KR20120047431A - Eco-friendly biodegradable film composition - Google Patents
Eco-friendly biodegradable film composition Download PDFInfo
- Publication number
- KR20120047431A KR20120047431A KR1020100108987A KR20100108987A KR20120047431A KR 20120047431 A KR20120047431 A KR 20120047431A KR 1020100108987 A KR1020100108987 A KR 1020100108987A KR 20100108987 A KR20100108987 A KR 20100108987A KR 20120047431 A KR20120047431 A KR 20120047431A
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- film composition
- biodegradable film
- aliphatic polyester
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/16—Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/06—Biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Description
본 발명은 친환경 생분해성 필름 조성물에 관한 것으로, 더욱 상세하게는 극성을 띠는 반응성 개질제로 개질한 지방족 폴리에스터계 폴리머 및 폴리락틱산(Poly lactic acid;PLA)을 포함하여 기계적 물성을 향상시키고 경제성이 우수한 친환경 생분해성 필름의 조성물에 관한 것이다.The present invention relates to an environment-friendly biodegradable film composition, and more particularly, to improve mechanical properties and economics, including aliphatic polyester-based polymer and polylactic acid (PLA) modified with a polar reactive modifier It relates to a composition of this excellent eco-friendly biodegradable film.
폴리에틸렌, 폴리스티렌, 폴리프로필렌 및 폴리염화비닐과 같은 합성수지는 산업 전반의 다양한 분야에서 쓰레기봉투, 롤백, 쇼핑백, 식품포장, 건축자재 및 가전제품 등에서 폭넓게 사용되어 왔으며, 일상생활에서 없어서는 안 될 정도의 위치를 차지하고 있다. 이러한 합성수지들은 내구성이 매우 우수하지만, 자연상태에서의 분해성이 약해 사용 후 폐기 시 생태계에 악영향을 끼치고 환경파괴를 야기하는 문제점이 있으며, 더욱 더 상기 수지들이 일회용 제품에 비중이 높아지고 있는 가운데 사회적 큰 문제가 되고 경제적 비용 상승도 초래하고 있다.Synthetic resins such as polyethylene, polystyrene, polypropylene, and polyvinyl chloride have been widely used in trash bags, rollbacks, shopping bags, food packaging, building materials and home appliances in various fields throughout the industry, and are indispensable in everyday life. Occupies. Although these synthetic resins are very durable, they have a weak degradability in the natural state, which adversely affects the ecosystem and causes environmental destruction when disposed of after use, and is a social problem as the resins are increasingly being used in disposable products. And economic cost increases.
이에 대한 방안으로 제시된 것이 생분해성 수지를 이용하는 것이다. 상기 생분해성 수지로는 전분계 수지, 생분해성 폴리에스터계 수지 등을 들 수 있다. 이러한 수지는 환경적으로 존재하는 미생물이 생산하는 효소들의 작용으로 인해 생분해 즉 저분자 물질로 분해되고 최종적으로 물과 이산화탄소로 분해될 수 있다.A solution to this is to use a biodegradable resin. Examples of the biodegradable resins include starch resins, biodegradable polyester resins, and the like. Such resins can be degraded into biodegradation, ie, low molecular weight substances, and finally into water and carbon dioxide due to the action of the enzymes produced by environmentally existing microorganisms.
산업 전반에 친환경적 인식이 대두되어 가고 있는 가운데, 앞서 살펴본 생분해성 수지의 사용은 광범위하게 연구 개발되고 있으며, 농업용 자재 또는 포장재 분야의 재활용으로의 회수가 곤란한 일회성 제품에 있어 보다 높은 활용도를 위해 연구 개발되고 있다. As eco-friendly awareness is emerging throughout the industry, the use of biodegradable resins discussed above has been extensively researched and developed, and research and development for higher utilization in one-time products that are difficult to recover by recycling in agricultural materials or packaging materials. It is becoming.
앞서 언급한 생분해성 수지 중 전분계 수지는 경제성이 우수하지만 강성 등 기계적 물성이 극도로 취약한 단점이 있다. 한편 생분해성 폴리에스터계 수지에는 폴리글리콜산, 폴리히드록시부틸산, 폴리락틱산, 지방족 폴리에스터 등이 있는데, 바이오합성으로 얻어지는 폴리글리콜산과 폴리히드록시부틸산은 제조비용이 높은 반면 폴리락틱산은 종래 폴리올레핀계 수지와 비슷한 가격이 형성되어 경제성은 확보할 수 있으나 유연성 및 인열특성이 매우 부족하여 제품에 적용하는데 어려움이 있다.Of the aforementioned biodegradable resins, starch-based resins are excellent in economic efficiency, but have the disadvantage of extremely weak mechanical properties such as rigidity. On the other hand, biodegradable polyester resins include polyglycolic acid, polyhydroxybutyl acid, polylactic acid, and aliphatic polyester. Polyglycolic acid and polyhydroxybutyl acid obtained by biosynthesis have high manufacturing costs, while polylactic acid is conventionally used. Although the price is similar to that of polyolefin-based resin, it is possible to secure economic feasibility, but it is difficult to apply to products due to the lack of flexibility and tear characteristics.
또한 지방족 폴리에스터 폴리머 등과 같은 화학합성에 의한 지방족 폴라에스터계 수지는 폴리락틱산보다는 유연성은 다소 양호하나 기계적 강도가 부족하며, 폴리락틱산에 비해 가격이 비싸고, 가수분해 속도가 너무 빨라 봉투로 제작하여 보관 시 열봉합 물성이 급격히 하락하여 터지는 등 제품으로서 큰 결함이 있을 뿐만 아니라 제조원가가 높아 경제성이 열악하여 이의 개선이 필요한 실정이다. In addition, aliphatic polyester resins based on chemical synthesis, such as aliphatic polyester polymers, are more flexible than polylactic acid, but have less mechanical strength, are expensive than polylactic acid, and are too expensive to be hydrolyzed, making them into bags. As a result, there is a big defect as a product, such as a sudden drop in the heat seal property when it is stored, and the economical cost is high due to the high manufacturing cost.
이에 대한 개선안으로 대한민국 특허출원 제1992-0027027호에서와 같이 지방족 폴리에스터계 수지에 탄산칼슘과 같은 값싼 무기입자를 첨가한 조성물을 사용하였는데 경제성은 개선되었으나 그렇지 않아도 강성이 미흡한데 첨가된 무기입자에 의해 강성이 더욱더 나빠지고 가수분해가 촉진되는 문제가 있어 개선이 충분하지 않았다. 대한민국 특허출원 제10-2006-0008907호에서는 무기입자의 표면 특성이 중성인 경우 가수분해속도가 감소한다는데 착안하여 표면특성이 중성이고 비교적 값싼 운모(오일 포함)를 지방족 폴리에스터계 수지에 첨가한 조성물을 사용한 결과 경제성 및 내가수분해성이 다소 개선되었다고 하지만 기계적 물성이 매우 취약하여 이를 개선할 수 있는 획기적인 신기술의 출현이 시급히 요청되고 있다. 즉 환경친화적인 생분해성, 우수한 기계적 물성을 보유하면서도 동시에 경제성확보를 해결할 수 있는 획기적인 대안이 절실하게 필요한 실정이다.As a remedy for this, as in the Republic of Korea Patent Application No. 1992-0027027, a composition in which inexpensive inorganic particles such as calcium carbonate was added to an aliphatic polyester resin was used, but the economic efficiency was improved, but the stiffness was insufficient. Due to this problem, the stiffness worsened and the hydrolysis was promoted, and the improvement was not sufficient. In Korean Patent Application No. 10-2006-0008907, the hydrolysis rate decreases when the surface characteristics of inorganic particles are neutral, and the composition is obtained by adding a neutral surface oil with a relatively cheap mica (including oil) to the aliphatic polyester resin. As a result, the economic and hydrolysis resistance were slightly improved, but the mechanical properties are very weak, and the emergence of breakthrough new technologies that can improve them is urgently required. In other words, there is an urgent need for a breakthrough alternative to solve eco-friendly biodegradability and excellent mechanical properties while securing economic feasibility.
본 발명은 상기 종래 기술의 문제점을 해결하기 위한 것으로서 생분해성이 뛰어나면서 기계적 물성이 향상된 친환경 생분해성 필름 조성물을 제공하는 데 그 목적이 있다. 또한, 본 발명은 상기 조성물을 이용한 친환경 생분해성 필름을 제공하고자 한다.The present invention is to solve the problems of the prior art is to provide an eco-friendly biodegradable film composition with excellent biodegradability and improved mechanical properties. In addition, the present invention is to provide an eco-friendly biodegradable film using the composition.
상기 과제를 해결하기 위한 본 발명은 극성을 띠는 반응성 개질제로 개질한 지방족 폴리에스터계 폴리머, 폴리락틱산, 과산화제, 산화방지제 및 무기충진제를 포함하고, 상기 지방족 폴리에스터계 폴리머 및 폴리락틱산의 혼합중량비를 조절하여 기계적 물성이 양호하고 환경친화적인 생분해성 필름 조성물을 제공한다.The present invention for solving the above problems include an aliphatic polyester-based polymer, polylactic acid, peroxidant, antioxidant and inorganic filler modified with a reactive reactive modifier, the aliphatic polyester-based polymer and polylactic acid By adjusting the mixing weight ratio of to provide a good mechanical properties and environmentally friendly biodegradable film composition.
본 발명에 따른 친환경 생분해성 필름 조성물은 반응성개질제로 개질한 지방족 폴리에스터계 폴리머, 폴리락틱산, 과산화제, 산화방지제 및 무기충진제를 포함한다.Eco-friendly biodegradable film composition according to the present invention comprises an aliphatic polyester-based polymer, polylactic acid, peroxidant, antioxidant and inorganic filler modified with a reactive modifier.
이때, 상기 반응성개질제로 개질한 지방족 폴리에스터계 폴리머 및 폴리락틱산의 혼합은 기계적 물성을 향상시키면서 생분해도를 유지할 수 있도록 하기 위한 것으로, 혼합 중량비는 1:9~9:1인 것을 특징으로 한다. 상기 범위를 벗어나면, 혼합에 의해 기대되는 경제성의 증가, 기계적 물성의 상호 보완을 기대하기 어렵다.In this case, the mixing of the aliphatic polyester-based polymer and the polylactic acid modified with the reactive modifier is to maintain the biodegradability while improving the mechanical properties, characterized in that the mixing weight ratio is 1: 9-9: 1. . Outside the above range, it is difficult to expect an increase in the economics expected by mixing and complementary mechanical properties.
상기 반응성 개질제로 개질한 지방족 폴리에스터계는 지방족 폴리에스터계 100중량부에 대하여 반응성 개질제 0.5~2.5중량부, 과산화제 0.1~0.6중량부 및 산화방지제 0.3~0.8 중량부를 포함한다. The aliphatic polyester modified with the reactive modifier includes 0.5 to 2.5 parts by weight of reactive modifier, 0.1 to 0.6 parts by weight of peroxidant and 0.3 to 0.8 parts by weight of antioxidant based on 100 parts by weight of aliphatic polyester.
상기 반응성 개질제는 지방족 폴리에스터계와 압출기 내에서 반응압출에 의해 공중합되면서 상용성을 증가시켜 주며 폴리락틱산과의 혼합시 인장강도, 충격강도 등의 기계적 물성을 향상시킬 수 있는 것으로, 상기 함량이 0.5 미만이면 기계적 물성이 향상되는 효과를 기대하기 어렵고, 2.5 초과이면 비용의 증가, 원료의 변색, 부 반응의 증가를 유발시켜, 제품의 품질을 감소시키고, 나아가 생분해성도 저하될 수 있다. The reactive modifier increases the compatibility while copolymerizing by aliphatic polyester and extruder in the extruder and can improve the mechanical properties such as tensile strength, impact strength when mixed with polylactic acid, the content is 0.5 If less than one, it is difficult to expect the effect of improving mechanical properties, and if it is more than 2.5, it may cause an increase in cost, discoloration of raw materials, and an increase in side reactions, thereby reducing the quality of the product and further reducing biodegradability.
본 발명에서 사용될 수 있는 반응성 개질제는 비닐 실란(Vinyl silane), 글리시딜 메타크릴레이트(Glycidyl methacrylate), 스티렌-아크릴로니트릴(Styrene-acrylonitrile), 아크릴산(Acrylic acid), 푸마르산(Fumaric Acid), 시트라콘 무수물(Citraconic Anhydride), 무수말레인산(Maleic Anhydride) 또는 알케닐 석신산 무수물(Alkenyl succinic anhydride) 중 선택되는 어느 하나를 포함하는 것으로 이와 같은 분자 구조상 극성(polar)을 띠는 산(Acid) 류 혹은 그의 무수물 중에서 분자량 1000이하의 저 분자량의 것을 사용할 수 있으며, 단독 혹은 필요에 따라서 혼합하여 사용할 수 있다.Reactive modifiers that can be used in the present invention include vinyl silane, glycidyl methacrylate, styrene-acrylonitrile, acrylic acid, fumaric acid, Citric acid anhydride (Citraconic Anhydride), maleic anhydride (Alkenyl succinic anhydride) or any one selected from among the polar (Acid) of the molecular structure (polar) Or in the anhydride, the thing of the low molecular weight of 1000 or less can be used, and can be used individually or in mixture as needed.
상기 반응성 개질제로 개질한 지방족 폴리에스터계 폴리머는 과산화제를 지방족 폴리에스터계 폴리머 100중량부에 대하여 0.06~0.6중량부를 함유한다. 상기 함량이 0.06중량부 미만이면 반응성 개질제에 의한 개질 효과가 적어서 본 발명이 이루고자 하는 목적을 달성하기 어려우며, 0.6중량부 초과이면 지나친 반응으로 인해 주 사슬간의 네트워킹(Networking)에 의한 겔화가 과다하게 일어나서 필름 성형 시 외관의 손상 및 심각하게는 성형과정에서의 필름의 손상으로 인한 성형 불가의 결과까지도 초래 할 수 있다. 이때, 상기 과산화제는 디큐밀퍼옥사이드, 디벤조일퍼옥사이드, 사이클로헥사논퍼옥사이드, t-부틸퍼옥시이소프로필카르보네이트, t-부틸퍼옥시라우릴레이트, t-부틸퍼옥시아세테이트, 디-t-부틸디퍼옥시프탈레이트, t-디브틸퍼옥시말레인산, t-부틸큐밀퍼옥사이드, t-부틸하이드로퍼옥사이드, 1,3-비스(t-부틸퍼옥시이소프로필)벤젠, 메틸에틸케톤퍼옥사이드, 디-(2,4-디클로로벤조일)퍼옥사이드, 1,1-디(t-부틸퍼옥시)-3,3,5-트리메틸사이클로헥산, 2,5-디메틸-2,5-디(벤조일퍼옥시)헥산, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 디-t-부틸퍼옥사이드, 및 n-부틸-4,4-비스(t-부틸퍼옥시)발러레이트 중 선택되는 어느 하나인 것을 포함한다.The aliphatic polyester-based polymer modified with the reactive modifier contains 0.06 to 0.6 parts by weight of the peroxidant based on 100 parts by weight of the aliphatic polyester-based polymer. If the content is less than 0.06 parts by weight of the modification effect by the reactive modifier is difficult to achieve the object of the present invention, if the content is more than 0.6 parts by weight due to excessive reaction due to excessive gelation due to networking (Networking) between the main chain (Networking) Damage to the appearance of the film and severely damage the film during the molding process may result in the unmolding result. At this time, the peroxidant dicumyl peroxide, dibenzoyl peroxide, cyclohexanone peroxide, t- butyl peroxy isopropyl carbonate, t- butyl peroxy laurate, t- butyl peroxy acetate, di-t -Butyl diperoxy phthalate, t-dibutyl peroxy maleic acid, t-butyl cumyl peroxide, t-butyl hydroperoxide, 1, 3-bis (t-butyl peroxy isopropyl) benzene, methyl ethyl ketone peroxide, di -(2,4-dichlorobenzoyl) peroxide, 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di (benzoylperoxy ) Hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, di-t-butylperoxide, and n-butyl-4,4-bis (t-butylperoxy) valerate It includes any one selected from among.
상기 반응성 개질제로 개질한 지방족 폴리에스터 폴리머는 산화방지제를 지방족 폴리에스터 폴리머 100중량부에 대하여 0.3~0.8중량부를 함유한다. 상기 함량이 0.3중량부 미만이면 가공 중 발생되는 열이력으로부터의 지방족 폴리에스터 폴리머의 구조 보호를 달성하기 어려우며, 0.8중량부 초과이면 지나친 사용으로 인해 필름을 사용하는 과정에서의 이행 현상을 초래할 수도 있고 기계적 물성의 저하도 초래 할 수 있다. 이때, 상기 산화방지제는 펜타에리쓰리톨 테트라키스(3,5-디-터셔리-부틸-4-하이드록시하이드로신나메이트)[pentaerythritol tetrakis(3,5-di-tert-butyl-4-hydroxyhydrocinnamate)] 및 트리스 2,4-디-터셔리-부틸페닐포스파이트 [Tris(2,4-di-tert-butylphenyl)phosphite]를 사용하는 것이 바람직하다. The aliphatic polyester polymer modified with the reactive modifier contains 0.3 to 0.8 parts by weight of antioxidant based on 100 parts by weight of aliphatic polyester polymer. When the content is less than 0.3 parts by weight, it is difficult to achieve structural protection of the aliphatic polyester polymer from the heat history generated during processing, and when the content is more than 0.8 parts by weight, excessive use may result in a transition phenomenon in the process of using the film. Deterioration of mechanical properties can also result. At this time, the antioxidant is pentaerythritol tetrakis (3,5-di-tert-butyl-4-hydroxyhydrocinnamate) [pentaerythritol tetrakis (3,5-di-tert-butyl-4-hydroxyhydrocinnamate) ] And tris 2,4-di-tert-butylphenylphosphite [Tris (2,4-di-tert-butylphenyl) phosphite].
본 발명에 따른 생분해성 필름 조성물의 용융지수(ASTM D 1238, 2.16kg/㎠, 190℃)는 3~30g/10min인 것을 특징으로 하며, 보다 바람직하게는 5~20g/10min인 것이 좋다. 상기 범위의 용융지수의 조절을 통하여 조성물의 가공성을 높이며, 인장강도, 신율 등의 기계적 물성 향상을 도모할 수 있다. Melt index (ASTM D 1238, 2.16kg / ㎠, 190 ℃) of the biodegradable film composition according to the invention is characterized in that 3 ~ 30g / 10min, more preferably 5 ~ 20g / 10min. By adjusting the melt index of the above range can improve the processability of the composition, it is possible to improve the mechanical properties such as tensile strength, elongation.
본 발명은 상기 극성을 띠는 반응성 개질제로 개질한 지방족 폴리에스터계 폴리머, 폴리락틱산, 과산화제 및 산화방지제를 포함하고, 상기 지방족 폴리에스터계 폴리머 및 폴리락틱산의 혼합중량비를 조절하여 환경친화적인 생분해성 필름 조성물을 제공하여 용융흐름도를 향상시키고 공정을 단순화하여 생산비를 절감할 수 있다. 상기 조성물로 우수한 가공성 및 기계적 물성을 충분히 발현할 수 있다. The present invention includes an aliphatic polyester-based polymer modified with the polar reactive modifier, polylactic acid, peroxidant and antioxidant, and is environmentally friendly by controlling the mixed weight ratio of the aliphatic polyester-based polymer and polylactic acid. Phosphorus biodegradable film compositions can be provided to improve melt flow and simplify the process to reduce production costs. The composition can sufficiently express excellent processability and mechanical properties.
본 발명은 보다 바람직하게 성형 과정에서 결정화 속도를 빠르게 하여 성형성을 증가시키기 위해 평균입도가 0.5㎛~5㎛인 무기충진제를 추가로 포함할 수 있다. 상기 무기충진제는 경질 또는 중질 탄산칼슘, 실리카, 탈크, 황산바륨, 클레이 또는 산화칼슘 중에서 1종 또는 2종 이상의 혼합된 것에서 선택되며, 전체 조성물에 대해 2~13% 사용한다. 상기 무기충진제의 평균입도가 0.5㎛미만이면 입자의 분산이 곤란해지며, 5㎛ 초과이면 입자의 크기가 지나치게 커져, 발명에서 의도하는 바를 달성하기가 여렵다. 또한, 무기충진제의 함량이 전체조성물의 2% 미만일 경우 결정화 속도에 기여하는 효과가 적고, 13%를 초과하면 무기 충진제의 분산이 어렵고, 기계적 물성 저하 등으로 인하여 좋지 않은 결과를 초래할 수 있다. More preferably, the present invention may further include an inorganic filler having an average particle size of 0.5 μm to 5 μm in order to increase the moldability by increasing the crystallization rate in the molding process. The inorganic filler is selected from one or a mixture of two or more of hard or heavy calcium carbonate, silica, talc, barium sulfate, clay or calcium oxide, and 2 to 13% of the total composition is used. If the average particle size of the inorganic filler is less than 0.5 μm, it becomes difficult to disperse the particles. If the average particle size is more than 5 μm, the size of the particles becomes too large, and it is difficult to achieve the intention of the present invention. In addition, when the content of the inorganic filler is less than 2% of the total composition, the effect of contributing to the crystallization rate is small, and when the content of the inorganic filler exceeds 13%, it is difficult to disperse the inorganic filler, resulting in deterioration of mechanical properties.
본 발명의 생분해성 필름 조성물은 필요에 따라 안정제, 윤활제, 난연제, 대전방지제, 항균제, 생분해촉진제, 열안정제, 광안정제, 내후안정제, 자외선흡수제, 블로킹 방지제 등의 각종 첨가제들을 본 발명의 목적을 손상시키지 않는 범위에서 배합할 수 있다. The biodegradable film composition of the present invention, if necessary, various additives such as stabilizers, lubricants, flame retardants, antistatic agents, antibacterial agents, biodegradation accelerators, heat stabilizers, light stabilizers, weathering stabilizers, ultraviolet absorbers, antiblocking agents, etc., impair the object of the present invention. It can mix | blend in the range which does not make it.
본 발명에서 사용될 수 있는 압출기로는 단축압출기, 동방향 회전 이축 압출기, 이방향 회전 이축 압출기 등의 공지의 혼합성이 양호한 것이라면 어느 것이라도 좋으나, 바람직하게는 동방향 회전 이축 압출기를 사용하는 것이 좋다.As the extruder that can be used in the present invention, any known mixing property, such as a single screw extruder, a co-rotating twin screw extruder, a bi-directional rotary twin screw extruder, may be used, but preferably a co-rotating twin screw extruder is used. .
이상에서 설명한 바와 같이, 본 발명에 따른 생분해성 필름 조성물은 용융흐름도가 가공하기에 적합하여 공정 시간을 단축할 수 있으며 생산비용을 절감할 수 있다. 또한, 생분해성 필름이 갖는 생분해도가 저하되지 않으면서 기계적 물성을 보완 및 향상시킬 수 있어 산업분야 전반에 그 용도를 확대 적용할 수 있는 이점이 있다. As described above, the biodegradable film composition according to the present invention is suitable for processing the melt flow rate can shorten the process time and can reduce the production cost. In addition, it is possible to supplement and improve the mechanical properties without reducing the biodegradability of the biodegradable film has the advantage that can be widely applied to the application throughout the industry.
이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.
하기 실시예 및 비교예에 따라 제조된 필름의 인장강도, 신율, 인열강도 및 생분해성을 다음과 같이 측정하였다.
Tensile strength, elongation, tear strength and biodegradability of the films prepared according to the following Examples and Comparative Examples were measured as follows.
물성평가Property evaluation
(인장강도 및 신율)(Tensile strength and elongation)
KS M 3503의 7.6 인장강도 및 인장신율 시험방법에 준해 시료의 파단 시 강도(kg/㎠) 및 신율(%)을 측정하였다. 주행방향(MD), 주행방향에 수직인 폭방향(TD)에 대해 각각 측정한 뒤 가장 낮은 값을 취하였다.
The strength (kg / cm 2) and elongation (%) at break of the sample were measured according to the 7.6 tensile strength and tensile elongation test method of KS M 3503. The lowest value was taken after each measurement was made for the travel direction MD and the width direction TD perpendicular to the travel direction.
(생분해성)(Biodegradable)
KS M 3100-1 퇴비화 조건에서의 플라스틱의 호기성 생분해도 측정방법에 의해 표준시료(셀룰로오즈)와 시험 시료의 발생된 이산화탄소의 양을 측정해서 평가 하였다. The aerobic biodegradability of plastics under KS M 3100-1 composting conditions was measured and evaluated by measuring the amount of carbon dioxide generated from the standard sample (cellulose) and the test sample.
생분해도 (%)= (발생 이산화탄소의 양/ 이론적 이산화탄소 량)*100
Biodegradability (%) = (quantity of generated carbon dioxide / theoretical amount of carbon dioxide) * 100
반응성개질제로As a reactive modifier
개질한Modified
지방족 Aliphatic
폴리에스터polyester
폴리머의Of polymer
제조 Produce
(제조예 1)(Production Example 1)
80℃에서 12시간 이상 건조시킨 Poly(butylene succinate-co-butyleneterephthalate)(이하 PBST라고 함) 100중량부에 대하여 Alkenyl succinic anhydride, Albemarle)(이하 18ASA라고 함) 1중량부, 과산화제(peroxide)로 디큐밀퍼옥사이드 0.1중량부, 산화방지제 0.3중량부를 예비혼합한 후 동방향 이축 압출기에서 압출하였다. 이 때, 산화방지제는 Anox 20(Chemtura Corporation) 0.15중량부 및 Alkanox 240(Chemtura Corporation) 0.15중량부를 혼합한 것을 사용하였다. 1 part by weight of Alkenyl succinic anhydride, Albemarle (hereinafter referred to as 18ASA) with respect to 100 parts by weight of poly (butylene succinate-co-butyleneterephthalate) (hereinafter referred to as PBST) dried at 80 ° C. for 12 hours or more, as a peroxide. 0.1 parts by weight of dicumyl peroxide and 0.3 parts by weight of antioxidant were premixed and extruded in a coaxial twin screw extruder. At this time, the antioxidant used was a mixture of 0.15 parts by weight of Anox 20 (Chemtura Corporation) and 0.15 part by weight of Alkanox 240 (Chemtura Corporation).
상기 압출기의 온도 조건은 130/140/150/160/160/170/160/160/170/170℃ 이고, screw의 rpm은 feeder 70~80rpm, main motor 450rpm으로 압출하였다.
The temperature condition of the extruder is 130/140/150/160/160/170/160/160/170/170 ℃, the rpm of the screw was extruded by feeder 70 ~ 80rpm, main motor 450rpm.
생분해성 필름 조성물 Biodegradable Film Composition
(실시예 1)(Example 1)
제조예 1의 개질된 PBST 및 폴리락틱산(Poly lactic acid)을 건조시킨 후 7: 3의 중량비로 혼합한 100중량부에 대하여, 디큐밀퍼옥사이드 0.1중량부, 산화방지제로서 Anox 20(Chemtura Corporation) 0.15중량부 및 Alkanox 240(Chemtura Corporation) 0.15중량부를 사용하여 이들을 예비혼합한 후, 용융지수(ASTM D 1238, 2.16kg/㎠, 190℃)는 6.8g/10min를 나타내었고, 이를 압출기에서 압출하였다. 상기 압출기의 온도 조건은 150/160/170/180/160/170 /170/180/ 180/180℃ 이고, screw의 rpm은 feeder 60rpm, main motor 370rpm으로 압출하였다. 이렇게 제조된 생분해성 필름 조성물은 원형 다이 성형기를 사용하여 130~170℃ 범위로 압출기 실린더 및 다이온도를 적절히 조정하여 폭 300mm, 두께 30㎛의 튜브형 필름을 제조하였고, 그 물성을 표 1에 나타내었다.
0.1 parts by weight of dicumyl peroxide, 100 parts by weight of the modified PBST and polylactic acid of Preparation Example 1, mixed at a weight ratio of 7: 3, Anox 20 as an antioxidant (Chemtura Corporation) After premixing them using 0.15 parts by weight and 0.15 parts by weight of Alkanox 240 (Chemtura Corporation), the melt index (ASTM D 1238, 2.16 kg / cm 2, 190 ° C.) showed 6.8 g / 10 min, which was extruded in an extruder. . The temperature condition of the extruder is 150/160/170/180/160/170/170/180/180/180 ℃, the screw rpm was extruded by feeder 60 rpm, main motor 370 rpm. The biodegradable film composition thus prepared was a tubular film having a width of 300 mm and a thickness of 30 μm by appropriately adjusting the extruder cylinder and the die temperature in a range of 130 to 170 ° C. using a circular die molding machine, and the physical properties thereof are shown in Table 1 below. .
(실시예 2)(Example 2)
제조예 1의 개질된 PBST 및 폴리락틱산(Poly lactic acid)을 건조시킨 후 3: 7의 중량비로 혼합한 100중량부에 대하여, 디큐밀퍼옥사이드 0.06중량부, 산화방지제로서 Anox 20(Chemtura Corporation) 0.15중량부 및 Alkanox 240(Chemtura Corporation) 0.15중량부를 사용하여 이들을 예비혼합한 후, 용융지수(ASTM D 1238, 2.16kg/㎠, 190℃)는 8.3g/10min를 나타내었고, 이를 압출기에서 압출하였다. 상기 압출기의 온도 조건은 150/160/170/180/160/170/170/180/180/180℃ 이고, screw의 rpm은 feeder 60rpm, main motor 370rpm으로 압출하였다. 이렇게 제조된 생분해성 필름 조성물은 원형 다이 성형기를 사용하여 130~170℃ 범위로 압출기 실린더 및 다이온도를 적절히 조정하여 폭 300mm,두께 30㎛의 튜브형 필름을 제조하였고, 그 물성을 표 1에 나타내었다.
To 100 parts by weight of the modified PBST and polylactic acid of Preparation Example 1 was mixed in a weight ratio of 3: 7, 0.06 parts by weight of dicumyl peroxide, Anox 20 (Chemtura Corporation) as an antioxidant After premixing them using 0.15 parts by weight and 0.15 parts by weight of Alkanox 240 (Chemtura Corporation), the melt index (ASTM D 1238, 2.16 kg / cm 2, 190 ° C.) showed 8.3 g / 10 min, which was extruded in an extruder. . The temperature condition of the extruder is 150/160/170/180/160/170/170/180/180/180 ℃, the rpm of the screw was extruded by feeder 60 rpm, main motor 370 rpm. The biodegradable film composition thus prepared was a tubular film having a width of 300 mm and a thickness of 30 μm by properly adjusting the extruder cylinder and the die temperature in the range of 130 to 170 ° C. using a circular die molding machine, and the physical properties thereof are shown in Table 1 below. .
(실시예 3)(Example 3)
제조예 1의 개질된 PBST 및 폴리락틱산(Poly lactic acid)을 건조시킨 후 6: 4의 중량비로 혼합한 100중량부에 대하여, 디큐밀퍼옥사이드 0.1중량부, 산화방지제로서 Anox 20(Chemtura Corporation) 0.15중량부 및 Alkanox 240(Chemtura Corporation) 0.15중량부를 사용하여 이들을 예비혼합한 후, 용융지수(ASTM D 1238, 2.16kg/㎠, 190℃)는 10.9g/10min를 나타내었고, 이를 압출기에서 압출하였다. 상기 압출기의 온도 조건은 150/160/170/180/160/170/170/180/180/180℃ 이고, screw의 rpm은 feeder 60rpm, main motor 370rpm으로 압출하였다. 이렇게 제조된 생분해성 필름 조성물은 원형 다이 성형기를 사용하여 130~170℃ 범위로 압출기 실린더 및 다이온도를 적절히 조정하여 폭 300mm,두께 30㎛의 튜브형 필름을 제조하였고, 그 물성을 표 1에 나타내었다.
0.1 parts by weight of dicumyl peroxide, 100 parts by weight of the modified PBST and polylactic acid of Preparation Example 1, mixed at a weight ratio of 6: 4, Anox 20 as an antioxidant (Chemtura Corporation) After premixing them using 0.15 parts by weight and 0.15 parts by weight of Alkanox 240 (Chemtura Corporation), the melt index (ASTM D 1238, 2.16 kg / cm 2, 190 ° C.) showed 10.9 g / 10 min, which was extruded in an extruder. . The temperature condition of the extruder is 150/160/170/180/160/170/170/180/180/180 ℃, the rpm of the screw was extruded by feeder 60 rpm, main motor 370 rpm. The biodegradable film composition thus prepared was a tubular film having a width of 300 mm and a thickness of 30 μm by properly adjusting the extruder cylinder and the die temperature in the range of 130 to 170 ° C. using a circular die molding machine, and the physical properties thereof are shown in Table 1 below. .
(실시예 4)(Example 4)
제조예 1의 개질된 PBST 및 폴리락틱산(Poly lactic acid)을 건조시킨 후 2: 8의 중량비로 혼합한 100중량부에 대하여, 디큐밀퍼옥사이드 0.06중량부, 산화방지제로서 Anox 20(Chemtura Corporation) 0.15중량부 및 Alkanox 240(Chemtura Corporation) 0.15중량부를 사용하여 이들을 예비혼합한 후, 용융지수(ASTM D 1238, 2.16kg/㎠, 190℃)는 5.5g/10min를 나타내었고, 이를 압출기에서 압출하였다. 상기 압출기의 온도 조건은 150/160/170/180/160/170/170/180/180/180℃ 이고, screw의 rpm은 feeder 60rpm, main motor 370rpm으로 압출하였다. 이렇게 제조된 생분해성 필름 조성물은 원형 다이 성형기를 사용하여 130 ~ 170℃ 범위로 압출기 실린더 및 다이온도를 적절히 조정하여 두께 폭 300mm, 30㎛의 튜브형 필름을 제조하였고, 그 물성을 표 1에 나타내었다.
To 100 parts by weight of the modified PBST and polylactic acid of Preparation Example 1 was mixed in a weight ratio of 2: 8, 0.06 parts by weight of dicumyl peroxide, Anox 20 (Chemtura Corporation) as an antioxidant After premixing them using 0.15 parts by weight and 0.15 parts by weight of Alkanox 240 (Chemtura Corporation), the melt index (ASTM D 1238, 2.16 kg / cm 2, 190 ° C.) showed 5.5 g / 10 min, which was extruded in an extruder. . The temperature condition of the extruder is 150/160/170/180/160/170/170/180/180/180 ℃, the rpm of the screw was extruded by feeder 60 rpm, main motor 370 rpm. The biodegradable film composition thus prepared was a tubular film having a thickness of 300 mm and a thickness of 30 μm by appropriately adjusting the extruder cylinder and the die temperature in the range of 130 to 170 ° C. using a circular die molding machine, and the physical properties thereof are shown in Table 1. .
(실시예 5)(Example 5)
제조예 1의 개질된 PBST 및 폴리락틱산(Poly lactic acid)을 건조시킨 후 7: 3의 중량비로 혼합한 100중량부에 대하여, 디큐밀퍼옥사이드 0.1중량부, 산화방지제로서 Anox 20(Chemtura Corporation) 0.15중량부 및 Alkanox 240(Chemtura Corporation) 0.15중량부를 사용하고, 1㎛의 평균입경을 갖는 탄산칼슘을 전체 조성물의 4.3% 포함되도록 하여 이들을 예비혼합한 후, 압출기에서 압출하였다. 이때, 압출기의 온도 조건은 150/160/170/180/160/170 /170/180/ 180/180℃ 이고, screw의 rpm은 feeder 60rpm, main motor 370rpm으로 압출하였다. 이렇게 제조된 생분해성 필름 조성물은 원형 다이 성형기를 사용하여 130~170℃ 범위로 압출기 실린더 및 다이온도를 적절히 조정하여 폭 300mm, 두께 30㎛의 튜브형 필름을 제조하였고, 그 물성을 표 1에 나타내었다.
0.1 parts by weight of dicumyl peroxide, 100 parts by weight of the modified PBST and polylactic acid of Preparation Example 1, mixed at a weight ratio of 7: 3, Anox 20 as an antioxidant (Chemtura Corporation) 0.15 parts by weight and 0.15 parts by weight of Alkanox 240 (Chemtura Corporation) were used, and calcium carbonate having an average particle diameter of 1 탆 was premixed so that 4.3% of the total composition was included and then extruded in an extruder. At this time, the temperature conditions of the extruder is 150/160/170/180/160/170/170/180/180/180 ℃, the rpm of the screw was extruded by feeder 60 rpm, main motor 370 rpm. The biodegradable film composition thus prepared was a tubular film having a width of 300 mm and a thickness of 30 μm by appropriately adjusting the extruder cylinder and the die temperature in a range of 130 to 170 ° C. using a circular die molding machine, and the physical properties thereof are shown in Table 1 below. .
(비교예 1)(Comparative Example 1)
개질하지 않은 PBST 및 폴리락틱산(Poly lactic acid)을 건조시킨 후 7: 3의 중량비로 혼합한 100중량부에 대하여, 산화방지제로서 Anox 20(Chemtura Corporation) 0.15중량부 및 Alkanox 240(Chemtura Corporation) 0.15중량부를 사용하여 이들을 예비혼합한 후, 압출기에서 압출하였다. 상기 압출기의 온도 조건은 150/160/170/180/160/170/170/180/180/180℃ 이고, screw의 rpm은 feeder 60rpm, main motor 370rpm으로 압출하였다. 이렇게 제조된 생분해성 필름 조성물은 원형 다이 성형기를 사용하여 170 ~ 190℃ 범위로 압출기 실린더 및 다이온도를 적절히 조정하여 두께 30㎛의 튜브형 필름을 제조하였고, 그 물성을 표 1에 나타내었다.
0.15 parts of Anox 20 (Chemtura Corporation) and Alkanox 240 (Chemtura Corporation) as antioxidants based on 100 parts by weight of unmodified PBST and polylactic acid, which were mixed at a weight ratio of 7: 3 after drying. These were premixed using 0.15 parts by weight and then extruded in an extruder. The temperature condition of the extruder is 150/160/170/180/160/170/170/180/180/180 ℃, the rpm of the screw was extruded by feeder 60 rpm, main motor 370 rpm. The biodegradable film composition thus prepared was a tubular film having a thickness of 30 μm by properly adjusting the extruder cylinder and the die temperature in the range of 170 to 190 ° C. using a circular die molding machine, and the physical properties thereof are shown in Table 1.
(비교예 2)(Comparative Example 2)
개질하지 않은 PBST 및 폴리락틱산(Poly lactic acid)을 건조시킨 후 3:7의 중량비로 혼합한 100중량부에 대하여, 산화방지제로서 Anox 20(Chemtura Corporation) 0.15중량부 및 Alkanox 240(Chemtura Corporation) 0.15중량부를 사용하여 이들을 예비혼합한 후, 압출기에서 압출하였다. 상기 압출기의 온도 조건은 150/160/170/180/160/170/170/180/180/180℃ 이고, screw의 rpm은 feeder 60rpm, main motor 370rpm으로 압출하였다. 이렇게 제조된 생분해성 필름 조성물은 원형 다이 성형기를 사용하여 170 ~ 190℃ 범위로 압출기 실린더 및 다이온도를 적절히 조정하여 두께 30㎛의 튜브형 필름을 제조하였고, 그 물성을 표 1에 나타내었다.
0.15 parts of Anox 20 (Chemtura Corporation) and Alkanox 240 (Chemtura Corporation) as antioxidants based on 100 parts by weight of unmodified PBST and polylactic acid, which were mixed at a weight ratio of 3: 7 after drying. These were premixed using 0.15 parts by weight and then extruded in an extruder. The temperature condition of the extruder is 150/160/170/180/160/170/170/180/180/180 ℃, the rpm of the screw was extruded by feeder 60 rpm, main motor 370 rpm. The biodegradable film composition thus prepared was a tubular film having a thickness of 30 μm by properly adjusting the extruder cylinder and the die temperature in the range of 170 to 190 ° C. using a circular die molding machine, and the physical properties thereof are shown in Table 1.
상기 표 1에서 보이는 바와 같이, 본 발명에 따른 실시예 1 내지 4는 비교예에 비하여 PLA와의 상용성을 증가시키기 위해 개질한 지방산 폴리에스테르의 계면 접착력의 증가로 인해 기계적 물성들이 더욱 양호해지는 것을 확인할 수 있었다.As shown in Table 1, Examples 1 to 4 according to the present invention is confirmed that the mechanical properties are better due to the increase in the interfacial adhesion of the modified fatty acid polyester to increase the compatibility with PLA compared to the comparative example Could.
본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.The present invention is not limited to the above embodiments, and various modifications and variations are possible to those skilled in the art from this description. Therefore, the spirit of the present invention should not be limited to the described embodiments, and all of the equivalents or equivalents of the claims as well as the claims to be described later will belong to the scope of the present invention. .
Claims (10)
Eco-friendly biodegradable film composition comprising an aliphatic polyester-based polymer modified with a reactive modifier, polylactic acid, peroxidant, antioxidant and inorganic filler.
상기 반응성개질제로 개질한 지방족 폴리에스터계 폴리머 및 폴리락틱산의 혼합 중량비는 1:9~9:1인 것을 특징으로 하는 친환경 생분해성 필름 조성물.
The method of claim 1,
Eco-friendly biodegradable film composition, characterized in that the mixing weight ratio of the aliphatic polyester-based polymer and polylactic acid modified with the reactive modifier is 1: 9 ~ 9: 1.
상기 반응성개질제로 개질한 지방족 폴리에스터계 폴리머는 지방족 폴리에스터계 폴리머 100중량부에 대하여 반응성개질제 0.5~2.5 중량부, 과산화제 0.06~0.6중량부 및 산화방지제 0.3~0.8 중량부를 포함하는 친환경 생분해성 필름 조성물.
The method of claim 1,
The aliphatic polyester-based polymer modified with the reactive modifier is environmentally-friendly biodegradable, including 0.5-2.5 parts by weight of reactive modifier, 0.06-0.6 parts by weight of peroxide, and 0.3-0.8 parts by weight, based on 100 parts by weight of aliphatic polyester-based polymer. Film composition.
상기 조성물의 용융지수(ASTM D 1238, 2.16kg/㎠, 190℃)는 3~30g/10min인 친환경 생분해성 필름 조성물.
The method according to claim 1, wherein
Melt index of the composition (ASTM D 1238, 2.16kg / ㎠, 190 ℃) is 3 ~ 30g / 10min eco-friendly biodegradable film composition.
상기 산화방지제는 펜타에리쓰리톨 테트라키스(3,5-디-터셔리-부틸-4-하이드록시하이드로신나메이트) 및 트리스 2,4-디-터셔리-부틸페닐포스파이트를 포함하는 친환경 생분해성 필름 조성물.
The method of claim 1,
The antioxidant is environmentally friendly biodegradation including pentaerythritol tetrakis (3,5-di-tert-butyl-4-hydroxyhydrocinnamate) and tris 2,4-di-tert-butylphenylphosphite Film composition.
상기 과산화제는 디큐밀퍼옥사이드, 디벤조일퍼옥사이드, 사이클로헥사논퍼옥사이드, t-부틸퍼옥시이소프로필카르보네이트, t-부틸퍼옥시라우릴레이트, t-부틸퍼옥시아세테이트, 디-t-부틸디퍼옥시프탈레이트, t-디브틸퍼옥시말레인산, t-부틸큐밀퍼옥사이드, t-부틸하이드로퍼옥사이드, 1,3-비스(t-부틸퍼옥시이소프로필)벤젠, 메틸에틸케톤퍼옥사이드, 디-(2,4-디클로로벤조일)퍼옥사이드, 1,1-디(t-부틸퍼옥시)-3,3,5-트리메틸사이클로헥산, 2,5-디메틸-2,5-디(벤조일퍼옥시)헥산, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 디-t-부틸퍼옥사이드, 및 n-부틸-4,4-비스(t-부틸퍼옥시)발러레이트 중 선택되는 어느 하나인 친환경 생분해성 필름 조성물.
The method of claim 1,
The peroxidant may be dicumyl peroxide, dibenzoyl peroxide, cyclohexanone peroxide, t-butylperoxyisopropyl carbonate, t-butylperoxy laurate, t-butylperoxy acetate, di-t-butyl Diperoxyphthalate, t-dibutyl peroxymaleic acid, t-butyl cumyl peroxide, t-butyl hydroperoxide, 1,3-bis (t-butylperoxyisopropyl) benzene, methylethylketone peroxide, di- ( 2,4-dichlorobenzoyl) peroxide, 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane , 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, di-t-butylperoxide, and n-butyl-4,4-bis (t-butylperoxy) valerate Any one of which is an eco-friendly biodegradable film composition.
상기 지방족 폴리에스터계 폴리머는 폴리부틸렌 숙신산(Polybutylene succinate(PBS)), 폴리부틸렌 아디페이트/테레프탈레이트(Polybutylene adipate/terephthalate(PBAT)), 폴리부틸렌 숙신산 아디페이트(Polybutylene succinate adipate(PBSA)) 또는 폴리부틸렌 숙신산/부틸렌 테레프탈레이트(Polybutylene succinate/butylene terephthalate (PBST)) 중 선택되는 어느 하나인 친환경 생분해성 필름 조성물.
The method of claim 1,
The aliphatic polyester-based polymer may be polybutylene succinate (PBS), polybutylene adipate / terephthalate (PBAT), polybutylene succinate adipate (PBSA) ) Or polybutylene succinic acid / butylene terephthalate (Polybutylene succinate / butylene terephthalate (PBST)) is any one of the environmentally-friendly biodegradable film composition.
상기 반응성 개질제는 분자 구조상 극성(polar)을 띠는 산류 혹은 그의 무수물 중에서 분자량 1000이하의 저 분자량의 것이며, 비닐 실란(Vinyl silane), 글리시딜 메타크릴레이트(Glycidyl methacrylate), 스티렌-아크릴로니트릴(Styrene-acrylonitrile), 아크릴산(Acrylic acid), 푸마르산(Fumaric Acid), 시트라콘 무수물(Citraconic Anhydride), 무수말레인산(Maleic Anhydride) 또는 알케닐 석신산 무수물(Alkenyl succinic anhydride) 중 선택되는 어는 하나인 친환경 생분해성 필름 조성물.
The method of claim 1,
The reactive modifier is a low molecular weight of 1,000 or less in a polar acid or its anhydride in molecular structure, vinyl silane, glycidyl methacrylate, styrene-acrylonitrile (Styrene-acrylonitrile), acrylic acid, fumaric acid, citraconic anhydride (Citraconic Anhydride), maleic anhydride or alkenyl succinic anhydride are selected from Biodegradable Film Compositions.
무기충진제는 평균입도가 0.5~5㎛인 경질 또는 중질 탄산칼슘, 실리카, 탈크, 황산바륨, 클레이 또는 산화칼슘 중에서 1종 또는 2종 이상의 혼합된 것에서 선택되며, 전체 조성물 중 2~13%를 사용하는 것을 특징으로 하는 친환경 생분해성 필름 조성물.
The method of claim 1,
The inorganic filler is selected from one or two or more of hard or heavy calcium carbonate, silica, talc, barium sulfate, clay or calcium oxide having an average particle size of 0.5 to 5 μm, and using 2 to 13% of the total composition. Eco-friendly biodegradable film composition, characterized in that.
Eco-friendly biodegradable film comprising any one of the compositions selected from claim 1 to claim 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100108987A KR101249390B1 (en) | 2010-11-04 | 2010-11-04 | Eco-friendly biodegradable film composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100108987A KR101249390B1 (en) | 2010-11-04 | 2010-11-04 | Eco-friendly biodegradable film composition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120047431A true KR20120047431A (en) | 2012-05-14 |
KR101249390B1 KR101249390B1 (en) | 2013-04-03 |
Family
ID=46266166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100108987A KR101249390B1 (en) | 2010-11-04 | 2010-11-04 | Eco-friendly biodegradable film composition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101249390B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101461777B1 (en) * | 2013-01-25 | 2014-11-13 | 경북대학교 산학협력단 | A biodegradable polymer composition comprising cellulose and polylactic acid, and a biodegradable film prepared by using the same |
KR101540108B1 (en) * | 2013-06-17 | 2015-07-30 | 주식회사 블리스팩 | A composition of a biodegradable resin for preparation of foam |
KR20160071524A (en) | 2014-12-11 | 2016-06-22 | 롯데정밀화학 주식회사 | Method for controlling degradation rate of biodegradable resin composition and biodegradable mulching film |
CN107955350A (en) * | 2017-12-03 | 2018-04-24 | 山东天野生物降解新材料科技有限公司 | A kind of complete biodegradable drug resistance ground film composition and preparation method thereof |
KR20180107407A (en) | 2017-03-20 | 2018-10-02 | 이동춘 | Fiber film having multi purpose and preparation method of the same |
CN109535670A (en) * | 2018-11-16 | 2019-03-29 | 广东众塑降解材料有限公司 | A kind of Wholly-degradable emulation material and preparation method thereof |
KR20220103452A (en) * | 2021-01-15 | 2022-07-22 | (주)우성케미칼 | Biodegradable polyester resin composition |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190067320A (en) | 2017-12-07 | 2019-06-17 | 전상민 | Eco-friendly biedegradable thermo plastic polymer resin composition and it's manufacturing film |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3980446B2 (en) | 2002-08-13 | 2007-09-26 | 富士通株式会社 | Biodegradable resin composition, and filler and molded article for biodegradable resin composition |
JP4149887B2 (en) * | 2002-10-03 | 2008-09-17 | ダイセル化学工業株式会社 | Composite biodegradable molded product |
EP1842877A4 (en) * | 2005-01-18 | 2010-12-29 | Toho Chem Ind Co Ltd | Biodegradable polyester resin composition |
KR101000749B1 (en) * | 2008-09-30 | 2010-12-13 | 주식회사 그린케미칼 | Biodegradable resin composition, method for production thereof and biodegradable film therefrom |
-
2010
- 2010-11-04 KR KR1020100108987A patent/KR101249390B1/en active IP Right Grant
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101461777B1 (en) * | 2013-01-25 | 2014-11-13 | 경북대학교 산학협력단 | A biodegradable polymer composition comprising cellulose and polylactic acid, and a biodegradable film prepared by using the same |
KR101540108B1 (en) * | 2013-06-17 | 2015-07-30 | 주식회사 블리스팩 | A composition of a biodegradable resin for preparation of foam |
KR20160071524A (en) | 2014-12-11 | 2016-06-22 | 롯데정밀화학 주식회사 | Method for controlling degradation rate of biodegradable resin composition and biodegradable mulching film |
KR20180107407A (en) | 2017-03-20 | 2018-10-02 | 이동춘 | Fiber film having multi purpose and preparation method of the same |
CN107955350A (en) * | 2017-12-03 | 2018-04-24 | 山东天野生物降解新材料科技有限公司 | A kind of complete biodegradable drug resistance ground film composition and preparation method thereof |
CN109535670A (en) * | 2018-11-16 | 2019-03-29 | 广东众塑降解材料有限公司 | A kind of Wholly-degradable emulation material and preparation method thereof |
CN109535670B (en) * | 2018-11-16 | 2021-10-08 | 广东众塑降解材料有限公司 | Full-degradable simulation material and preparation method thereof |
KR20220103452A (en) * | 2021-01-15 | 2022-07-22 | (주)우성케미칼 | Biodegradable polyester resin composition |
Also Published As
Publication number | Publication date |
---|---|
KR101249390B1 (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101249390B1 (en) | Eco-friendly biodegradable film composition | |
JP7305718B2 (en) | Cellulose composite material containing wood pulp and process for producing same | |
KR101461777B1 (en) | A biodegradable polymer composition comprising cellulose and polylactic acid, and a biodegradable film prepared by using the same | |
JP5794731B2 (en) | Resin composition | |
JP6019131B2 (en) | Foamed sheet using cross-linked polylactic acid and method for producing the same | |
CN103589125B (en) | A kind of Polylactic acid/polypropylene blend and preparation method thereof | |
CN106574101A (en) | Polyester resin composition and molding | |
JP5226335B2 (en) | Resin composition and molded body formed by molding the same | |
US20100331458A1 (en) | Reinforcing additives for composite materials | |
KR101320435B1 (en) | Biodegradable film composition | |
JP5279415B2 (en) | Resin composition and molded body using the same | |
JP2009209233A (en) | Biodegradable polyester resin composition and molded article comprising the same | |
JPWO2016104634A1 (en) | Thermoplastic resin composition and molded article thereof | |
KR101412516B1 (en) | Biodegradable resin composition including polylactic acid and method for manufacturing thereof | |
JP3785904B2 (en) | Polylactic acid composition and method for producing the same | |
CN106397842A (en) | Packaging film material with degradability | |
JP2008239645A (en) | Polylactic acid-based resin composition, method for producing the same and molded article | |
KR102466532B1 (en) | Water based biodegadable composition, products including the same and manufacturing method of water based biodegadable products | |
CN112094487B (en) | Easily-cleaned high-temperature-resistant polylactic acid composite material for environment-friendly tableware | |
JP7251250B2 (en) | Resin composition for film molding and film made of the resin composition | |
JP4615937B2 (en) | Thermoplastic resin molded body, method for producing the same, and method for recycling thermoplastic resin | |
CN104693706A (en) | Heat resistance increased impact resistant polylactic acid modified material and preparation method thereof | |
JP2011084654A (en) | Polylactic acid-based resin composition | |
KR102595757B1 (en) | Water based biodegadable composition having improved mechanical properties, products including the same and manufacturing method of water based biodegadable products | |
JP2011116954A (en) | Polylactic acid resin composition and molded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
X091 | Application refused [patent] | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160325 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170324 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180326 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190326 Year of fee payment: 7 |