method for manufacturing chalcopyrite type compounds and the chalcopyrite type compounds manufactured by the same are provided to obtain the chalcopyrite type compounds without a reducing gas or a reducing agent. CONSTITUTION: Copper(II) formate, the element of the first group, is mixed with the element of a third group and the element of the sixth group or with the element of the second group to the fourth group and the element of the sixth group in a solvent to acquire ink. The ink is thermally treated to acquire powder at a temperature between 200 and 400 degrees Celsius. The solvent is one or the mixture of water, triethyl amine, dimethyl formamide, ethylene glycol, and triglycerol. The element of the third group is indium or an indium compound or is gallium or a gallium compound. The element of the sixth group is selenium or a selenium compound or is sulfur or a sulfur compound. The element of the second group is zinc or a zinc compound. The element of the fourth group is tin or a tin compound.

Description

찰코파이라이트형 화합물의 제조 방법 및 이 방법에 의해 제조된 찰코파이라이트형 화합물 {Preparation of Chalcopyrite type complex and its composition}Method for preparing a chalcopyrite compound and a chalcopyrite compound prepared by the method {Preparation of Chalcopyrite type complex and its composition}

본 발명은 태양광의 광흡수층 물질로 광범위하게 사용되는 찰코파이라이트형 화합물을 제조하는 방법 및 이 방법에 의해 제조된 찰코파이라이트형 화합물에 관한 것이다.
The present invention relates to a method for producing a chalcopyritic compound which is widely used as a light absorbing layer material of sunlight, and a chalcopyritic compound produced by the method.

최근 환경 문제와 천연자원의 고갈에 대한 관심이 높아지면서, 환경오염에 대한 문제가 없으며 에너지 효율이 높은 대체 에너지로서의 태양전지에 대한 관심이 높아지고 있다. Recently, with increasing interest in environmental problems and depletion of natural resources, there is no concern for environmental pollution and interest in solar cells as alternative energy with high energy efficiency is increasing.

태양전지는 구성성분에 따라 실리콘 반도체 태양전지, 화합물 반도체 태양전지, 적층형 태양전지 등으로 분류되며, CI(G)S 광 흡수층을 포함하는 태양전지는 찰코파이라이트(Chalcopyrite)계 화합물 반도체 태양전지의 분류에 속한다. Solar cells are classified into silicon semiconductor solar cells, compound semiconductor solar cells, and stacked solar cells according to their constituents. The solar cells including the CI (G) S light absorbing layer are composed of chalcopyrite compound semiconductor solar cells. Belongs to the category.

찰코파이라이트형 화합물은 구성 성분에 따라 1-3-6족인 CuSe, CuInSe2, CuGaSe2, Cu(In,Ga)Se2, CuInS2, CuGaS2, Cu(In,Ga)S2, CuIn(Se,S)2, CuGa(Se,S)2, Cu(In,Ga)(Se,S)2와 1-2-(4)-6족인 CuAlSe2, CuFeSe2, Cu2CdSe4, Cu2CdSnSe4, Cu2ZnSnSe4 등으로 나뉜다.Chalcopyritic compounds may be composed of CuSe, CuInSe 2 , CuGaSe 2 , Cu (In, Ga) Se 2 , CuInS 2 , CuGaS 2 , Cu (In, Ga) S 2 , CuIn ( Se, S) 2 , CuGa (Se, S) 2 , Cu (In, Ga) (Se, S) 2 and CuAlSe 2 , CuFeSe 2 , Cu 2 CdSe 4 , Cu 2 CdSnSe 4 , Cu 2 ZnSnSe 4 and the like.

대표적인 1-3-6족 찰코파이라이트형 화합물 반도체인 CI(G)S는 1 eV 이상의 직접 천이형 에너지 밴드갭을 가지고 있고, 반도체 중에서 가장 높은 광 흡수 계수(1ㅧ105cm-1)를 가질 뿐만 아니라 전기 광학적으로 매우 안정하여 태양전지의 광흡수층으로 매우 이상적인 소재로 알려져 있다.CI (G) S, a typical group 1-3-6 chalcopyrite compound semiconductor, has a direct transition energy bandgap of 1 eV or more, and has the highest light absorption coefficient (1 (10 5 cm -1 ) among semiconductors. In addition to having a very stable electro-optical, it is known as a very ideal material for the light absorption layer of the solar cell.

CI(G)S계 태양전지는 수 마이크론 두께의 박막으로 태양전지를 만드는데, 그 제조 방법으로는 여러 가지 물리 화학적인 박막 제조방법이 시도되고 있다. CI (G) S-based solar cells make a solar cell with a thin film of a few microns thick, various physicochemical thin film manufacturing methods have been attempted as the manufacturing method.

대표적인 방법으로서, 미국 특허등록 제4,523,051호에 개시되어 있는 바와 같이 진공 하에서 Cu, In, Ga 및 Se를 공증착(co-evaporation)하는 방법에 의해 고효율의 흡수층을 제조하는 방법이 알려져 있다. 그러나, 이 특허문헌에 개시되어 있는 방법은 흡수층을 대면적으로 제조하는 경우에 균일성이 떨어지고 진공 공정에 의한 흡수층의 형성이 고효율의 CI(G)S 박막 태양전지를 제조하는데 유리하나, 정교한 진공장비와 같은 막대한 초기설비 투자가 필요하며, 재료 사용 효율이 낮아서 저가격화하기에는 한계가 있다.As a representative method, as disclosed in US Patent No. 4,523,051, a method of producing an absorbent layer of high efficiency by co-evaporation of Cu, In, Ga, and Se under vacuum is known. However, the method disclosed in this patent document is inferior in uniformity when manufacturing the absorbing layer to a large area, and the formation of the absorbing layer by the vacuum process is advantageous for producing a highly efficient CI (G) S thin film solar cell. It requires huge initial investment such as equipment, and there is a limit to lower the price due to low material use efficiency.

또 다른 방법으로서, 스퍼터링(sputtering) 또는 증착 등의 방법으로 Cu, In, Ga 막을 형성한 후, 이를 Se이나 H2Se 분위기 하에서 셀렌화(Selenization)하여 대면적의 흡수층을 균일하게 제조하는 방법이 알려져 있다[참고문헌: Solar Energy 2004, Vol 77, pp749-756]. 그러나, 이러한 방법은 공정 시간이 매우 길어서 실질적으로 대량 생산에 적용하기 어렵고 제조 공정이 복잡하여 제조 원가 측면에서 불리하다.As another method, a method of forming a Cu, In, and Ga film by sputtering or vapor deposition, and then selenizing the same in a Se or H 2 Se atmosphere to uniformly prepare a large area absorbent layer is disclosed. Known [Ref. Solar Energy 2004, Vol 77, pp749-756]. However, this method has a very long process time, which is difficult to apply to mass production substantially and the manufacturing process is complicated, which is disadvantageous in terms of manufacturing cost.

최근에는 제조 원가를 줄이기 위해 비진공 방법으로 Cu2Se와 In2Se3 전구체를 제작하여 열처리하여 CIS 박막을 제조하거나[미국 특허공개번호 제2009-0280598호 참조] 프린팅(printing) 방식을 사용해서 CI(G)S 박막을 형성시키는 방법이 소개되었다[미국 특허등록 제6,127,202호 참조]. 그러나, 전구체(precursor)를 사용하여 구리인듐산화물(Copper Indium oxide) 박막을 형성한 후, 이를 환원시키고 셀렌화하는 방법은 먼저 구리인듐산화물을 형성한 후 셀렌화 박막을 형성하기 때문에 CI(G)S 박막의 표면 균일성이 떨어지는 문제점이 있고, 셀렌화 단계에서 셀렌화수소(H2Se) 기체를 사용하기 때문에 유독성이 있을 뿐만 아니라 여전히 표면의 균일성과 입자의 균일성을 만족시키지 못하는 문제점이 있다.Recently, Cu 2 Se and In 2 Se 3 precursors were manufactured by heat treatment using non-vacuum methods to reduce manufacturing costs, and thus CIS thin films were prepared (see US Patent Publication No. 2009-0280598). A method of forming a CI (G) S thin film has been introduced (see US Pat. No. 6,127,202). However, a method of forming a copper indium oxide thin film using a precursor, and then reducing and selenizing the copper indium oxide first forms a copper indium oxide and then forms a selenide thin film, thus, CI (G). There is a problem in that the surface uniformity of the S thin film is inferior, and because it uses hydrogen selenide (H 2 Se) gas in the selenization step, it is not only toxic but still does not satisfy the uniformity of the surface and uniformity of the particles.

또한, 종래 기술에서 구리, 인듐, 갈륨 및 셀레늄을 포함하는 잉크에 에틸셀룰로오스 바인더를 첨가하여 점성을 이용한 문헌이 공지되었으나[참조예: Journal of Crystal Growth 2009, Vol 311, pp2621-2625], 이는 환원 과정과 열처리 과정 중에 바인더에서 유래한 탄소 잔유물이 충분히 제거되지 않아 상업적 활용에 어려움이 있다.In addition, in the prior art, a literature using viscosity by adding an ethyl cellulose binder to an ink containing copper, indium, gallium, and selenium is known (see, for example, Journal of Crystal Growth 2009, Vol 311, pp2621-2625). Carbon residues derived from the binder are not sufficiently removed during the process and the heat treatment process, making it difficult to commercially use.

근래에는, 박막태양전지 제조 기술의 연장선상에 있는 1-2-(4)-6족 찰코파이라이트형 화합물 반도체인 CZTS 제조 기술[Adv. Mater. 2010, 22, E156-E159]에도 주목을 하고 있다. CZTS 박막태양전지의 최대 장점은 CdTe(카드뮴 텔룰라이드)나 CI(G)S의 기존 고효율 박막태양전지에 비해 원료비나 환경오염에 대한 부담이 적다는 것이다. CZTS의 원료인 구리, 아연, 주석, 황 등은 비교적 흔한 광물인데다 높은 열을 받으면 독성을 나타내는 카드뮴처럼 환경을 오염시키지도 않기 때문이다. 그러나 폭발성이 강하고 유독성이 있는 하이드라진을 용매로 사용하는 단점을 가지고 있다.
In recent years, CZTS manufacturing technology, which is a 1-2- (4) -6 group chalcopyrite compound semiconductor, which is an extension of the thin film solar cell manufacturing technology [Adv. Mater. 2010, 22, E156-E159]. The biggest advantage of CZTS thin film solar cell is that it has less burden on raw material cost or environmental pollution than CdTe (cadmium telluride) or CI (G) S existing high efficiency thin film solar cell. Copper, zinc, tin and sulfur, which are the raw materials of CZTS, are relatively common minerals and do not pollute the environment like cadmium, which is toxic when subjected to high heat. However, it has the disadvantage of using a highly explosive and toxic hydrazine as a solvent.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 친환경환적이고 안전하며, 제조비용이 적은 찰코파이라이트형 화합물(예, CIS, CZTS 등)을 제조하는 신규한 방법을 제공하는 데에 있다.
The present invention has been made to solve the problems of the prior art as described above, the object of the present invention is an environmentally friendly, safe, low manufacturing cost of chalcopyrite-type compounds (eg, CIS, CZTS, etc.) to produce a novel To provide a way.

상기 및 그 밖의 목적을 달성하기 위하여, 본 발명은 환원제가 첨가된 구리(II) 포르메이트 착체에 친환경적이고 안전한 용매인 예를 들어 물, 디메틸포름아미드, 트리에탄올아민 등의 친수성 용매를 사용하여 3-6족 원소 및 2-(4)-6족 원소를 첨가한 잉크를 제조하는 공정을 포함하여 환원 과정 없이 찰코파이라이트형 화합물(CIS, CZTS)을 제조할 수 있는 방법을 제공한다.In order to achieve the above and other objects, the present invention is an environmentally friendly and safe solvent for the copper (II) formate complex to which the reducing agent is added, for example, using a hydrophilic solvent such as water, dimethylformamide, triethanolamine, etc. Provided is a method for preparing a chalcopyrite compound (CIS, CZTS) without a reduction process, including a process of preparing an ink containing a Group 6 element and a 2- (4) -6 element.

보다 구체적으로, 본 발명은,More specifically, the present invention,

(a) 1족 원소인 구리(II) 포르메이트에 3족 원소 및 6족 원소 또는 2족-(4족) 원소 및 6족 원소를 용매와 함께 일정비율로 혼합하여 잉크를 생성시키는 단계; 및(a) mixing the Group 3 and Group 6 elements or the Group 2-(Group 4) elements and the Group 6 elements with copper (II) formate, which is a Group 1 element, together with a solvent to produce an ink; And

(b) 상기 단계 (a)로부터 수득된 잉크를 열처리하여 파우더를 수득하는 단계를 포함하는 것을 특징으로 하는 찰코파이라이트형 화합물의 제조방법을 제공한다.(b) heat-treating the ink obtained from step (a) to provide a method for producing a chalcopyritic compound, comprising the step of obtaining a powder.

본 발명에서 사용되는 구리(II) 포르메이트에서 구리(II) 포르메이트의 포르메이트 리간드가 고온에서 분해되면 전자를 내놓게 되며, 이로써 3-6족 및 2-(4)-6족 원소들이 H2/N2 가스 처리 등의 별도의 환원 과정 없이 금속으로 환원될 수 있게 도와준다. In the copper (II) formate used in the present invention, when the formate ligand of the copper (II) formate is decomposed at high temperature, electrons are released, whereby the Group 3-6 and 2- (4) -6 elements are H 2. / N 2 helps to reduce to metal without additional reduction process such as gas treatment.

뿐만 아니라, 본 발명에서 환원제가 첨가된 구리(II) 포르메이트의 사용으로 친환경적이고 안전한 용매인 예를 들어 물, 디메틸포름아미드, 트리에탄올아민 등의 친수성 용매의 사용을 가능하게 한다.In addition, the use of a copper (II) formate added with a reducing agent in the present invention enables the use of a hydrophilic solvent such as water, dimethylformamide, triethanolamine, etc., which are environmentally friendly and safe solvents.

상기 단계 (a)에서 사용될 수 있는 3족 원소로는 인듐 또는 인듐 화합물, 또는 갈륨 또는 갈륨 화합물이 있으며, 6족 원소로는 셀레늄 또는 셀레늄 화합물, 또는 황 또는 황 화합물이 있다.Group 3 elements that can be used in step (a) include indium or indium compounds, or gallium or gallium compounds, and Group 6 elements include selenium or selenium compounds, or sulfur or sulfur compounds.

이 경우, 상기 단계 (b)로부터는 CuInSe2, CuGaSe2, Cu(In,Ga)Se2, CuInS2, CuGaS2, Cu(In,Ga)S2, CuIn(Se,S)2, CuGa(Se,S)2 및 Cu(In,Ga)(Se,S)2 구조를 갖는 화합물이 생성된다.In this case, from step (b), CuInSe 2 , CuGaSe 2 , Cu (In, Ga) Se 2 , CuInS 2 , CuGaS 2 , Cu (In, Ga) S 2 , CuIn (Se, S) 2 , CuGa ( A compound having Se, S) 2 and Cu (In, Ga) (Se, S) 2 structures is produced.

또한, 상기 단계 (a)에서 사용되는 1-3-6족 또는 1-2-(4)-6족의 혼합비는 제한되지 않지만, 특히 바람직한 혼합비는 약 1 : 1 : 2 이며, 이러한 혼합비 자체는 당해기술분야에 널리 공지되어 있는 비이다.In addition, the mixing ratio of Groups 1-3-6 or 1-2- (4) -6 used in step (a) is not limited, but a particularly preferable mixing ratio is about 1: 1: 1, and this mixing ratio itself is It is a ratio well known in the art.

상기 단계 (a)에서 사용되는 2족 원소로는 아연 또는 아연 화합물이 있고, 4족 원소로는 주석 또는 주석 화합물이 있으며, 6족 원소로는 셀레늄 또는 셀레늄 화합물, 또는 황 또는 황 화합물이 있다.Group 2 elements used in step (a) include zinc or zinc compounds, group 4 elements include tin or tin compounds, and group 6 elements include selenium or selenium compounds, or sulfur or sulfur compounds.

이 경우, 상기 단계 (b)로부터는 CuAlSe2, CuFeSe2, Cu2CdSe4, Cu2CdSnSe4, Cu2ZnSnSe4 구조를 갖는 화합물이 생성된다. In this case, a compound having CuAlSe 2 , CuFeSe 2 , Cu 2 CdSe 4 , Cu 2 CdSnSe 4 , and Cu 2 ZnSnSe 4 structures is produced from step (b).

상기 단계 (b)에서는 상기한 바와 같이 열처리가 수행되며, 이때 질소 분위기 하에서 30분 내지 60분 동안 200℃ 내지 400℃ 범위의 온도에서 수행되는 것이 바람직하다.
In step (b), the heat treatment is carried out as described above, wherein it is preferably carried out at a temperature in the range of 200 ° C. to 400 ° C. for 30 to 60 minutes under a nitrogen atmosphere.

본 발명에 의하면, 종래의 진공방식의 찰코파이라이트형 화합물 제조 방법보다 공정설계 비용이 감소하고 공정이 간단하며, 유해가스가 발생하지 않기 때문에 친환경적이며, 특히, 환원가스(H2/N2) 또는 환원제가 필요 없이 찰코파이라이트 형 화합물을 제조할 수 있다.
According to the present invention, the process design cost is reduced and the process is simpler than the conventional method of preparing the chalcopyrite compound of the vacuum method, and it is environmentally friendly because no harmful gas is generated, in particular, reducing gas (H 2 / N 2 ). Alternatively, the chalcobilite type compound can be prepared without the need for a reducing agent.

도 1은 본 발명의 실시예 2에 따라 제조된 CIS 결정의 입자 특성을 XRD로 관찰한 결과를 나타낸 그래프이다.
도 2은 본 발명의 실시예 3에 따라 제조된 CIS 결정의 입자 특성을 XRD로 관찰한 결과를 나타낸 그래프이다.
도 3 는 본 발명의 실시예 4에 따라 제조된 CZTS 결정의 입자 특성을 XRD로 관찰한 결과를 나타낸 그래프이다.
1 is a graph showing the results of observing the particle characteristics of the CIS crystals prepared according to Example 2 of the present invention by XRD.
2 is a graph showing the results of observing the particle characteristics of the CIS crystals prepared according to Example 3 of the present invention by XRD.
3 is a graph showing the results of observing the particle characteristics of the CZTS crystal prepared according to Example 4 of the present invention by XRD.

이하, 본 발명을 하기의 실시예에 의거하여 좀 더 상세히 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시적으로 설명하기 위한 것일 뿐 본 발명이 하기 실시예로 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only intended to illustrate the present invention, but the present invention is not limited to the following examples.

실시예Example 1 One

CuSeCuse 의 제조Manufacture

물 10ml에 구리(II) 포르메이트 0.8g, 염화셀레늄 1.2g을 교반기가 설치된 반응기에 넣고 상온에서 30분 동안 교반시켜 잉크를 제조하였다. 그런 다음, 제조한 잉크를 질소 분위기 하에 400℃에서 30분 동안 열처리하여 검회색 파우더 형태의 CuSe 결정 0.76g을 수득하였다.0.8 g of copper (II) formate and 1.2 g of selenium chloride were added to 10 ml of water in a reactor equipped with a stirrer, and stirred at room temperature for 30 minutes to prepare an ink. Then, the prepared ink was heat-treated at 400 ° C. for 30 minutes under a nitrogen atmosphere to obtain 0.76 g of CuSe crystals in the form of a dark gray powder.

실시예Example 2 2

CISCIS 광흡수층의Light absorption layer 제조 Produce

물 10ml에 구리(II) 포르메이트 0.51g, 질산인듐 1g 및 염화셀레늄 1.46g을 교반기가 설치된 반응기에 넣고 상온에서 30분 동안 교반시켜 잉크를 제조하였다. 그런 다음, 제조된 잉크를 질소 분위기 하에 400℃에서 30분 동안 열처리하여 검회색 파우더 형태의 CIS 결정 1.1g을 수득하였다. 이렇게 제조된 CIS 결정은 XRD를 통하여 관찰하였다. 결과는 도 1에 제시하였다.0.51 g of copper (II) formate, 1 g of indium nitrate, and 1.46 g of selenium chloride were added to 10 ml of water, and the mixture was stirred at room temperature for 30 minutes to prepare an ink. Then, the prepared ink was heat-treated at 400 ° C. for 30 minutes under a nitrogen atmosphere to obtain 1.1 g of CIS crystals in the form of a dark gray powder. The CIS crystals thus prepared were observed through XRD. The results are shown in FIG.

실시예Example 3 3

CISCIS 광흡수층의Light absorption layer 제조 Produce

트리에탄올아민 10ml에 구리(II) 포르메이트 1g, 인듐아세테이트 1.9g 및 지오요소 1g을 교반기가 설치된 반응기에 넣고 상온에서 30분 동안 교반시켜 잉크를 제조하였다. 그런 다음, 제조된 잉크를 질소 분위기 하에 400℃에서 30분 동안 열처리하여 검회색 파우더 형태의 CIS 결정 1.5g을 수득하였다. 결과는 도 2에 제시하였다.1 g of copper (II) formate, 1.9 g of indium acetate and 1 g of geourea were placed in a reactor equipped with a stirrer and stirred at room temperature for 30 minutes in 10 ml of triethanolamine to prepare an ink. Then, the prepared ink was heat-treated at 400 ° C. for 30 minutes under a nitrogen atmosphere to obtain 1.5 g of CIS crystals in the form of a dark gray powder. The results are shown in FIG.

실시예Example 4 4

CZTSCZTS 광흡수층의Light absorption layer 제조 Produce

물 10ml에 구리(II) 포르메이트 0.78g, 질산아연 0.68g 및 플르오린화주석 0.24g, 지오요소(tiourea) 0.78g를 교반기가 설치된 반응기에 넣고 상온에서 30분 동안 교반시켜 잉크를 제조하였다. 그런 다음, 제조된 잉크를 400℃에서 30분 동안 열처리 (질소분위기)하여 검회색의 파우더 형태의 CZTS 결정 1.04g을 수득하였다. 이렇게 제조된 CZTS 결정은 XRD를 통하여 관찰하였다. 결과는 도 3에 제시하였다.0.78 g of copper (II) formate, 0.68 g of zinc nitrate, 0.24 g of tin fluoride, and 0.78 g of tiourea were added to 10 ml of water, and stirred for 30 minutes at room temperature to prepare an ink. Then, the prepared ink was heat-treated (nitrogen atmosphere) at 400 ° C. for 30 minutes to obtain 1.04 g of CZTS crystals in the form of a dark gray powder. The CZTS crystals thus prepared were observed through XRD. The results are shown in FIG.

이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. It can be understood that it is possible.

Claims (8)

(a) 1족 원소인 구리(II) 포르메이트에 3족 원소 및 6족 원소 또는 2족-(4족) 원소 및 6족 원소를 용매와 함께 일정비율로 혼합하여 잉크를 생성시키는 단계; 및
(b) 상기 단계 (a)로부터 수득된 잉크를 열처리하여 파우더를 수득하는 단계;
를 포함하는 것을 특징으로 하는 찰코파이라이트(Chalcopyrite)형 화합물의 제조방법.
(a) mixing the Group 3 and Group 6 elements or the Group 2-(Group 4) elements and the Group 6 elements with copper (II) formate, which is a Group 1 element, together with a solvent to produce an ink; And
(b) heat treating the ink obtained from step (a) to obtain a powder;
Method for producing a chalcopyrite (Chalcopyrite) type compound comprising a.
제 1항에 있어서,
상기 단계 (a)에서 사용되는 용매는 물 또는 트리에틸아민, 디메틸포름아미드 디에탄올아민, 에틸렌글리콜 및 트리글리세롤로 구성된 군으로부터 선택되는 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 찰코파이라이트형 화합물의 제조방법.
The method of claim 1,
The solvent used in step (a) is water or triethylamine, dimethylformamide diethanolamine, chalcopyrite compound, characterized in that any one or a mixture thereof selected from the group consisting of ethylene glycol and triglycerol Manufacturing method.
제 1항 또는 제 2항에 있어서,
상기 단계 (a)에서 사용되는 3족 원소는 인듐 또는 인듐 화합물, 또는 갈륨 또는 갈륨 화합물이고, 6족 원소는 셀레늄 또는 셀레늄 화합물, 또는 황 또는 황 화합물이며,
상기 단계 (b)로부터 생성되는 생성물질은 CuInSe2, CuGaSe2, Cu(In,Ga)Se2, CuInS2, CuGaS2, Cu(In,Ga)S2, CuIn(Se,S)2, CuGa(Se,S)2 및 Cu(In,Ga)(Se,S)2 구조를 갖는 화합물로부터 선택되는 것을 특징으로 하는 찰코파이라이트형 화합물의 제조방법.
3. The method according to claim 1 or 2,
Group 3 elements used in step (a) are indium or indium compounds, or gallium or gallium compounds, Group 6 elements are selenium or selenium compounds, or sulfur or sulfur compounds,
The material produced from step (b) is CuInSe 2 , CuGaSe 2 , Cu (In, Ga) Se 2 , CuInS 2 , CuGaS 2 , Cu (In, Ga) S 2 , CuIn (Se, S) 2 , CuGa A method for producing a chalcopyritic compound, characterized in that it is selected from compounds having (Se, S) 2 and Cu (In, Ga) (Se, S) 2 structures.
제 1항 또는 제 2항에 있어서,
상기 단계 (a)에서 사용되는 2족 원소는 아연 또는 아연 화합물이고, 4족 원소는 주석 또는 주석 화합물이며, 6족 원소는 셀레늄 또는 셀레늄 화합물, 또는 황 또는 황 화합물이며,
상기 단계 (b)로부터 생성되는 생성물질은 CuAlSe2, CuFeSe2, Cu2CdSe4, Cu2CdSnSe4, Cu2ZnSnSe4 구조를 갖는 화합물로부터 선택되는 것을 특징으로 하는 찰코파이라이트 형 화합물의 제조방법.
3. The method according to claim 1 or 2,
Group 2 elements used in step (a) are zinc or zinc compounds, Group 4 elements are tin or tin compounds, Group 6 elements are selenium or selenium compounds, or sulfur or sulfur compounds,
The product produced from step (b) is a method for producing a chalcopyritic compound, characterized in that selected from the compound having a structure of CuAlSe 2 , CuFeSe 2 , Cu 2 CdSe 4 , Cu 2 CdSnSe 4 , Cu 2 ZnSnSe 4 .
제 1항 또는 제 2항에 있어서,
상기 단계 (b)에서의 열처리는 200℃ 내지 400℃ 범위의 온도에서 수행되는 것을 특징으로 하는 찰코파이라이트형 화합물의 제조방법.
3. The method according to claim 1 or 2,
The heat treatment in step (b) is a method for producing a chalcopyrite compound, characterized in that carried out at a temperature in the range of 200 ℃ to 400 ℃.
제 4항에 있어서,
상기 단계 (b)에서의 열처리는 질소 분위기 하에서 30분 내지 60분 동안 수행되는 것을 특징으로 하는 찰코파이라이트형 화합물의 제조방법.
The method of claim 4, wherein
The heat treatment in step (b) is a method for producing a chalcopyrite compound, characterized in that carried out for 30 to 60 minutes in a nitrogen atmosphere.
제 1항 또는 제 2항에 있어서,
상기 단계 (a)에서 사용되는 1-3-6족 또는 1-2-(4)-6족 원소의 혼합비가 1 : 1 : 2인 것을 특징으로 하는 찰코파이라이트형 화합물의 제조방법.
3. The method according to claim 1 or 2,
Method for producing a chalcopyritic compound, characterized in that the mixing ratio of the group 1-3-6 or group 1-2- (4) -6 used in step (a) is 1: 1: 2.
제 1항 내지 제 7항 중의 어느 한 항에 따라 제조된 찰코파이라이트형 화합물.Chalcopyritic compound prepared according to any one of claims 1 to 7.
KR1020100123163A 2010-12-06 2010-12-06 Preparation of chalcopyrite type complex and its composition KR20120062073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100123163A KR20120062073A (en) 2010-12-06 2010-12-06 Preparation of chalcopyrite type complex and its composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100123163A KR20120062073A (en) 2010-12-06 2010-12-06 Preparation of chalcopyrite type complex and its composition

Publications (1)

Publication Number Publication Date
KR20120062073A true KR20120062073A (en) 2012-06-14

Family

ID=46683117

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100123163A KR20120062073A (en) 2010-12-06 2010-12-06 Preparation of chalcopyrite type complex and its composition

Country Status (1)

Country Link
KR (1) KR20120062073A (en)

Similar Documents

Publication Publication Date Title
KR101129194B1 (en) Preparation method for cis-based compound thin film with high density and preparation method for thin film solarcell manufactured by using the cis-based compound thin film
WO2012023519A1 (en) Ink for production of compound semiconductor thin film, compound semiconductor thin film produced using the ink, solar cell equipped with the compound semiconductor thin film, and process for production of the solar cell
Zhao et al. Effect of Ag doping on the performance of Cu2SnS3 thin-film solar cells
JP2011146594A (en) Buffer layer for photoelectric element, method of manufacturing the same, and photoelectric element
KR101865239B1 (en) Cigs nanoparticle ink formulation having a high crack-free limit
KR20130084824A (en) Fabrication of czts or cztse thin film for solar cells using paste or ink
JP5874645B2 (en) Compound semiconductor thin film solar cell and method for manufacturing the same
Kim et al. Narrow-bandgap Cu2Sn1− xGexSe3 thin film solar cells
US20140144510A1 (en) Photoelectric conversion element and solar cell
WO2012161402A1 (en) Method of manufacturing cis-based thin film having high density
Wei et al. An investigation on phase transition for as-sputtered Cu2ZnSnSe4 absorbers during selenization
CN107134507B (en) Preparation method of copper indium sulfur selenium film with gradient component solar cell absorption layer
Liu et al. A non-vacuum solution route to prepare amorphous metal oxides thin films for Cu2ZnSn (S, Se) 4 solar cells
JP2016119441A (en) Compound solar cell and formation method of thin film with sulfide monocrystalline nanoparticles
KR101192289B1 (en) Preparation method for ci(g)s-based compound thin film using binary nano particle hydrid and ci(g)s-based compound thin film prepared by the same
Zhao et al. Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations
WO2013180137A1 (en) Production method for compound semiconductor thin film, and solar cell provided with said compound semiconductor thin film
Razykov et al. Production and characteristics of (ZnSe) 0.1 (SnSe) 0.9 films for use in thin film solar cells
JP5782672B2 (en) COMPOUND SEMICONDUCTOR THIN FILM INK
KR101137434B1 (en) Preparation method for cis-based compound thin film by using rapid thermal processing and preparation method for thin film solarcell manufactured by using the cis-based compound thin film
KR20120062073A (en) Preparation of chalcopyrite type complex and its composition
Islam et al. Effects of thermal annealing on structural and optical properties of sputtered CdS thin films for photovoltaic application
Li et al. The study of annealing process for CZTSSe under extra chalcogen vapor pressure
Park et al. Synthesis of the solution-processed wide band-gap chalcopyrite CuGa (S, Se) 2 thin film and its application to photovoltaics
Munir et al. Non-sulfurization single solution approach to synthesize CZTS thin films

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination