KR20120058019A - Method for forming self-organized anisotropic wrinkle structures - Google Patents

Method for forming self-organized anisotropic wrinkle structures Download PDF

Info

Publication number
KR20120058019A
KR20120058019A KR1020100119617A KR20100119617A KR20120058019A KR 20120058019 A KR20120058019 A KR 20120058019A KR 1020100119617 A KR1020100119617 A KR 1020100119617A KR 20100119617 A KR20100119617 A KR 20100119617A KR 20120058019 A KR20120058019 A KR 20120058019A
Authority
KR
South Korea
Prior art keywords
anisotropic
forming
material layer
self
anisotropic material
Prior art date
Application number
KR1020100119617A
Other languages
Korean (ko)
Other versions
KR101176490B1 (en
Inventor
강석환
이우일
문성남
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020100119617A priority Critical patent/KR101176490B1/en
Publication of KR20120058019A publication Critical patent/KR20120058019A/en
Application granted granted Critical
Publication of KR101176490B1 publication Critical patent/KR101176490B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

PURPOSE: A method for forming self-organized anisotropic wrinkle patterns is provided to form a pattern on a general glass substrate instead of an existing pre-strain control method and make a desired wrinkle pattern large without complicated processes. CONSTITUTION: A surface of an anisotropic material layer on which molecules are arranged is treated by plasma or UV ozone to form an anisotropic thin film. Wrinkles are formed in the alignment direction of the molecules of the anisotropic material layer. Anisotropic materials of the anisotropic material layer are liquid crystal polymers. The liquid crystal polymers are RM(Reactive Mesogen) solutions. The anisotropic material layer on which the molecules are arranged is obtained by coating the anisotropic materials on a surface treated alignment film.

Description

자기조립형 이방성 주름패턴을 형성하는 방법 {METHOD FOR FORMING SELF-ORGANIZED ANISOTROPIC WRINKLE STRUCTURES}How to form self-assembled anisotropic wrinkle pattern {METHOD FOR FORMING SELF-ORGANIZED ANISOTROPIC WRINKLE STRUCTURES}

본 발명은 다양한 재질의 기판 위에 자기조립형 이방성 주름패턴을 대면적으로 손쉽게 형성하는 방법에 관한 것이다.
The present invention relates to a method of easily forming a self-assembled anisotropic pleat pattern on a large area substrate.

현대 기술사회가 발전할수록 정보저장, 디스플레이(광학), 마이크로전기기계적 시스템(MEMS, microelectromechanical system), 센서 등의 디바이스의 고기능화나 새로운 디바이스의 개발에 대한 수요가 크게 증가하고 있으며, 이에 따라 마이크로/나노 크기의 미세패턴을 만드는 새로운 방법에 대한 연구도 활발하게 이루어지고 있다.As the modern technology society develops, the demand for high functionalization of devices such as information storage, display (optical), microelectromechanical systems (MEMS), sensors, and the development of new devices is increasing. There is also a lot of research into new ways to make micro patterns of size.

마이크로/나노 크기의 구조물이나 패턴을 제작하는 기술로는 매크로 스케일의 재료를 기계적 또는 화학적인 방법으로 깎아서 식각 가공하는 방법을 통해 원하는 크기의 형상을 만드는 탑-다운(top-down) 방식이 일반적이지만, 패턴을 만들기 위한 재료의 낭비가 과도하고 고정밀도의 포토마스크 또는 요철구조의 임프린트용 몰드와 같은 부가적인 장치가 필요로 된다는 단점이 있다.As a technique for making micro / nano sized structures or patterns, a top-down method of forming a desired size shape by mechanically or chemically cutting a macro-scale material and etching it is common. However, there is a disadvantage in that waste of material for making a pattern is excessive and additional devices such as a high precision photomask or an imprint mold of an uneven structure are required.

이에, 이러한 방법에 대한 대안으로, 분자간의 자기조립법(self-assembly)이나 자연계에 존재하는 주기적인 주름과 같은 현상을 이용하여 간편하게 저비용으로 미세구조를 형성할 수 있는 바텀-업(bottom-up) 접근법의 새로운 패터닝(patterning) 방법이 제안되고 있다.Thus, as an alternative to this method, a bottom-up that can easily form a microstructure at low cost by using phenomena such as self-assembly between molecules or periodic wrinkles in nature. New patterning methods of the approach have been proposed.

박막 표면에 발생하는 주름 모양의 패턴은 표면의 얇은 상층막과 하부 기판의 계면에서 발생하는 물리적 성질의 차이에 의해 발생하는 것으로, 용매(solvent)에 의한 팽윤 유도 주름화(swelling induced wrinkling), 표면에 이종박막을 도포하는 이중막 유도 주름화(bi-layer induced wrinkling), 그리고 이종박막의 도포 없이 플라즈마에 의한 표면개질을 이용한 플라즈마 유도 주름화(plasma induced wrinkling) 등의 방법이 있다.The wrinkled pattern generated on the thin film surface is caused by the difference in physical properties occurring at the interface between the thin upper layer film and the lower substrate. The swelling induced wrinkling caused by the solvent Bi-layer induced wrinkling for applying a heterogeneous thin film to the film, and plasma induced wrinkling using surface modification by plasma without the application of a heterogeneous thin film.

이때, 발생된 주름패턴의 크기와 형태는 주어진 물성에 따라 일정한 값을 가지며, 패턴의 방향은 박막의 응력 분포에 따라 결정된다. 주름패턴의 방향을 제어하는 방법으로는 연질의 하부기판을 미리 늘려서 응력 분포를 제어하는 예비-변형 조절(pre-strain control)법이 일반적이며, 이러한 예비-변형 조절법에 따라 미세패턴의 방향성을 제어하는 모식도를 도 1에 나타내었다. 그러나, 이러한 예비-변형 조절법은 하부기판이 반드시 폴리디메틸실록산(PDMS)과 같은 연질 재질이어야 하며, 대면적 기판 상에 균일한 응력 상태를 만들기가 어렵다는 단점이 있다. 또한, PDMS와 같은 연질 재질의 기판은 그 광학적, 기계적 특성이 만족할 만한 수준에 미치지 못하기 때문에 다양한 분야에 직접 적용하기에는 어려움이 따른다.
At this time, the size and shape of the generated wrinkle pattern has a constant value according to a given physical property, the direction of the pattern is determined according to the stress distribution of the thin film. As a method of controlling the direction of the wrinkle pattern, a pre-strain control method of controlling the stress distribution by pre-stretching a soft lower substrate is generally used. The direction of the fine pattern is controlled by the pre-strain control method. The schematic diagram to which is shown in FIG. However, this pre-strain control method has a disadvantage that the lower substrate must be a soft material such as polydimethylsiloxane (PDMS), it is difficult to create a uniform stress state on a large area substrate. In addition, the substrate of a soft material such as PDMS is difficult to apply directly to various fields because its optical and mechanical properties are not satisfactory.

따라서, 본 발명의 목적은 기존의 예비-변형 조절법 대신에, 일반적인 유리기판 위에도 패턴을 형성할 수 있으며 복잡한 추가공정 없이 목적하는 주름패턴을 대면적으로 손쉽게 형성하는 방법을 제공하는 것이다.
Accordingly, it is an object of the present invention to provide a method for forming a pattern on a general glass substrate instead of the existing pre-straining control method and easily forming a desired wrinkle pattern in a large area without complicated additional processes.

상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention

분자정렬된 이방성 재료층의 표면을 플라즈마 또는 UV오존 처리하여 이방성 박막을 형성함으로써 상기 이방성 재료층의 분자배향 방향과 일치하는 방향의 주름을 발생시키는 것을 포함하는, 자기조립형 이방성 주름패턴의 형성방법을 제공한다.
Forming an anisotropic thin film by plasma or UV ozone treatment of the surface of the molecularly aligned anisotropic material layer to form a wrinkle in a direction coincident with the molecular orientation direction of the anisotropic material layer, the method of forming a self-assembled anisotropic wrinkle pattern To provide.

본 발명의 방법에 의하면, 유리기판, 플라스틱기판과 같은 다양한 재질의 기판 위에 목적하는 주름패턴을 대면적으로 손쉽게 형성할 수 있다. 또한, 본 발명의 방법은 자기조립형 패턴형성법이므로 고정밀도의 포토마스크 또는 요철구조의 임프린트용 몰드와 같은 부가적인 장치가 필요 없어 공정이 매우 간단하다는 장점을 갖는다. 따라서, 이러한 본 발명의 방법은 디스플레이 또는 태양광전지 등의 광학부품, 예를 들면, 디퓨저(diffuser), 프리즘(prism), 렌티큘러 필름(lenticular film), 광학 그레이팅(optical grating) 등의 제조, 마이크로유체(micro-fluidics)용 채널의 형성, 및 기타 라인-앤드-스페이스(line-and-space) 패턴이 사용될 수 있는 모든 디바이스의 제작에 유용하게 응용될 수 있다.
According to the method of the present invention, the desired wrinkle pattern can be easily formed on a large area on a substrate of various materials such as a glass substrate and a plastic substrate. In addition, since the method of the present invention is a self-assembled pattern forming method, there is no need for an additional device such as a high-precision photomask or an imprint mold of a concave-convex structure, and thus, the process is very simple. Accordingly, the method of the present invention can be used to produce optical components such as displays or photovoltaic cells, for example, diffusers, prisms, lenticular films, optical gratings, microfluidics, and the like. The formation of channels for micro-fluidics, and other line-and-space patterns can be usefully applied in the fabrication of all devices that can be used.

도 1은 통상적인 예비-변형 조절법에 따라 미세패턴의 방향성을 제어하는 것을 모식도로서 나타낸 것이고,
도 2는 이방성 재료층의 분자배향 정도와 주름패턴의 방향성 간의 상관관계를 나타낸 사진이고 ((a): 무배향의 경우, (b): 배향의 경우),
도 3은 본 발명의 방법의 하나의 실시양태에 따라 목적하는 자기조립형 이방성 주름패턴을 형성하는 일련의 공정을 모식도로서 나타낸 것이고,
도 4는 실시예 1에서 형성된 자기조립형 이방성 주름패턴의 2D/3D 원자간력현미경(AFM) 이미지와 필름 두께에 따른 단면도이다.
Figure 1 shows as a schematic diagram to control the direction of the micropattern in accordance with the conventional pre-strain adjustment method,
Figure 2 is a photograph showing the correlation between the degree of molecular orientation of the anisotropic material layer and the direction of the wrinkle pattern ((a): in the case of non-orientation, (b): in the case of orientation),
3 is a schematic diagram illustrating a series of processes for forming a desired self-assembled anisotropic pleat pattern according to one embodiment of the method of the present invention,
Figure 4 is a cross-sectional view according to the film thickness and 2D / 3D atomic force microscope (AFM) image of the self-assembled anisotropic wrinkle pattern formed in Example 1.

본 발명에 따른 자기조립형 이방성 주름패턴의 형성방법은 이방성 재료의 분자정렬도를 제어한 후 그 위에 이방성 주름을 만드는 데에 기초하고 있는 것으로서, 분자정렬된 이방성 재료층의 표면을 플라즈마 또는 UV오존 처리하여 이방성 박막을 형성함으로써 상기 이방성 재료층의 분자배향 방향과 일치하는 방향의 주름을 발생시키는 것을 특징으로 한다.The method for forming the self-assembled anisotropic wrinkle pattern according to the present invention is based on controlling the degree of molecular alignment of the anisotropic material and then creating anisotropic wrinkles thereon. The surface of the molecularly aligned anisotropic material layer is formed by plasma or UV ozone. By processing to form an anisotropic thin film, it is characterized in that wrinkles in a direction coinciding with the molecular orientation direction of the anisotropic material layer.

본 발명에 사용되는 이방성 재료층의 이방성 재료로는 이방성 분자구조를 갖는 액정폴리머(liquid crystal polymer)가 적합하다. 본 발명에 사용가능한 액정폴리머의 예로는 중합가능한 말단기를 함유하는 반응성 액정단량체 (reactive mesogen, RM) 용액 (RMS)을 들 수 있으며, 구체적으로 LC242 (BASF) 및 RMS03-001 (Merck) 등의 다양한 제품이 시판되고 있다. As the anisotropic material of the anisotropic material layer used in the present invention, a liquid crystal polymer having an anisotropic molecular structure is suitable. Examples of the liquid crystal polymer usable in the present invention include a reactive mesogen (RM) solution (RMS) containing a polymerizable end group, specifically LC242 (BASF) and RMS03-001 (Merck) Various products are commercially available.

본 발명에 따르면, 이방성 재료의 분자정렬은 이방성 재료를 분자배향 방향을 갖도록 표면처리된 배향막(alignment layer) 위에 코팅함으로써 달성될 수 있다. 즉, 준비된 배향막 위에 이방성 재료를 코팅하면 배향막의 배향방향에 따라 이방성 재료의 분자들이 정렬하게 되어 분자정렬된 이방성 재료층을 얻을 수 있다.According to the present invention, molecular alignment of the anisotropic material can be achieved by coating the anisotropic material on an alignment layer surface-treated to have a molecular orientation direction. That is, when the anisotropic material is coated on the prepared alignment layer, the molecules of the anisotropic material are aligned according to the alignment direction of the alignment layer, thereby obtaining a molecularly aligned anisotropic material layer.

상기 분자배향 방향을 갖도록 표면처리된 배향막은 적절한 기판 위에 배향막 형성용 재료를 코팅하고 건조한 후 배향공정을 수행함으로써 얻어지는데, 상기 기판으로는 유리기판, 플라스틱기판을 비롯한 다양한 재질의 기판을 원하는 바에 따라 선택하여 사용할 수 있고, 배향막 형성용 재료의 구체적인 예로는 폴리이미드(PI), 폴리아미드산 및 이들의 혼합물을 들 수 있다. The alignment film surface-treated to have the molecular orientation direction is obtained by coating an alignment film forming material on a suitable substrate, drying and performing an alignment process, wherein the substrate is made of various materials including glass substrates and plastic substrates. It can select and use, A specific example of the material for forming an oriented film includes polyimide (PI), polyamic acid and mixtures thereof.

상기 배향공정으로는 액정소자(LCD) 분야에서 통상적으로 사용되는 광배향법, 러빙(rubbing)법, 또는 임프린트(imprint) 기법을 적용한 미세패턴 배향법 등을 사용할 수 있다. 이들 중 러빙법은, 극세사가 코팅된 롤러를 고속회전시키면서 배향막 형성용 재료 표면을 브러싱함으로써 추후 액정 배향을 위한 미세 그루브(groove)를 형성하고 배향막 형성용 재료의 표면특성을 변화시킨다.As the alignment process, a photo-alignment method, a rubbing method, a fine pattern alignment method using an imprint technique, and the like, which are commonly used in the liquid crystal device (LCD) field, may be used. Among these, the rubbing method forms a fine groove for liquid crystal alignment later by changing the surface characteristics of the alignment film forming material by brushing the surface of the alignment film forming material while rotating the roller coated with the microfiber at high speed.

이렇게 만들어진 분자정렬된 이방성 재료층의 표면을 플라즈마 또는 UV오존으로 처리하게 되면 이방성 재료층 표면에 얇은 이방성 막이 형성되어 주름이 발생하고, 이때 주름의 방향은 이방성 재료층의 분자배향 방향과 일치하게 된다. 필요에 따라, 형성된 미세한 주름패턴은 UV 광선을 이용하여 경화시킬 수 있다. 이때, 플라즈마 또는 UV오존으로의 표면처리시간이 길어질수록 형성되는 이방성 주름패턴의 굴곡 높이가 높아지므로, 원하는 주름패턴에 맞게 표면처리시간을 조절할 수 있다.When the surface of the molecularly aligned anisotropic material layer thus formed is treated with plasma or UV ozone, a thin anisotropic film is formed on the surface of the anisotropic material layer to generate wrinkles, and the direction of the wrinkles coincides with the molecular orientation of the anisotropic material layer. . If necessary, the formed fine wrinkle pattern can be cured using UV light. At this time, the longer the surface treatment time to the plasma or UV ozone, the higher the bending height of the formed anisotropic wrinkle pattern, it is possible to adjust the surface treatment time according to the desired wrinkle pattern.

이방성 재료층의 분자배향 정도(분자정렬도)와 주름패턴의 방향성 간의 상관관계를 하기 도 2에 나타내었다. 도 2에서 볼 수 있는바와 같이, (a)는 배향되지 않은(무배향된) 액정폴리머 상에 랜덤한 형태의 주름패턴이 형성된 경우이고, (b)는 배향된 액정폴리머 상에, 배향방향과 일치하는 방향의 1차원 라인패턴이 형성된 경우이다.The correlation between the degree of molecular orientation (molecular alignment) of the anisotropic material layer and the direction of the wrinkle pattern is shown in FIG. 2. As can be seen in FIG. 2, (a) is a case where a random wrinkled pattern is formed on an unoriented (orientated) liquid crystal polymer, and (b) is an alignment direction on the aligned liquid crystal polymer. It is a case where the one-dimensional line pattern of the matching direction is formed.

이와 같은 본 발명 방법의 하나의 실시양태에 따라 목적하는 자기조립형 이방성 주름패턴을 형성하는 일련의 공정을 모식도로서 도 3에 나타내었다.A series of steps for forming a desired self-assembled anisotropic pleat pattern according to one embodiment of the method of the present invention is shown in FIG. 3 as a schematic diagram.

이와 같이, 본 발명의 방법에 의하면, 유리기판, 플라스틱기판과 같은 다양한 재질의 기판 위에 목적하는 주름패턴을 대면적으로 손쉽게 형성할 수 있다. 또한, 본 발명의 방법은 자기조립형 패턴형성법이므로 고정밀도의 포토마스크 또는 요철구조의 임프린트용 몰드와 같은 부가적인 장치가 필요 없어 공정이 매우 간단하다는 장점을 갖는다. 따라서, 이러한 본 발명의 방법은 디스플레이 또는 태양광전지 등의 광학부품, 예를 들면, 디퓨저(diffuser), 프리즘(prism), 렌티큘러 필름(lenticular film), 광학 그레이팅(optical grating) 등의 제조, 마이크로유체(micro-fluidics)용 채널의 형성, 및 기타 라인-앤드-스페이스(line-and-space) 패턴이 사용될 수 있는 모든 디바이스의 제작에 유용하게 응용될 수 있다.
Thus, according to the method of the present invention, it is possible to easily form the desired wrinkle pattern on a large area of the substrate of various materials such as glass substrate, plastic substrate. In addition, since the method of the present invention is a self-assembled pattern forming method, there is no need for an additional device such as a high-precision photomask or an imprint mold of a concave-convex structure, and thus, the process is very simple. Accordingly, the method of the present invention can be used to produce optical components such as displays or photovoltaic cells, for example, diffusers, prisms, lenticular films, optical gratings, microfluidics, and the like. The formation of channels for micro-fluidics, and other line-and-space patterns can be usefully applied in the fabrication of all devices that can be used.

이하 실시예에 의하여 본 발명을 더욱 상세히 설명한다. 단, 하기의 실시예는 본 발명의 예시일 뿐 본 발명이 이에 한정되는 것은 아니다. The present invention will be described in more detail with reference to the following examples. However, the following examples are only examples of the present invention and the present invention is not limited thereto.

실시예 1Example 1

1) 먼저, 20m(가로)× 25m(세로) 크기의 유리기판 위에 폴리이미드(PI)를 코팅한 후 건조시켜 폴리이미드 박막을 형성하였다.1) First, a polyimide (PI) was coated on a glass substrate having a size of 20 m (width) x 25 m (length), followed by drying to form a polyimide thin film.

2) 극세사가 코팅된 롤러를 고속회전시키면서 폴리이미드 박막의 표면을 브러싱하여(러빙공정), 추후 액정 배향을 위해 미세 그루브(groove)가 형성되고 표면특성이 변화된 폴리이미드 배향막을 얻었다.2) The surface of the polyimide thin film was brushed while the roller coated with the microfiber was rotated at a high speed (rubbing process) to obtain a polyimide alignment layer having a fine groove formed thereon for liquid crystal alignment and having changed surface properties.

3) 준비된 배향막 위에 액정폴리머 RMS03-001C (Merck)를 2500rpm/20sec의 조건으로 스핀코팅하여, 배향막의 배향방향에 따라 분자정렬된 액정폴리머층을 얻었다.3) The liquid crystal polymer RMS03-001C (Merck) was spin-coated on the prepared alignment film under the conditions of 2500 rpm / 20 sec, and the liquid crystal polymer layer molecularly aligned according to the alignment direction of the alignment film was obtained.

4) 이렇게 만들어진 분자정렬된 액정폴리머층의 표면을 플라즈마로 100초 동안 처리하여 액정폴리머층의 분자배향 방향과 일치하는 방향의 자기조립형 이방성 주름패턴을 형성하였다.4) The surface of the molecular aligned liquid crystal polymer layer thus formed was treated with plasma for 100 seconds to form a self-assembled anisotropic wrinkle pattern in a direction coinciding with the molecular orientation of the liquid crystal polymer layer.

5) 형성된 주름패턴을 UV 광선을 이용하여 경화시켰다.
5) The formed wrinkled pattern was cured using UV light.

상기 실시예 1에서 형성된 자기조립형 이방성 주름패턴의 2D/3D 원자간력현미경(atomic force microscope) 이미지와 필름 두께에 따른 단면도를 도 4에 나타내었다.A cross-sectional view of the self-assembled anisotropic wrinkle pattern formed in Example 1 and a film thickness of a 2D / 3D atomic force microscope image is shown in FIG. 4.

도 4로부터 알 수 있듯이, 만들어진 이방성 주름패턴의 형태는 러빙 방향과 일치하는 1차원 형태의 라인-앤드-스페이스 패턴을 나타내었으며, 그 단면의 형상은 코팅된 필름의 두께에 따라 사인(sine)파 또는 반사인(half-sine)파 형태의 렌티큘러 형상을 나타내었다. 따라서, 이러한 제어가능한 단면의 형상을 활용하여 광학부품, 예를 들면, 디퓨저, 프리즘, 렌티큘러 필름, 광학 그레이팅 등을 제조하고, 마이크로유체용 채널을 형성하고, 기타 라인-앤드-스페이스 패턴이 사용될 수 있는 모든 디바이스를 제작할 수 있음을 예상할 수 있다. As can be seen from Fig. 4, the shape of the anisotropic pleat pattern made shows a one-dimensional line-and-space pattern coinciding with the rubbing direction, and the shape of the cross section is a sine wave according to the thickness of the coated film. Or a lenticular shape in the form of a half-sine wave. Thus, utilizing such controllable cross-sectional shapes to produce optical components such as diffusers, prisms, lenticular films, optical gratings, etc., forming channels for microfluidics, and other line-and-space patterns can be used. You can expect to be able to build any device that exists.

Claims (7)

분자정렬된 이방성 재료층의 표면을 플라즈마 또는 UV오존 처리하여 이방성 박막을 형성함으로써 상기 이방성 재료층의 분자배향 방향과 일치하는 방향의 주름을 발생시키는 것을 포함하는, 자기조립형 이방성 주름패턴의 형성방법.Forming an anisotropic thin film by plasma or UV ozone treatment of the surface of the molecularly aligned anisotropic material layer to form wrinkles in a direction coincident with the molecular orientation of the anisotropic material layer, the method of forming a self-assembled anisotropic wrinkle pattern . 제 1 항에 있어서,
상기 이방성 재료층의 이방성 재료가 액정폴리머(liquid crystal polymer)인 것을 특징으로 하는, 자기조립형 이방성 주름패턴의 형성방법.
The method of claim 1,
The anisotropic material of the anisotropic material layer is a liquid crystal polymer, characterized in that the self-assembled anisotropic wrinkle pattern forming method.
제 2 항에 있어서,
상기 액정폴리머가 반응성 액정단량체(reactive mesogen, RM) 용액인 것을 특징으로 하는, 자기조립형 이방성 주름패턴의 형성방법.
The method of claim 2,
The liquid crystal polymer is a reactive liquid crystal monomer (RM) solution, characterized in that the self-assembled anisotropic wrinkle pattern forming method.
제 1 항에 있어서,
상기 분자정렬된 이방성 재료층이, 이방성 재료를 분자배향 방향을 갖도록 표면처리된 배향막 위에 코팅함으로써 얻어지는 것을 특징으로 하는, 자기조립형 이방성 주름패턴의 형성방법.
The method of claim 1,
Wherein the molecularly aligned anisotropic material layer is obtained by coating an anisotropic material on a surface treated alignment film to have a molecular orientation direction.
제 4 항에 있어서,
상기 분자배향 방향을 갖도록 표면처리된 배향막이, 기판 위에 배향막 형성용 재료를 코팅하고 건조한 후 배향공정을 수행하여 얻어진 것임을 특징으로 하는, 자기조립형 이방성 주름패턴의 형성방법.
The method of claim 4, wherein
The method of forming an self-assembled anisotropic pleat pattern, characterized in that the alignment film surface-treated to have a molecular orientation direction is obtained by coating an alignment film forming material on a substrate, drying and performing an alignment process.
제 5 항에 있어서,
상기 배향막 형성용 재료가 폴리이미드(PI), 폴리아미드산(PA), 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 자기조립형 이방성 주름패턴의 형성방법.
The method of claim 5, wherein
The material for forming an alignment film is selected from the group consisting of polyimide (PI), polyamic acid (PA), and mixtures thereof.
제 5 항에 있어서,
상기 배향공정이, 광배향법, 러빙(rubbing)법 또는 임프린트(imprint)법에 의해 수행되는 것을 특징으로 하는, 자기조립형 이방성 주름패턴의 형성방법.
The method of claim 5, wherein
The orientation process is performed by a photo-alignment method, a rubbing method or an imprint method, characterized in that the self-assembled anisotropic wrinkle pattern forming method.
KR1020100119617A 2010-11-29 2010-11-29 Method for forming self-organized anisotropic wrinkle structures KR101176490B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100119617A KR101176490B1 (en) 2010-11-29 2010-11-29 Method for forming self-organized anisotropic wrinkle structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100119617A KR101176490B1 (en) 2010-11-29 2010-11-29 Method for forming self-organized anisotropic wrinkle structures

Publications (2)

Publication Number Publication Date
KR20120058019A true KR20120058019A (en) 2012-06-07
KR101176490B1 KR101176490B1 (en) 2012-08-23

Family

ID=46609715

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100119617A KR101176490B1 (en) 2010-11-29 2010-11-29 Method for forming self-organized anisotropic wrinkle structures

Country Status (1)

Country Link
KR (1) KR101176490B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476642B1 (en) * 2013-09-13 2014-12-26 주식회사 케이씨텍 METHOD OF TREATING SURFACE OF Polyimide FILM IN LCD AND APPARATUS USING SAME
CN112985661A (en) * 2019-12-13 2021-06-18 天津大学 Electronic skin based on human epidermis structure and preparation method and application thereof
CN113004554A (en) * 2019-12-20 2021-06-22 中国科学院理化技术研究所 Micro-nano wrinkled film with humidity response characteristic and good flexibility and preparation method and application thereof
KR102280152B1 (en) * 2020-03-17 2021-07-20 충남대학교산학협력단 Fabrication method and device of multi-directional surface microstructure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631968B1 (en) 2015-04-28 2016-06-20 부산대학교 산학협력단 Method for Fabricating Structure Having Micro-scale Surface Wrinkles
KR101682556B1 (en) 2016-02-03 2016-12-05 부산대학교 산학협력단 Method for Manufacturing Micro-scale Surface Wrinkles On Metal Structures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100730294B1 (en) 2006-05-25 2007-06-19 김진열 Production method of photo lithography by self-assembling, the circuit by this method, and application of the circuit
US20080026329A1 (en) * 2006-07-26 2008-01-31 Ashkan Vaziri Surface modification of polymer surface using ion beam irradiation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476642B1 (en) * 2013-09-13 2014-12-26 주식회사 케이씨텍 METHOD OF TREATING SURFACE OF Polyimide FILM IN LCD AND APPARATUS USING SAME
CN112985661A (en) * 2019-12-13 2021-06-18 天津大学 Electronic skin based on human epidermis structure and preparation method and application thereof
CN113004554A (en) * 2019-12-20 2021-06-22 中国科学院理化技术研究所 Micro-nano wrinkled film with humidity response characteristic and good flexibility and preparation method and application thereof
CN113004554B (en) * 2019-12-20 2022-09-23 中国科学院理化技术研究所 Micro-nano wrinkled film with humidity response characteristic and good flexibility and preparation method and application thereof
KR102280152B1 (en) * 2020-03-17 2021-07-20 충남대학교산학협력단 Fabrication method and device of multi-directional surface microstructure

Also Published As

Publication number Publication date
KR101176490B1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
KR101176490B1 (en) Method for forming self-organized anisotropic wrinkle structures
CN102262255B (en) Patterned retarder film and method for manufacturing the same
WO2007097454A1 (en) Film having fine uneven shape and method for manufacturing same
US20110024950A1 (en) Self-assembled nano-lithographic imprint masks
JP2008529053A (en) Conductive layer patterning method, polarizing element manufacturing method using the same, and polarizing element manufactured by the method
JP5245366B2 (en) Polarizing plate and manufacturing method thereof
CN105646918B (en) The preparation of stabilization nano-pattern based on cross-linking high molecular material and regulation and control method
WO2011129404A1 (en) Process for production of liquid crystal element, and liquid crystal element
CN102262256B (en) Patterned retarder film and method for manufacturing same
Hsueh et al. Macroscopic geometry-dominated orientation of symmetric microwrinkle patterns
Kim et al. One-step fabrication of hierarchical multiscale surface relief gratings by holographic lithography of azobenzene polymer
Sohn et al. Effects of the process temperature and rolling speed on the thermal roll-to-roll imprint lithography of flexible polycarbonate film
Junisu et al. Surface Wrinkling on Polymer Films
Zhao et al. Generation of various wrinkle shapes on single surface by controlling thickness of weakly polymerized layer
JP2011224916A (en) Method of manufacturing surface fine uneven body having nano-buckling form, surface fine uneven body, process sheet original plate, and method of manufacturing optical element
CN102401924B (en) Patterned phase retardation membrane and manufacturing method thereof
Park et al. Effective formation of hierarchical wavy shapes using weak photopolymerization and gradual thermal curing process
Zhao et al. Effect of substrate reflecting conditions on the curing of UV curable resin layers on aluminum and the formation of surface wavy structures
TWI247136B (en) Optical device and method of making the same
de Haan et al. Contactless control of local surface buckling in photoaligned gold/liquid crystal polymer bilayers
Zhao et al. Path-Guided Hierarchical Surface Relief Gratings on Azo-Films Induced by Polarized Light Illumination through Surface-Wrinkling Phase Mask
Liu et al. Light‐Induced In Situ Dynamic Ordered Wrinkling with Arbitrarily Tailorable Wrinkling Orientation for Photoresponsive Soft Photonics
JP5317107B2 (en) Evaluation method of rewritable liquid crystal alignment surface and alignment memory
KR102280152B1 (en) Fabrication method and device of multi-directional surface microstructure
Zhou et al. Polymeric microlens array formed directly on glass plate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150730

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160212

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170724

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190902

Year of fee payment: 8