KR20120045684A - Development of the Ultrahigh Power Lithium Ion Battery Anode Material Using Dynamically Size Transformable Metal Oxides-Carbon Nanostructure Composites - Google Patents

Development of the Ultrahigh Power Lithium Ion Battery Anode Material Using Dynamically Size Transformable Metal Oxides-Carbon Nanostructure Composites Download PDF

Info

Publication number
KR20120045684A
KR20120045684A KR1020100107375A KR20100107375A KR20120045684A KR 20120045684 A KR20120045684 A KR 20120045684A KR 1020100107375 A KR1020100107375 A KR 1020100107375A KR 20100107375 A KR20100107375 A KR 20100107375A KR 20120045684 A KR20120045684 A KR 20120045684A
Authority
KR
South Korea
Prior art keywords
carbon
negative electrode
oxide
secondary battery
lithium ion
Prior art date
Application number
KR1020100107375A
Other languages
Korean (ko)
Other versions
KR101145297B1 (en
Inventor
신원호
정형모
최장욱
강정구
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020100107375A priority Critical patent/KR101145297B1/en
Publication of KR20120045684A publication Critical patent/KR20120045684A/en
Application granted granted Critical
Publication of KR101145297B1 publication Critical patent/KR101145297B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 싸이즈 동적 전이가 가능한 산화물탄소 나노 복합체를 이용한 초고출력 리튬이온 이차전지 음극조성물 및 (a)탄소나노구조체를 Etylene Glycol 용액에 첨가한 후 초음파를 이용하여 분산하는 단계; (b)전이금속 프리커서가 용해된 Ethylene Glycol 용액을 첨가하고, 환원제로서 1M NaOH 수용액을 첨가하는 단계; (c)마이크로웨이브 오븐에서 60?120초간 가열하여 상기 금속염을 환원한 후, 분산액을 6000?8000rpm에서 10?20분간 원심 분리하는 단계; (d)상기 원심분리 후 50?70℃에서 진공건조한 후, 250?350℃ 수소분위기에서 열처리한 후, 200℃ 공기 분위기에서 열처리하여 산화물-탄소 나노 복합체 혼성재료를 제조하는 단계;를 포함하는 산화물(Oxide)탄소(Carbon) 나노 복합체를 이용한 것을 특징으로 하는 리튬이온 이차전지 음극 조성물의 제조방법에 관한 것이다.
본 발명을 통해 리튬의 흡착/탈리시 나노크기의 입자로 싸이즈가 줄어들며, 이는 용량이 증가하고 반응속도가 빨라지는 현상을 입증할 수 있었고, 순수 전이금속 산화물 또는 탄소나노구조체만 존재할 때보다 높은 용량을 보이고, 작은 금속으로 존재하므로 고출력의 음극 구현이 가능하므로 산업상 이용가능성이 매우 높다고 할 것이다.
The present invention comprises the steps of adding an ultra-high power lithium-ion secondary battery negative electrode composition and (a) carbon nanostructure to the ethylene glycol solution using an oxide carbon nanocomposite capable of size dynamic transition and then dispersing by ultrasonic wave; (b) adding an Ethylene Glycol solution in which a transition metal precursor is dissolved, and adding 1M aqueous NaOH solution as a reducing agent; (c) reducing the metal salt by heating in a microwave oven for 60 to 120 seconds, and then centrifuging the dispersion at 6000 to 8000 rpm for 10 to 20 minutes; (d) after the centrifugation and vacuum-dried at 50 ~ 70 ℃, heat treatment in a 250 ~ 350 ℃ hydrogen atmosphere, heat treatment in 200 ℃ air atmosphere to prepare an oxide-carbon nanocomposite hybrid material; oxide comprising a (Oxide) Carbon (Carbon) relates to a method for producing a lithium ion secondary battery negative electrode composition, characterized in that using the nanocomposite.
The present invention reduced the size of the nano-sized particles during the adsorption / desorption of lithium, which can demonstrate the phenomenon of increased capacity and reaction rate, higher capacity than when only pure transition metal oxides or carbon nanostructures are present. Since it exists as a small metal, it is possible to implement a high power cathode, so that the industrial applicability is very high.

Description

싸이즈 동적 전이가 가능한 산화물탄소 나노 복합체를 이용한 초고출력 리튬이온 이차전지 음극 재료 개발{Development of the Ultrahigh Power Lithium Ion Battery Anode Material Using Dynamically Size Transformable Metal Oxides-Carbon Nanostructure Composites}Development of the Ultrahigh Power Lithium Ion Battery Anode Material Using Dynamically Size Transformable Metal Oxides-Carbon Nanostructure Composites}

본 발명은 리튬이온 이차전지 음극 조성물에 관한 기술이다. 보다 상세하게는 산화물(Oxide)탄소(Carbon) 나노 복합체를 이용한 것을 특징으로 하는 리튬이온 이차전지 음극 조성물 및 그의 제조방법에 관한 것이다.
The present invention relates to a lithium ion secondary battery negative electrode composition. More particularly, the present invention relates to a lithium ion secondary battery negative electrode composition and a method of manufacturing the same, characterized in that the oxide (Carbon) nanocomposite is used.

비디오 카메라, 휴대용 전화, 휴대용 PC 등의 휴대용 무선 기기의 경량화 및 고기능화가 진행됨에 따라, 그 구동용 전원으로서 쓰이는 2차 전지에 대해서 많은 연구가 이루어지고 있다. 지금까지 개발된 2차전지는 그 종류가 10여개에 달하지만 가장 많이 사용되고 있는 것으로는 니켈카드뮴전지, 니켈수소전지,니켈아연전지, 리튬 이온 2차전지 등이 있다. 이중에서 리튬 2차전지는 장수명, 고용량 등의 우수한 특성으로 인하여 차세대 동력원으로서 가장 주목을 받고 있다.As the weight reduction and high functionality of portable wireless devices such as video cameras, portable telephones, and portable PCs have progressed, much research has been conducted on secondary batteries used as driving power sources. The secondary batteries that have been developed so far are about 10 types, but the most used ones are nickel cadmium batteries, nickel hydrogen batteries, nickel zinc batteries, and lithium ion secondary batteries. Among them, lithium secondary batteries are attracting the most attention as next generation power sources due to their excellent characteristics such as long life and high capacity.

리튬 2차전지의 연구 개발은 1970년대초부터 시작되어 세계 각지의 연구기관들이 치열한 개발 경쟁을 벌여 실용화에 앞장서고 있다. 소니 에너지 테크사는 코발트산화물 활물질을 이용한 리튬 양극과 탄소재 음극으로 구성된 리튬 이온계 2차전지를 개발하였고, 몰리 에너지사는 니켈산화물 활물질을 이용한 리튬금속을 음극으로 하는 리튬 금속 2차전지를 상품화하였다.
The research and development of lithium secondary batteries began in the early 1970s, and research institutes around the world are fiercely competing for development. Sony Energy Tech Co., Ltd. has developed a lithium ion secondary battery composed of a lithium positive electrode using a cobalt oxide active material and a carbon material negative electrode, and Molly Energy has commercialized a lithium metal secondary battery using lithium metal as a negative electrode using a nickel oxide active material.

일반적으로 입자의 크기를 조절하는 것은 다양한 산업적인 측면에서 매우 중요한 기술이다. 금속산화물은 리튬이온전지에서 음극재료로 사용이 되나 용량이 높은 반면 반응속도가 높지 않아 고출력 전지에 적합하지 않다. 따라서 이를 극복하여 싸이즈 동적 전이가 가능한 산화물탄소 나노 복합체를 이용한 초고출력 리튬이온 이차전지 음극 재료 개발하는 것이 본 발명의 목적이라 할 것이다.
In general, controlling the size of particles is a very important technique for various industrial aspects. Metal oxide is used as a negative electrode material in lithium ion battery, but its capacity is high but its reaction rate is not high so it is not suitable for high output battery. Therefore, it is an object of the present invention to overcome this problem and develop an ultra-high power lithium ion secondary battery negative electrode material using an oxide carbon nanocomposite capable of size dynamic transition.

상기 과제를 해결하기 위해 아래와 같은 본 발명에서는 리튬이온 이차전지 음극 조성물에 있어서, 산화물(Oxide)탄소(Carbon) 나노 복합체를 이용한 것을 특징으로 하는 리튬이온 이차전지 음극조성물을 제공한다.
In order to solve the above problems, the present invention provides a lithium ion secondary battery negative electrode composition, wherein an oxide (carbon) nanocomposite is used in a lithium ion secondary battery negative electrode composition.

상기 산화물탄소 나노 복합체는 싸이즈 동적전이가 가능한 것을 특징으로 할 수 있다.
The oxide carbon nanocomposite may be characterized in that size dynamic transition is possible.

또한 본 발명에서는 (a)탄소나노구조체를 Etylene Glycol 용액에 첨가한 후 초음파를 이용하여 분산하는 단계; (b)전이금속 프리커서가 용해된 Ethylene Glycol 용액을 첨가하고, 환원제로서 1M NaOH 수용액을 첨가하는 단계; (c)마이크로웨이브 오븐에서 60?120초간 가열하여 상기 금속염을 환원한 후, 분산액을 6000?8000rpm에서 10?20분간 원심 분리하는 단계; (d)상기 원심분리 후 50?70℃에서 진공건조한 후, 250?350℃ 수소분위기에서 열처리한 후, 200℃ 공기 분위기에서 열처리하는 단계;를 포함하는 산화물탄소 나노 복합체를 이용한 것을 특징으로 하는 리튬이온 이차전지 음극 조성물의 제조방법을 제공한다.
In addition, the present invention (a) adding a carbon nanostructure to the Etylene Glycol solution and then dispersing by using ultrasonic waves; (b) adding an Ethylene Glycol solution in which a transition metal precursor is dissolved, and adding 1M aqueous NaOH solution as a reducing agent; (c) reducing the metal salt by heating in a microwave oven for 60 to 120 seconds, and then centrifuging the dispersion at 6000 to 8000 rpm for 10 to 20 minutes; (d) after vacuum drying at 50-70 ° C. after the centrifugation, heat-treating at 250-350 ° C. hydrogen atmosphere, and heat-treating at 200 ° C. in an air atmosphere. It provides a method for producing an ion secondary battery negative electrode composition.

상기 탄소나노구조체는 나노튜브(CNT), 그라핀(Graphene) 및 탄소나노리본(carbon nanoribbon)로 구성된 군에서 선택된 어느 하나인 것을 특징으로 할 수 있다.
The carbon nanostructure may be any one selected from the group consisting of nanotubes (CNT), graphene (Graphene) and carbon nanoribbon (carbon nanoribbon).

상기 전이금속은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg 및 Cn으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 할 수 있다.
The transition metal is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg and Cn may be any one selected from the group consisting of.

바람직하게는 상기 산화물-탄소 나노 복합체 혼성재료를 PVDF(Polyvinylidene fluoride)와 무게비 9:1 섞은 후, NMP(N-Methyl-2-pyrrolidone) 용액에 넣고 sonication과 stirring을 반복하여 산화물-탄소 나노 복합체 페이스트를 제조하는 단계를 더 포함할 수 있다.
Preferably, the oxide-carbon nanocomposite hybrid material is mixed with polyvinylidene fluoride (PVDF) in a weight ratio of 9: 1, and then placed in an N-Methyl-2-pyrrolidone (NMP) solution, followed by sonication and stirring to repeat the oxide-carbon nanocomposite paste. It may further comprise the step of preparing.

본 발명은 탄소나노구조체에 금속산화물이 분산된 구조의 개발에 관한 것으로 탄소나노구조체는 탄소나노튜브, 그래핀, 탄소나노리본 등 사용할 수 있고; 질소를 첨가하는 방법으로는 N2 플라즈마, NH3 플라즈마, 질소분위기의 고온열처리 등을 사용할 수 있으며; 산화물은 SnO2, TiO2, Fe3O4, Co3O4, NiO, MnO2, MoO3, WO3 등 중 1종 이상을 사용할 수 있다.
The present invention relates to the development of a structure in which a metal oxide is dispersed in a carbon nanostructure, and the carbon nanostructure can be used as carbon nanotubes, graphene, carbon nanoribbons, etc .; Nitrogen is added as N 2 Plasma, NH 3 High temperature heat treatment of plasma, nitrogen atmosphere, etc. may be used; The oxide may be one or more of SnO 2 , TiO 2 , Fe 3 O 4 , Co 3 O 4 , NiO, MnO 2 , MoO 3 , WO 3, and the like.

본 발명을 통해 리튬의 흡착/탈리시 나노크기의 입자로 싸이즈가 줄어들며, 이는 용량이 증가하고 반응속도가 빨라지는 현상을 입증할 수 있었고, 순수 전이금속 산화물 또는 탄소나노구조체만 존재할 때보다 높은 용량을 보였다. 따라서 작은 금속으로 존재하므로 고출력의 음극 구현이 가능했다.
The present invention reduced the size of the nano-sized particles during the adsorption / desorption of lithium, which can demonstrate the phenomenon of increased capacity and reaction rate, higher capacity than when only pure transition metal oxides or carbon nanostructures are present. Showed. Therefore, the presence of small metals made it possible to implement a high-output cathode.

탄소나노구조체는 전기 전도도가 높고 비표면적이 넓기 때문에 나노입자를 형성시키는 지지체로서의 역할을 수행할 수 있으며, 전기화학적으로 안정하다. 따라서 나노크기의 금속산화물을 탄소나노구조체 위에 제조하는 기술은 고출력의 음극물질을 제조하는데 있어서 큰 이점이 있다는 유리한 효과가 인정된다. 나아가 전자이동속도를 늘릴 수 있고, 리튬이온의 확산 속도를 높여 반응이 더 효율적으로 일어나게 할 수 있다는 유리한 효과가 있다.Since the carbon nanostructure has a high electrical conductivity and a large specific surface area, the carbon nanostructure can serve as a support for forming nanoparticles and is electrochemically stable. Therefore, the advantageous effect that the technology of manufacturing a nano-sized metal oxide on the carbon nanostructure has a great advantage in producing a high-output negative electrode material. Furthermore, there is an advantageous effect that the electron transfer rate can be increased, and the reaction rate can be increased more efficiently by increasing the diffusion rate of lithium ions.

또한 이러한 금속산화물은 리튬이온이 흡착/탈리 과정을 거치면서 더 작은 크기의 금속산화물로 분리되어 전기화학적 특성이 훨씬 좋아지게 된다는 유리한 효과가 있다.
In addition, the metal oxide has an advantageous effect that the lithium ion is separated into a smaller size metal oxide through the adsorption / desorption process, the electrochemical properties are much better.

도 1은 XPS(x-ray photoelectron spectroscopy)에 관한 것이다.
도 2는 NiO-CNT, CNT 및 NiO의 Capacity를 비교한 것이다.
도 3은 NiO-CNT 전극을 아주 높은 charge/discharge rate (?500C)에서 실험한 결과이다.
도 4는 투과전자현미경(TEM; Transmission Electron Microscope)을 이용해 분석한 것이다.
1 relates to x-ray photoelectron spectroscopy (XPS).
Figure 2 compares the capacity of NiO-CNT, CNT and NiO.
3 shows the results of experiments with the NiO-CNT electrode at a very high charge / discharge rate (? 500C).
4 is analyzed using a Transmission Electron Microscope (TEM).

본 발명은 리튬이온 이차전지 음극 조성물에 있어서, 산화물(Oxide)탄소(Carbon) 나노 복합체를 이용한 것을 특징으로 하는 리튬이온 이차전지 음극조성물에 관한 것이다.
The present invention relates to a lithium ion secondary battery negative electrode composition, wherein an oxide (carbon) nanocomposite is used in a lithium ion secondary battery negative electrode composition.

상기 산화물탄소 나노 복합체는 싸이즈 동적전이가 가능한 것을 특징으로 할 수 있다.
The oxide carbon nanocomposite may be characterized in that size dynamic transition is possible.

또한 본 발명은 (a)탄소나노구조체를 Etylene Glycol 용액에 첨가한 후 초음파를 이용하여 분산하는 단계; (b)전이금속 프리커서가 용해된 Ethylene Glycol 용액을 첨가하고, 환원제로서 1M NaOH 수용액을 첨가하는 단계; (c)마이크로웨이브 오븐에서 60?120초간 가열하여 상기 금속염을 환원한 후, 분산액을 6000?8000rpm에서 10?20분간 원심 분리하는 단계; (d)상기 원심분리 후 50?70℃에서 진공건조 한후, 250?350℃ 수소분위기에서 열처리한 후, 200℃ 공기 분위기에서 열처리하는 단계;를 포함하는 산화물탄소 나노 복합체를 이용한 것을 특징으로 하는 리튬이온 이차전지 음극 조성물의 제조방법에 관한 것이다.
In another aspect, the present invention (a) adding the carbon nanostructure to the Etylene Glycol solution and dispersed using ultrasonic waves; (b) adding an Ethylene Glycol solution in which a transition metal precursor is dissolved, and adding 1M aqueous NaOH solution as a reducing agent; (c) reducing the metal salt by heating in a microwave oven for 60 to 120 seconds, and then centrifuging the dispersion at 6000 to 8000 rpm for 10 to 20 minutes; (d) after the vacuum drying at 50 ~ 70 ℃ after the centrifugation, heat treatment in a 250 ~ 350 ℃ hydrogen atmosphere, heat treatment in an air atmosphere of 200 ℃; lithium characterized in that using the oxide carbon nanocomposite comprising It relates to a method for producing an ion secondary battery negative electrode composition.

상기 탄소나노구조체는 나노튜브(CNT), 그라핀(Graphene) 및 탄소나노리본(carbon nanoribbon)로 구성된 군에서 선택된 어느 하나인 것을 특징으로 할 수 있다.
The carbon nanostructure may be any one selected from the group consisting of nanotubes (CNT), graphene (Graphene) and carbon nanoribbon (carbon nanoribbon).

상기 전이금속은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg 및 Cn으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 할 수 있다.
The transition metal is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg and Cn may be any one selected from the group consisting of.

바람직하게는 상기 NiO-CNT 혼성재료를 PVDF(Polyvinylidene fluoride)와 무게비 9:1 섞은 후, NMP(N-Methyl-2-pyrrolidone) 용액에 넣고 sonication과 stirring을 반복하여 NiO-CNT 페이스트를 제조하는 단계를 더 포함할 수 있다.
Preferably, the NiO-CNT hybrid material is mixed with PVDF (Polyvinylidene fluoride) in a weight ratio of 9: 1, and then placed in an N-Methyl-2-pyrrolidone (NMP) solution to repeat sonication and stirring to prepare a NiO-CNT paste. It may further include.

이하 도면을 참조한 실시예에 근거하여 구체적으로 설명한다. 그러나, 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로 본 발명의 권리범위가 이들에 의해 한정되는 것은 아니다.
It will be described in detail based on the embodiment with reference to the drawings. However, these are for the purpose of illustrating the present invention in more detail, and the scope of the present invention is not limited thereto.

[실시예 1] CNT의 제조Example 1 Preparation of CNT

마그네트론 RF 스퍼터링(magnetron rf sputtering)방법으로 CNT 성장용 촉매(catalyst)를 제조하였다.A catalyst for CNT growth was prepared by magnetron RF sputtering.

이때 기판은 SiO2/Si 기판을 사용하였으며, 증착온도를 200℃로 하고, 압력은 아르곤(Ar) 분위기로 15토르(Torr)에서 코발트(Co)를 증착하였다. 증착시 RF 파워(RF power)는 100W로 하였고 기판 위의 철 증착두께는 10nm로 하였다.In this case, a SiO 2 / Si substrate was used, and the deposition temperature was 200 ° C., and the pressure was deposited with cobalt (Co) at 15 Torr in an argon (Ar) atmosphere. During deposition, RF power was 100W and the thickness of iron deposition on the substrate was 10 nm.

상기에서 기판에 증착시킨 철을 촉매 입자(catalyst particle)로 형성시키기 위하여 마이크로웨이브 화학기상증착법(Microwave enhanced CVD) 장비 내에서 600W의 마이크로웨이브 파워(microwave power)로 1분간 플라즈마(plasma) 처리를 행하였다.In order to form the iron deposited on the substrate as catalyst particles, plasma treatment was performed for 1 minute at 600 W microwave power in a microwave enhanced CVD apparatus. It was.

기판에 코발트 입자가 형성되면 챔버(chamber)내에 코발트 입자가 형성된 기판을 놓고 20sccm의 메탄(CH4), 100sccm의 질소(N2)를 각각 챔버 내에 공급하고 플라즈마 반응을 실시하여 질소가 첨가된 탄소나노튜브를 제조하였다.When the cobalt particles are formed on the substrate, the substrate on which the cobalt particles are formed is placed in the chamber, and 20 sccm of methane (CH 4 ) and 100 sccm of nitrogen (N 2 ) are respectively supplied into the chamber, and a plasma reaction is performed to carry out a nitrogen reaction. Nanotubes were prepared.

이때 챔버내의 온도는 700℃, 압력은 21토르(Torr)으로 유지하였으며 플라즈마 반응시 마이크로웨이브 파워는 600W으로 20분간 실시하였다. At this time, the temperature in the chamber was maintained at 700 ℃, the pressure was 21 Torr (Torr) and the microwave power during the plasma reaction was carried out for 20 minutes at 600W.

제조된 탄소나노튜브의 질소함량을 XPS를 이용하여 분석한 결과 도 1에 나타난 바와 같이 2.98at% 였다. 생성된 질소의 농도는 0-10at%으로 조절이 가능하다.
As a result of analyzing the nitrogen content of the prepared carbon nanotubes using XPS was 2.98at% as shown in FIG. The concentration of nitrogen produced can be adjusted to 0-10 at%.

[실시예 2] 그래핀(Graphene)의 제조Example 2 Preparation of Graphene

화학적인 산화 방법으로 먼저 Graphene oxide(GO)를 제조하였다. 사용되는 산화제는 과망간산나트륨(KMnO4)과 아질산나트륨(NaNO3)을 사용하였고 진한 황산(95%)를 용매로 사용하였다. Graphite 2g과 아질산 나트륨1g, 황산 46ml를 플라스크에 넣고 과망간산나트륨6g을 천천히 넣는다. 이때 용기 전체는 아이스베스에 있으며 반응시 온도가 10도 이상 올라가지 않도록 한다. 과망간산나트륨을 모두 주입하면 용액을 32?38℃의 온도 범위로 2시간 동안 유지한다. 그 후 90ml 의 물을 천천히 부어 온도가 95℃가 넘지 않도록 한다. 온도 95℃를 유지하면서 용액을 15분간 반응하게 한다. 반응한 후의 용액에 다시 여분의 물 280ml를 천천히 부은 후 따뜻한 3% 과산화수소수 280ml를 넣는다.Graphene oxide (GO) was first prepared by chemical oxidation. The oxidants used were sodium permanganate (KMnO 4 ) and sodium nitrite (NaNO 3 ), and concentrated sulfuric acid (95%) was used as a solvent. Add 2 g of Graphite, 1 g of sodium nitrite, and 46 ml of sulfuric acid into the flask, and slowly add 6 g of sodium permanganate. At this time, the whole container is in an ice bath and the temperature does not rise more than 10 degree during reaction. When all the sodium permanganate is injected, the solution is maintained for 2 hours in the temperature range of 32-38 ° C. Then slowly pour 90 ml of water so that the temperature does not exceed 95 ° C. The solution is allowed to react for 15 minutes while maintaining the temperature of 95 ° C. After the reaction, 280 ml of excess water was slowly poured again and 280 ml of warm 3% hydrogen peroxide solution was added.

완성된 GO의 용액을 다시 중성으로 만들기 위해 필터링 과정을 여러 번 거쳐 중성으로 만들어 준다. 이때 필터링 중간에 10% 염산으로 5회 정도 씻어주어 여분의 금속 입자를 제거해 준다. 중성이 된 GO를 다시 물에 풀어 초음파를 가하여 분산 시킨다. 30분 이상 초음파로 분산 시킨 GO용액을 센트리퓨지에 넣고 10000g의 중력으로 15분 이상 돌린다. 이 후 가라않은 GO를 버리고 투명한 분산이 잘된 GO를 고른다. 정제된 GO를 다시 80℃ 진공오븐에 말려 보관한다.
Neutralize through the filtering process several times to neutralize the finished GO solution again. At this time, the filter is washed 5 times with 10% hydrochloric acid to remove excess metal particles. Neutral GO is again dissolved in water and ultrasonically dispersed. Put the GO solution dispersed by ultrasonic wave more than 30 minutes into Sentryfuge and run it for more than 15 minutes under the gravity of 10000g. After that, discard the unclean GO and choose a well-dispersed GO. The purified GO is dried again in a vacuum oven at 80 ℃.

화학적으로 합성한 GO를 다시 환원시켜 Graphene을 제조하였다.사용되는 시약은 환원제로 사용할 hydrazine(H2N2), 암모니아수(NH4OH)를 사용하였다. Chemically synthesized GO was again reduced to prepare Graphene. Reagents used were hydrazine (H 2 N 2 ) and ammonia water (NH 4 OH) to be used as reducing agents.

정제된 GO를 특정 농도로 물에 분산시킨다. 이때 분산 농도는 0.5mg/ml이다. GO 분산을 위해 물을 넣고 초음파 처리 30분 정도 하여 GO를 분산시킨다. 이렇게 분산된 GO에 28% 농도의 암모니아수를 물 10ml당 28㎕를 첨가한다. 이때 용액의 pH는 11 정도이다. pH가 조절된 용액에 Hydrazine을 첨가한다. Hydrazine의 양은 GO의 1/8로 한다. 그 후 용액을 마그네틱 스핀바로 혼합하면서 100℃로 가열하여 1시간 동안 반응시킨다. 만들어진 graphene을 다시 필터링하여 중선으로 만든 후 진공오븐에서 건조하여 사용한다.
Purified GO is dispersed in water at a certain concentration. At this time, the dispersion concentration is 0.5mg / ml. To disperse the GO, add water and sonicate for 30 minutes to disperse the GO. 28 μl of ammonia water at a concentration of 28% is added to the GO thus dispersed. At this time, the pH of the solution is about 11. Hydrazine is added to the pH adjusted solution. The amount of hydrazine is 1/8 of GO. The solution is then heated to 100 ° C. while mixing with a magnetic spin bar and allowed to react for 1 hour. The graphene is filtered again to make it into a midline and then dried in a vacuum oven.

[실시예 3] NiO-CNT 전극 제조Example 3 Preparation of NiO-CNT Electrode

본 실시예에서는 탄소나노구조체로서 탄소나노튜브(CNT)를 이용하였다.In this embodiment, carbon nanotubes (CNTs) were used as the carbon nanostructures.

CNT 5mg을 Etylene Glycol 용액 50ml에 첨가한 후 초음파를 이용하여 분산하였다. 5 mg of CNT was added to 50 ml of Etylene Glycol solution and dispersed using ultrasonic waves.

본 실시예에서 전이금속의 예시로서 Ni를 채용하였으며, 1ml의 10mM Ni(CH3COO)2/4H2O Ethylene Glycol 용액을 이용하였다. 환원제로는 0.5ml의 1M NaOH 수용액을 이용하였다.In this embodiment, Ni was used as an example of the transition metal, and 1 ml of 10 mM Ni (CH 3 COO) 2 / 4H 2 O Ethylene Glycol solution was used. As a reducing agent, 0.5 ml of 1M NaOH aqueous solution was used.

상기의 금속염과 환원제를 첨가한 후 마이크로웨이브 오븐에서 90초간 가열하여 금속염을 환원한 후 분산액을 7000rpm에서 15분간 원심 분리한 다음 60℃에서 진공건조한 후 300℃ 수소분위기에서 열처리, 200℃ 공기 분위기에서 열처리함으로써 NiO-CNT 혼성재료를 제조하였다.After adding the metal salt and the reducing agent, the metal salt was reduced by heating in a microwave oven for 90 seconds, and then the dispersion was centrifuged at 7000 rpm for 15 minutes, dried in vacuo at 60 ° C., and then heat treated at 300 ° C. in a hydrogen atmosphere, at 200 ° C. in an air atmosphere. NiO-CNT hybrid materials were prepared by heat treatment.

약 10mg의 NiO-CNT 혼성재료를 약 1.1mg의 Polyvinylidene fluoride(PVDF)와 (무게비 9:1) 섞고 15방울의 N-Methyl-2-pyrrolidone(NMP) 용액에 넣고 sonication과 stirring을 반복하여 NiO-CNT 페이스트를 제조하였다.Mix about 10 mg of NiO-CNT hybrid material with about 1.1 mg of Polyvinylidene fluoride (PVDF) (Weight 9: 1), add 15 drops of N-Methyl-2-pyrrolidone (NMP) solution, and repeat sonication and stirring. CNT paste was prepared.

18um 구리 호일 위에 200um의 두께로 펠렛을 제조한 뒤 80℃의 오븐에서 하룻밤 건조시켰다.Pellets were prepared to a thickness of 200 um on 18 um copper foil and dried overnight in an oven at 80 ° C.

제조된 전극은 반쪽전지 테스트를 위해 글로브박스에 넣어서 한쪽 전극이 리튬 호일인 반쪽전지를 제조한다.The prepared electrode is placed in a glove box for half cell test to produce a half cell in which one electrode is a lithium foil.

케이스-제조된 전극-분리막-게스켓-전해액-리튬 호일-스페이서-스프링-캡 순으로 제조한 뒤 프레서로 누른다.Case-made electrode-membrane-gasket-electrolyte-lithium foil-spacer-spring-cap was prepared in the order of pressing with a presser.

분리막은 다공성 폴리프로필렌 멤브레인이며, 전해액은 LiPF6 in DC/EDC(1:1)을 사용하였다.The separator was a porous polypropylene membrane, and the electrolyte was LiPF 6 in DC / EDC (1: 1).

반쪽전지 테스트를 위해 지그 위에 올려두고 전류값을 유지한 상태로 0.001V/3V까지 전극의 특성을 살펴보았다.For the half-cell test, the characteristics of the electrode were examined up to 0.001V / 3V while maintaining the current value on the jig.

반쪽전지 테스트를 1 회 행한 후 글로브 박스 안에서 반쪽전지를 벗긴 다음에 전극을 acetonitrile에 2시간 이상 세척한 후 acetone에 넣어서 sonication을 통해 구리 호일에서 벗겨내고, TEM 그리드에 올려서 입자의 변화를 시각적으로 확인하였다(도 4 참조).
After one half cell test, remove the half cell in the glove box, wash the electrode in acetonitrile for more than 2 hours, put it in acetone, remove it from the copper foil through sonication, and visually check the particle change by placing it on a TEM grid. (See FIG. 4).

이상 본 발명의 구체적 실시형태와 관련하여 본 발명을 설명하였으나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다. 당업자는 본 발명의 범위를 벗어나지 않고 설명된 실시형태를 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 범위에 속한다. 또한, 본 명세서에서 설명한 각 구성요소의 물질은 당업자가 공지된 다양한 물질로부터 용이하게 선택하여 대체할 수 있다. 또한 당업자는 본 명세서에서 설명된 구성요소 중 일부를 성능의 열화 없이 생략하거나 성능을 개선하기 위해 구성요소를 추가할 수 있다. 뿐만 아니라, 당업자는 공정 환경이나 장비에 따라 본 명세서에서 설명한 방법 단계의 순서를 변경할 수도 있다. 따라서 본 발명의 범위는 설명된 실시형태가 아니라 특허청구범위 및 그 균등물에 의해 결정되어야 한다.
Although the present invention has been described in connection with the specific embodiments of the present invention, it is to be understood that the present invention is not limited thereto. Those skilled in the art can change or modify the described embodiments without departing from the scope of the present invention, and such changes or modifications are within the scope of the present invention. In addition, the materials of each component described herein can be readily selected and substituted for various materials known to those skilled in the art. Those skilled in the art will also appreciate that some of the components described herein can be omitted without degrading performance or adding components to improve performance. In addition, those skilled in the art may change the order of the method steps described herein depending on the process environment or equipment. Therefore, the scope of the present invention should be determined by the appended claims and equivalents thereof, not by the embodiments described.

탄소나노구조체는 전기 전도도가 높고 비표면적이 넓기 때문에 나노입자를 형성시키는 지지체로서의 역할을 수행할 수 있으며, 전기화학적으로 안정하고, 나노크기의 금속산화물을 탄소나노구조체 위에 제조하는 기술은 고출력의 음극물질을 제조하는데 있어서 큰 이점이 있다.Since the carbon nanostructure has a high electrical conductivity and a large specific surface area, the carbon nanostructure can serve as a support for forming nanoparticles, and is electrochemically stable, and a technique of manufacturing nano-sized metal oxide on the carbon nanostructure has a high-output cathode. There is a great advantage in producing the material.

나아가 전자이동속도를 늘릴 수 있고, 리튬이온의 확산 속도를 높여 반응이 더 효율적으로 일어나게 할 수 있으며, 이러한 금속산화물은 리튬이온이 흡착/탈리 과정을 거치면서 더 작은 크기의 금속산화물로 분리되어 전기화학적 특성이 훨씬 좋아지게 된다.Furthermore, the electron transfer rate can be increased, and the reaction rate can be increased more efficiently by increasing the diffusion rate of lithium ions. These metal oxides are separated into smaller metal oxides as the lithium ions are subjected to adsorption / desorption. The chemical properties are much better.

본 발명을 통해 리튬의 흡착/탈리시 나노크기의 입자로 싸이즈가 줄어들며, 이는 용량이 증가하고 반응속도가 빨라지는 현상을 입증할 수 있었고, 순수 전이금속 산화물 또는 탄소나노구조체만 존재할 때보다 높은 용량을 보이고, 작은 금속으로 존재하므로 고출력의 음극 구현이 가능하므로 산업상 이용가능성이 매우 높다고 할 것이다.The present invention reduced the size of the nano-sized particles during the adsorption / desorption of lithium, which can demonstrate the phenomenon of increased capacity and reaction rate, higher capacity than when only pure transition metal oxides or carbon nanostructures are present. Since it exists as a small metal, it is possible to implement a high power cathode, so that the industrial applicability is very high.

Claims (6)

리튬이온 이차전지 음극 조성물에 있어서, 산화물(Oxide)탄소(Carbon) 나노 복합체를 이용한 것을 특징으로 하는 리튬이온 이차전지 음극조성물.
In the lithium ion secondary battery negative electrode composition, a lithium ion secondary battery negative electrode composition comprising an oxide (Carbon) nanocomposite.
제1항에 있어서, 상기 산화물탄소 나노 복합체는 싸이즈 동적전이가 가능한 것을 특징으로 하는 리튬이온 이차전지 음극 조성물.
The negative ion composition of claim 1, wherein the oxide carbon nanocomposite is capable of size dynamic transition.
(a)탄소나노구조체를 Etylene Glycol 용액에 첨가한 후 초음파를 이용하여 분산하는 단계; (b)전이금속 프리커서가 용해된 Ethylene Glycol 용액을 첨가하고, 환원제로서 1M NaOH 수용액을 첨가하는 단계; (c)마이크로웨이브 오븐에서 60?120초간 가열하여 상기 금속염을 환원한 후, 분산액을 6000?8000rpm에서 10?20분간 원심 분리하는 단계; (d)상기 원심분리 후 50?70℃에서 진공건조한 후, 250?350℃ 수소분위기에서 열처리한 후, 200℃ 공기 분위기에서 열처리하는 단계;를 포함하는 산화물탄소 나노 복합체를 이용한 것을 특징으로 하는 리튬이온 이차전지 음극 조성물의 제조방법.
(a) adding carbon nanostructures to an ethylene glycol solution and dispersing the mixture using ultrasonic waves; (b) adding an Ethylene Glycol solution in which a transition metal precursor is dissolved, and adding 1M aqueous NaOH solution as a reducing agent; (c) reducing the metal salt by heating in a microwave oven for 60 to 120 seconds, and then centrifuging the dispersion at 6000 to 8000 rpm for 10 to 20 minutes; (d) after vacuum drying at 50-70 ° C. after the centrifugation, heat-treating at 250-350 ° C. hydrogen atmosphere, and heat-treating at 200 ° C. in an air atmosphere. Method for producing an ion secondary battery negative electrode composition.
제3항에 있어서, 상기 탄소나노구조체는 나노튜브(CNT), 그라핀(Graphene) 및 탄소나노리본(carbon nanoribbon)로 구성된 군에서 선택된 어느 하나인 것을 특징으로 하는 리튬이온 이차전지 음극 조성물의 제조방법.
The method of claim 3, wherein the carbon nanostructure is a lithium ion secondary battery negative electrode composition, characterized in that any one selected from the group consisting of nanotubes (CNT), graphene (Graphene) and carbon nanoribbon (carbon nanoribbon) Way.
제3항에 있어서, 상기 전이금속은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg 및 Cn으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 리튬이온 이차전지 음극 조성물의 제조방법.
The method of claim 3, wherein the transition metal is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg and Cn is any one selected from the group consisting of Method for producing a lithium ion secondary battery negative electrode composition.
제3항에 있어서, (e)상기 산화물-탄소 나노 복합체를 PVDF(Polyvinylidene fluoride)와 무게비 9:1 섞은 후, NMP(N-Methyl-2-pyrrolidone) 용액에 넣고 sonication과 stirring을 반복하여 산화물-탄소 나노 복합체 페이스트를 제조하는 단계를 더 포함하는 것을 특징으로 하는 리튬이온 이차전지 음극 조성물의 제조방법.The method of claim 3, wherein (e) the oxide-carbon nanocomposite is mixed with polyvinylidene fluoride (PVDF) 9: 1 by weight, and then placed in an N-Methyl-2-pyrrolidone (NMP) solution, and sonication and stirring are repeated. Method for producing a lithium ion secondary battery negative electrode composition, characterized in that it further comprises the step of preparing a carbon nanocomposite paste.
KR1020100107375A 2010-10-30 2010-10-30 Development of the ultrahigh power lithium ion battery anode material using dynamically size transformable metal oxides-carbon nanostructure composites KR101145297B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100107375A KR101145297B1 (en) 2010-10-30 2010-10-30 Development of the ultrahigh power lithium ion battery anode material using dynamically size transformable metal oxides-carbon nanostructure composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100107375A KR101145297B1 (en) 2010-10-30 2010-10-30 Development of the ultrahigh power lithium ion battery anode material using dynamically size transformable metal oxides-carbon nanostructure composites

Publications (2)

Publication Number Publication Date
KR20120045684A true KR20120045684A (en) 2012-05-09
KR101145297B1 KR101145297B1 (en) 2012-05-14

Family

ID=46271974

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100107375A KR101145297B1 (en) 2010-10-30 2010-10-30 Development of the ultrahigh power lithium ion battery anode material using dynamically size transformable metal oxides-carbon nanostructure composites

Country Status (1)

Country Link
KR (1) KR101145297B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465213B1 (en) * 2014-01-03 2014-11-25 성균관대학교산학협력단 Lithium manganese oxides-carbon nanocomposite and producing method thereof
WO2016099231A1 (en) * 2014-12-19 2016-06-23 이화여자대학교 산학협력단 Inorganic nanoparticle-carbon nanotube composite and method for preparing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470927B1 (en) * 2013-09-13 2014-12-09 한국에너지기술연구원 Method of Copper Oxide-Zinc Oxide/reduced graphene oxide composite

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007213859A (en) 2006-02-07 2007-08-23 Tokyo Institute Of Technology Oxide composite material, its manufacturing method and oxidation-reduction electrode
KR20100028356A (en) * 2008-09-04 2010-03-12 한국과학기술연구원 Transition metal oxides/multi-walled carbon nanotube nanocomposite and method for manufacturing the same
JP2010212309A (en) 2009-03-06 2010-09-24 Nippon Chemicon Corp Electrode material, and electrode containing the same
KR20110023263A (en) * 2009-08-31 2011-03-08 서울대학교산학협력단 Method of fabricating a metal oxide-carbon nanocomposite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465213B1 (en) * 2014-01-03 2014-11-25 성균관대학교산학협력단 Lithium manganese oxides-carbon nanocomposite and producing method thereof
WO2016099231A1 (en) * 2014-12-19 2016-06-23 이화여자대학교 산학협력단 Inorganic nanoparticle-carbon nanotube composite and method for preparing same

Also Published As

Publication number Publication date
KR101145297B1 (en) 2012-05-14

Similar Documents

Publication Publication Date Title
Su et al. Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core–shell Fe 3 O 4@ C and Fe@ C microspheres
Yang et al. ZnO nanoparticles filled tetrapod-shaped carbon shell for lithium-sulfur batteries
Zhang et al. Highly-dispersed iron oxide nanoparticles anchored on crumpled nitrogen-doped MXene nanosheets as anode for Li-ion batteries with enhanced cyclic and rate performance
Gan et al. One-pot biotemplate synthesis of FeS2 decorated sulfur-doped carbon fiber as high capacity anode for lithium-ion batteries
JP6241480B2 (en) Highly dispersible graphene composition and method for producing the same, and electrode for lithium ion secondary battery including highly dispersible graphene composition
Liu et al. Novel plasma-engineered MoS2 nanosheets for superior lithium-ion batteries
Liu et al. Controlled building of mesoporous MoS 2@ MoO 2-doped magnetic carbon sheets for superior potassium ion storage
Liu et al. MoS 2@ C with S vacancies vertically anchored on V 2 C-MXene for efficient lithium and sodium storage
Xiao et al. Constructing yolk-shell MnO@ C nanodiscs through a carbothermal reduction process for highly stable lithium storage
KR20100041567A (en) Carbon nanotube-coated silicon/metal composite particle and the preparation method thereof, and negative electrode for secondary battery and secondary battery using the same
He et al. Ni3S2@ S-carbon nanotubes synthesized using NiS2 as sulfur source and precursor for high performance sodium-ion half/full cells
KR101406371B1 (en) Metal or Metal oxide/Graphene self-assembly Nanocomposite of Three-dimensional structure and Method of preparing the same
Chen et al. MOF-derived cobalt Disulfide/Nitrogen-doped carbon composite polyhedrons linked with Multi-walled carbon nanotubes as sulfur hosts for Lithium-Sulfur batteries
CN107331839A (en) A kind of preparation method of carbon nanotube loaded nano titanium oxide
Yu et al. A material of hierarchical interlayer-expanded MoS 2 nanosheets/hollow N-doped carbon nanofibers as a promising Li+/Mg 2+ co-intercalation host
Wang et al. Fe nanopowder-assisted fabrication of FeO x/porous carbon for boosting potassium-ion storage performance
Wang et al. In situ grown MnO 2/graphdiyne oxide hybrid 3D nanoflowers for high-performance aqueous zinc-ion batteries
Jia et al. Fabrication of NiO–carbon nanotube/sulfur composites for lithium-sulfur battery application
Li et al. Facile synthesis of an Fe 3 O 4/FeO/Fe/C composite as a high-performance anode for lithium-ion batteries
Deng et al. Carbon nanotube-supported polyimide nanoarrays as sulfur host with physical/chemical polysulfide-traps for Li–S batteries
Angamuthu et al. The Si3N4/MoS2 hetero-structure as an effective polysulfide regulator for high-performance lithium-sulfur battery
Zou et al. Self-reductive synthesis of MXene/Na 0.55 Mn 1.4 Ti 0.6 O 4 hybrids for high-performance symmetric lithium ion batteries
Kong et al. Ultra-thin 2D MoO2 nanosheets coupled with CNTs as efficient separator coating materials to promote the catalytic conversion of lithium polysulfides for advanced lithium-sulfur batteries
CN114039060A (en) N-TiO2/Ti3C2TxHeterogeneous MXene structure material, preparation and application thereof
KR101145297B1 (en) Development of the ultrahigh power lithium ion battery anode material using dynamically size transformable metal oxides-carbon nanostructure composites

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150429

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160427

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 8