KR20120028635A - Manufacturing method of silica aerogel composite board - Google Patents

Manufacturing method of silica aerogel composite board Download PDF

Info

Publication number
KR20120028635A
KR20120028635A KR1020100090612A KR20100090612A KR20120028635A KR 20120028635 A KR20120028635 A KR 20120028635A KR 1020100090612 A KR1020100090612 A KR 1020100090612A KR 20100090612 A KR20100090612 A KR 20100090612A KR 20120028635 A KR20120028635 A KR 20120028635A
Authority
KR
South Korea
Prior art keywords
resin
mold
powder
airgel
composite board
Prior art date
Application number
KR1020100090612A
Other languages
Korean (ko)
Other versions
KR101255621B1 (en
Inventor
정영철
노명제
이재용
박종철
최희정
Original Assignee
주식회사 지오스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지오스 filed Critical 주식회사 지오스
Priority to KR1020100090612A priority Critical patent/KR101255621B1/en
Publication of KR20120028635A publication Critical patent/KR20120028635A/en
Application granted granted Critical
Publication of KR101255621B1 publication Critical patent/KR101255621B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/38Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/44Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • B29K2025/04Polymers of styrene
    • B29K2025/06PS, i.e. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: A manufacturing method of a silica aerogel composite board is provided to improve the compressive strength and brittleness of silica aerogel by using a hard thermoplastic resin. CONSTITUTION: A manufacturing method of a silica aerogel composite board is as follows. Aerogel powder is mixed with thermoplastic resin powder. The mixed powder is put into a mold. The mold is pressed and is heat-treated for two hours at a temperature of 150-200 degrees. The heat-treated mold is cooled. An article molded in the cooled mold is separated from the mold.

Description

실리카 에어로겔 복합체 보드 제조방법{MANUFACTURING METHOD OF SILICA AEROGEL COMPOSITE BOARD}MANUFACTURING METHOD OF SILICA AEROGEL COMPOSITE BOARD

본 발명은 실리카 에어로겔 복합체 보드 제조방법에 관한것으로, 보다 상세하게는 실리카 에어로겔 입자 1~90 부피%와 열가소성 수지 10~99 부피%로 이루어져 열전도율이 매우 낮은 저밀도, 고강도의 실리카 에어로겔 복합체 보드 제조방법에 관한 것이다.
The present invention relates to a method for manufacturing a silica airgel composite board, and more specifically, to a low density, high strength silica airgel composite board manufacturing method, which is made of 1 to 90% by volume of silica airgel particles and 10 to 99% by volume of a thermoplastic resin. It is about.

근래들어 산업기술이 첨단화되면서 에어로겔에 대한 관심이 증대되고 있다. 에어로겔은 기공율이 90%이상, 비 표면적이 수백?1500 m2/g정도이며, 나노다공성 구조를 가진 투명 또는 반투명한 극저밀도의 첨단소재이다. 따라서, 이러한 나노다공성 구조를 갖는 에어로겔은 촉매 및 촉매 담체, 방음재 등의 분야에 응용이 가능하며, 특히, 실리카 에어로겔은 매우 낮은 열전도도 특성을 갖기 때문에 냉장고, 자동차, 항공기, 의류, 극저온 저장 탱크, 산업용 파이프라인, 보온병 등에 사용될 수 있는 매우 효율적인 초단열 재료이다.Recently, as industrial technology is advanced, interest in aerogels is increasing. Aerogel has a porosity of more than 90%, specific surface area of several hundred to 1500 m 2 / g, and is a transparent or semi-transparent ultra low density material with nanoporous structure. Therefore, the airgel having such a nanoporous structure is applicable to the field of catalysts, catalyst carriers, soundproofing materials, etc. In particular, since silica airgel has very low thermal conductivity, refrigerators, automobiles, aircraft, clothes, cryogenic storage tanks, It is a very efficient super insulation material that can be used in industrial pipelines, thermos, etc.

그러나, 일반적으로 모노리스 형태로 제조되는 에어로겔은 높은 취성으로 인하여 작은 충격에도 쉽게 부서지는 등 매우 취약한 강도를 보이며, 다양한 두께 및 형태로의 가공이 어렵기 때문에, 우수한 단열특성에도 불구하고 에어로겔 단독으로는 단열재로의 응용이 매우 어려운 실정이다. 따라서, 이를 해결하기 위해 에어로겔과 다른 소재와의 복합체 형성을 통한 단열재 제조가 다양하게 시도되고 있다.
In general, however, aerogels produced in monolithic form have very weak strength due to their high brittleness and are easily broken even by small impacts, and are difficult to process in various thicknesses and shapes. It is very difficult to apply the insulation material. Therefore, in order to solve this problem, a variety of attempts have been made to manufacture a heat insulating material by forming a composite of an airgel and another material.

따라서 본 발명의 목적은 상기와 같은 문제를 해결하기 위해, 열가소성 수지 분말을 열처리하여 액화시키고, 이 액화된 열가소성 수지를 에어로겔 분말 입자 간의 공간에 침투시킴으로써, 상기 침투된 액화된 열가소성 수지가 바인더 역활을 하게 하여, 낮은 열전도율을 유지하면서도, 저밀도, 고강도의 실리카 에어로겔 복합체 보드 제조방법을 제공함을 그 목적으로 한다.
Accordingly, an object of the present invention is to solve the above problems, by liquefying the thermoplastic resin powder by heat treatment and infiltrating the liquefied thermoplastic resin into the space between the aerogel powder particles, the permeated liquefied thermoplastic resin serves as a binder It is an object of the present invention to provide a low density, high strength silica airgel composite board manufacturing method while maintaining low thermal conductivity.

본 발명에 따른 실리카 에어로겔 복합체 보드 제조방법은 에어로겔 분말과 열가소성 수지 분말을 혼합하는 단계와; 상기 혼합된 분말을 금형몰드에 투입하는 단계와; 상기 금형몰드를 가압하여 150℃~200℃에서 2시간 동안 열처리하는 단계와; 상기 열처리된 금형몰드를 냉각하는 단계 및; 상기 냉각된 금형몰드에서 성형된 성형체를 탈형하는 단계를 포함하며; 상기 열가소성 수지는 비닐중합계인 본 발명에 따른 실리카 에어로겔 복합체 보드 제조방법은 에어로겔 분말과 열가소성 수지 분말을 혼합하는 단계와; 상기 혼합된 분말을 금형몰드에 투입하는 단계와; 상기 금형몰드를 150℃~200℃에서 2시간 동안 열처리하는 단계와; 상기 열처리된 금형몰드를 냉각하는 단계 및; 상기 냉각된 금형몰드에서 성형된 성형체를 탈형하는 단계를 포함하며; 상기 열가소성 수지는 비닐중합계인 폴리비닐부티랄(PVB: polyvinyl butyral), 폴리에틸렌(PE: polyethylen), 폴리프로필렌(PP: polypropylen), 폴리스틸렌(PS: polystyren), 염화비닐리텐(PVDC; polyvinylidene chloride), 아크릴(acryl) 수지, 폴리아세트산비닐(polyvinyl acetate) 수지, 플로오르(fluoro) 수지, 또는 중축합개환 중합계인 폴리아미드(PA: polyamide) 수지, 폴리카보네이트(PC: polycarbonate) 수지, 아세탈(acetal) 수지, 폴리페닐렌옥사이드(PPO: polyphehyleneoxide) 수지, 폴리에스테르(polyester) 수지, 폴리술폰(polysulfone) 수지, 폴리이미드(PI: polyimide) 수지 중 어느 하나의 분말 수지 또는 두개 이상의 혼합 분말 수지인 것을 특징으로 한다.Silica airgel composite board manufacturing method according to the present invention comprises the steps of mixing the airgel powder and the thermoplastic resin powder; Injecting the mixed powder into a mold mold; Pressing the mold mold to heat-treat at 150 ° C. to 200 ° C. for 2 hours; Cooling the heat-treated mold mold; Demoulding a molded article from the cooled mold mold; Silica airgel composite board manufacturing method according to the present invention wherein the thermoplastic resin is a vinyl polymer system comprising the steps of mixing the airgel powder and the thermoplastic resin powder; Injecting the mixed powder into a mold mold; Heat-treating the mold mold at 150 ° C. to 200 ° C. for 2 hours; Cooling the heat-treated mold mold; Demoulding a molded article from the cooled mold mold; The thermoplastic resin is polyvinyl butyral (PVB), polyethylene (PE: polyethylen), polypropylene (PP: polypropylen), polystyrene (PS: polystyren), polyvinylidene chloride (PVDC) , Acrylic resins, polyvinyl acetate resins, fluoro resins, or polyamide (PA: polyamide) resins, polycarbonate (PC: polycarbonate) resins, acetals ) Resin, polyphenylene oxide (PPO: polyphehyleneoxide) resin, polyester (polyester) resin, polysulfone (polysulfone) resin, polyimide (PI: polyimide) resin of any one of the resin or two or more mixed powder resin It features.

또한, 상기 열가소성 수지 분말은 1~50㎛ 인 것을 특징으로 한다.In addition, the thermoplastic resin powder is characterized in that 1 ~ 50㎛.

또한, 상기 열가소성 수지의 물성을 향상시키기 위해 강화재가 부가되는 것을 특징으로 한다.In addition, the reinforcing material is added to improve the physical properties of the thermoplastic resin.

또한, 상기 에어로겔 분말의 함유량은 5~95vol%인 것을 특징으로 한다.In addition, the content of the airgel powder is characterized in that 5 to 95 vol%.

또한, 상기 가압은 에어로겔 분말 함량이 50vol%의 경우 3~7Kgf/㎤인 것을 특징으로 한다.
In addition, the pressurization is characterized in that the airgel powder content of 3 ~ 7Kgf / cm3 when 50vol%.

상술한 바와 같이, 본 발명에 따른 실리카 에어로겔 복합체 보드 제조방법은 실리카 에어로겔 분말 입자의 바인더로 경질의 열가소성 수지를 사용함으로써, 단열특성을 최대한 유지하면서도, 실리카 에어로겔의 압축강도 및 취성을 개선시킬 수 있어, 금형에 따른 다양한 형태로 제조될 수 있다는 이점이 있다.
As described above, the silica airgel composite board manufacturing method according to the present invention can improve the compressive strength and brittleness of the silica airgel while maintaining the thermal insulation properties to the maximum, by using a hard thermoplastic resin as a binder of the silica airgel powder particles. , There is an advantage that can be manufactured in various forms according to the mold.

도 1은 에어로겔 입자의 SEM 도시도.
도 2는 에어로겔 분말과 열가소성 수지 분말폴리머수지의 결합을 도시한 개략도.
도 3은 본 발명에 따른 실리카 에어로겔 복합체 보드 제조방법의 순서도.
도 4는 본 발명에 따른 실리카 에어로겔 복합체 보드의 제품의 외형 사진.
1 is an SEM diagram of airgel particles.
Figure 2 is a schematic diagram showing the combination of the airgel powder and the thermoplastic resin powder polymer resin.
Figure 3 is a flow chart of a method for producing a silica airgel composite board according to the present invention.
Figure 4 is a photograph of the appearance of the product of the silica airgel composite board according to the present invention.

이하, 도면을 참조하면서 본 발명에 따른 실리카 에어로겔 복합체 보드 제조방법을 보다 상세히 기술하기로 한다. 본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략될 것이다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 클라이언트나 운용자, 사용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, a method for manufacturing a silica airgel composite board according to the present invention will be described in detail with reference to the drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to a client's or operator's intention or custom. Therefore, the definition should be based on the contents throughout this specification.

도면 전체에 걸쳐 같은 참조번호는 같은 구성 요소를 가리킨다.Like numbers refer to like elements throughout the drawings.

도 1은 에어로겔 입자의 SEM 도시도이며, 도 2는 에어로겔과 폴리머수지의 결합을 도시한 개략도이며, 도 3은 본 발명에 따른 실리카 에어로겔 복합체 보드 제조방법의 순서도이며, 도 4는 본 발명에 따른 실리카 에어로겔 복합체 보드의 제품의 외형 사진이다.Figure 1 is a SEM diagram of the airgel particles, Figure 2 is a schematic diagram showing the combination of the airgel and polymer resin, Figure 3 is a flow chart of a method for manufacturing a silica airgel composite board according to the present invention, Figure 4 is according to the present invention It is the appearance photograph of the product of the silica airgel composite board.

도 1 내지 도 4에 도시된 바와 같이, 본 발명에 따른 실리카 에어로겔 복합체 보드 제조방법에는 에어로겔 분말과 열가소성 수지 분말이 사용되는데, 본 발명에 사용된 에어로겔과 열가소성 수지는 다음과 같다.As shown in Figures 1 to 4, the airgel powder and the thermoplastic resin powder is used in the silica airgel composite board manufacturing method according to the present invention, the airgel and the thermoplastic resin used in the present invention are as follows.

* 에어로겔Aerogel

본 발명에서 사용되는 에어로겔은 도 1 및 도 2에 도시된 바와 같이 골격이 망목구조를 이루며, 내부에 공기를 90% 이상 함유한다. 상기 에어로겔은 기공율이 80-99 %, 바람직하게는 85-97%인 것이 사용될 수 있으며, 밀도가 0.001-0.5 g/cm3, 바람직하게는 0.005-0.35 g/cm3 인 것이 사용될 수 있다. 또한 내부 표면적이 200-2000 m2/g, 바람직하게는 400-1800m2/g 인 것이 사용될 수 있으며, 평균 기공 직경은 1-100 nm, 바람직하게는 10-70 nm 인 것이 사용될 수 있다.The airgel used in the present invention has a skeletal network structure as shown in FIGS. 1 and 2, and contains 90% or more of air therein. The airgel may be used having a porosity of 80-99%, preferably 85-97%, the density of 0.001-0.5 g / cm 3 , preferably 0.005-0.35 g / cm 3 May be used. It is also possible to use an inner surface area of 200-2000 m 2 / g, preferably 400-1800m 2 / g, and an average pore diameter of 1-100 nm, preferably 10-70 nm.

상기 에어로겔의 평균입경은 50 ㎚?100 ㎛이며, 바람직하게는 1 ㎛?50 ㎛, 더 바람직하게는 10?45 ㎛이다. 상기 에어로겔의 크기가 50 ㎚미만일 경우, 에어로겔 고유의 특성을 나타내는 기공이 입자마다 제대로 형성되기 어려울 뿐만 아니라, 분산이 어려울 수 있다. 반면, 100 ㎛를 초과할 경우 최종제품의 기계적 물성을 저하시킬 수 있다.The average particle diameter of the airgel is 50 nm to 100 m, preferably 1 to 50 m, and more preferably 10 to 45 m. When the size of the airgel is less than 50 nm, not only pores exhibiting characteristics unique to the airgel are difficult to form properly for each particle, but also may be difficult to disperse. On the other hand, when it exceeds 100 ㎛ may reduce the mechanical properties of the final product.

또한 상기 에어로겔의 기공크기는 1?100 ㎚ 이며, 바람직하게는 5?60 ㎚, 더 바람직하게는 10?50 ㎚이다. 이하에서, 상기 에어로겔의 기공크기는 평균 기공 직경을 의미한다. 에어로겔의 기공크기가 1 ㎚ 미만일 경우 공기보다 골격이 차지하는 비율이 높아지면서 밀도 증가 및 골격에 의한 열전도가 증가될 수 있고, 100 ㎚ 를 초과할 경우 공기의 이론적 평균자유행로인 60 ㎚보다 기공크기가 커져서 공기의 대류를 저하시켜 단열효과 발현하는 에어로겔의 특성이 발휘되지 못할 수도 있다.In addition, the pore size of the airgel is 1 ~ 100 nm, preferably 5 ~ 60 nm, more preferably 10 ~ 50 nm. Hereinafter, the pore size of the airgel means an average pore diameter. If the pore size of the airgel is less than 1 nm, the proportion of the skeleton occupies higher than the air may increase the density and thermal conductivity due to the skeleton, and if it exceeds 100 nm, the pore size is larger than 60 nm, the theoretical average free path of air The characteristics of the aerogels, which are increased and lower the convection of the air and exhibit an adiabatic effect, may not be exhibited.

상기 에어로겔의 기공 부피는 1?10 ㎤/g이며, 바람직하게는 1.5?7 ㎤/g, 더 바람직하게는 2?4 ㎤/g이다. 기공 부피가 1 ㎤/g 미만일 경우 공기가 차지하는 공간이 너무 적으면서, 동시에 골격으로의 열전도경로가 우세해져서 단열효과가 저하될 수 있으며, 10 ㎤/g를 초과할 경우 기공이 너무 커서 공기의 대류에 의해 단열 효과가 저하될 수 있다.The pore volume of the airgel is 1-10 cm 3 / g, preferably 1.5-7 cm 3 / g, more preferably 2-4 cm 3 / g. If the pore volume is less than 1 cm 3 / g, the space occupied by the air is too small, and at the same time, the heat conduction path to the skeleton becomes predominant, and the thermal insulation effect may be lowered. By this, the thermal insulation effect can be lowered.

본 발명에 사용된 상기 에어로겔은 평균입경이 0.05-100 ㎛이고, 기공 크기가 1-100 nm 이고, 기공부피가 1-10 cm3/g인 것이 사용될 수 있다. The airgel used in the present invention may have an average particle diameter of 0.05-100 μm, a pore size of 1-100 nm, and a pore volume of 1-10 cm 3 / g.

또한, 상기 에어로겔은 유기적으로 표면개질된 것이 사용될 수 있다. 즉, 에어로겔의 표면을 표면개질제에 의해 표면처리하여 사용할 수 있다. 상기 표면처리제로는 통상의 커플링제가 사용될 수 있으며, 실란, 실록산 및 이들의 혼합물이 바람직하다. 구체예에서는 골격성분이 이산화규소인 에어로겔의 히드록시기와 반응이 가능하도록 메톡시기, 에톡시기, 프로폭시기, 이소프로폭시기 또는 할로겐기와 같은 반응성기를 갖는 표면개질제가 사용될 수 있다. 상기와 같은 반응성기를 갖는 표면개질제의 다른 말단은 C1?C20의 알킬기, 페닐기, C1?C20의 페닐알킬기, 비닐기, 메타크릴기, 에폭시기, 실록산기, C1?C20의 아미노알킬기 또는 C1?C20의 티올알킬기를 가질 수 있다.In addition, the airgel may be organically surface-modified. That is, the surface of the airgel can be used by surface treatment with a surface modifier. Conventional coupling agents may be used as the surface treating agent, and silane, siloxane, and mixtures thereof are preferable. In an embodiment, a surface modifier having a reactive group such as a methoxy group, ethoxy group, propoxy group, isopropoxy group or halogen group may be used so that the skeleton component may react with the hydroxyl group of the airgel in which silicon dioxide is used. The other end of the surface modifier having a reactive group as described above may be a C1 to C20 alkyl group, a phenyl group, a C1 to C20 phenylalkyl group, a vinyl group, a methacryl group, an epoxy group, a siloxane group, a C1 to C20 aminoalkyl group or a C1 to C20 group. It may have a thiolalkyl group.

* 열가소성 수지* Thermoplastic

본 발명에서 사용되는 열가소성 수지는 특별한 제한이 없다. 예컨대, 비닐중합계인 폴리비닐부티랄(PVB: polyvinyl butyral), 폴리에틸렌(PE: polyethylen), 폴리프로필렌(PP: polypropylen), 폴리스틸렌(PS: polystyren), 염화비닐리텐(PVDC; polyvinylidene chloride), 아크릴(acryl) 수지, 폴리아세트산비닐(polyvinyl acetate) 수지, 플로오르(fluoro) 수지가 사용되거나, 또는 중축합개환 중합계인 폴리아미드(PA: polyamide) 수지, 폴리카보네이트(PC: polycarbonate) 수지, 아세탈(acetal) 수지, 폴리페닐렌옥사이드(PPO: polyphehyleneoxide) 수지, 폴리에스테르(polyester) 수지, 폴리술폰(polysulfone) 수지, 폴리이미드(PI: polyimide) 수지가 사용될 수 있는데, 이러한 수지 중 어느 하나의 분말 수지 또는 두개 이상의 혼합 분말 수지가 사용된다.The thermoplastic resin used in the present invention is not particularly limited. For example, polyvinyl butyral (PVB), polyethylene (PE: polyethylen), polypropylene (PP: polypropylen), polystyrene (PS: polystyren), polyvinylidene chloride (PVDC), acryl (acryl) resin, polyvinyl acetate resin, fluoro resin or polyamide (PA) polycarbonate (PC: polycarbonate) resin, acetal ( acetal) resins, polyphehyleneoxide (PPO) resins, polyester (polyester) resins, polysulfone (polysulfone) resins, polyimide (PI) polyimide (PI) resins may be used, powder resin of any one of these resins Or two or more mixed powder resins are used.

또한 상기 수지 분말에 필요에 따라 통상의 첨가제가 부가될 수 있다. 예를 들어, 계면활성제, 핵제, 커플링제. 충전제, 가소제, 충격보강제, 활제, 항균제, 이형제, 열안정제, 산화방지제, 광안정제, 상용화제, 무기물 첨가제, 착색제, 안정제, 윤활제, 정전기방지제, 안료, 염료, 방염제, TiO2, 카본블랙, 그라파이트, 산화철 등과 같이 빛의 흡수 또는 산란을 이용하여 불투명하게 만드는 불투명화제(Opacifier) 등의 첨가제가 더 포함될 수 있으나, 반드시 이에 제한되는 것은 아니다.In addition, conventional additives may be added to the resin powder as necessary. For example, surfactants, nucleating agents, coupling agents. Fillers, plasticizers, impact modifiers, lubricants, antibacterial agents, mold release agents, heat stabilizers, antioxidants, light stabilizers, compatibilizers, mineral additives, colorants, stabilizers, lubricants, antistatic agents, pigments, dyes, flame retardants, TiO 2 , carbon black, graphite Additives, such as an opaque agent (Opacifier) to make it opaque by using the absorption or scattering of light, such as iron oxide, but is not necessarily limited thereto.

본 발명은 하기의 실시예에 의하여 보다 구체화될 것이며, 하기의 실시예는 본 발명의 구체적인 예시에 불과하며 본 발명의 보호범위를 한정하거나 제한하고자 하는 것은 아니다.The present invention will be further illustrated by the following examples, which are merely illustrative of the present invention and are not intended to limit or limit the scope of the present invention.

실시예Example 1 One

상기 에어로겔 분말 70vol%에 열가소성 수지 분말 30vol%을 혼합하고, 상기 혼합된 분말을 금형몰드 투입한다. 이후, 상기 금형몰드를 가압하여 150℃~200℃에서 2시간 동안 열처리한 후, 상기 열처리된 금형모드를 냉각한다. 그 후, 상기 냉각된 금형몰드에서 성형된 성형체를 탈형한다(도 4a 참조).30 vol% of the thermoplastic resin powder is mixed with 70 vol% of the airgel powder, and the mixed powder is charged into a mold mold. Thereafter, the mold mold is pressurized, heat treated at 150 ° C. to 200 ° C. for 2 hours, and the heat treated mold mode is cooled. Thereafter, the molded body is demolded from the cooled mold mold (see FIG. 4A).

이때, 사용된 에어로겔 분말은 평균입경이 0.05-100 ㎛이고, 기공 크기가 1-100 nm 이고, 기공부피가 1-10 cm3/g인 것이 사용될 수 있다. 또한, 열가소성 수지는 비닐중합계인 PVB 수지, PE 수지, PP 수지, PS 수지, PVDC 수지, 아크릴 수지, 폴리아세트산비닐 수지, 플로오르 수지, 또는 중축합개환 중합계인 PA 수지, PC 수지, 아세탈 수지, PPO 수지, 폴리에스테르 수지, 폴리술폰 수지, PI 수지 중 어느 하나의 분말 수지 또는 두개 이상의 혼합 분말 수지가 사용된다.In this case, the airgel powder used may have an average particle diameter of 0.05-100 μm, a pore size of 1-100 nm, and a pore volume of 1-10 cm 3 / g. In addition, the thermoplastic resin may be a vinyl polymer-based PVB resin, a PE resin, a PP resin, a PS resin, a PVDC resin, an acrylic resin, a polyvinyl acetate resin, a fluoro resin, or a PA resin, a PC resin, or an acetal resin, which is a polycondensed ring-opening polymerization system. Powder resin of any one of PPO resin, polyester resin, polysulfone resin, PI resin, or two or more mixed powder resins are used.

실시예Example 2 2

상기 에어로겔 분말 80vol%에 열가소성 수지 분말 30vol%을 혼합하는 것을 제외하곤, 나머지 조건은 상기 실시예 1과 동일하다(도 4b 참조).Except for mixing 30vol% of the thermoplastic resin powder to 80vol% of the airgel powder, the remaining conditions are the same as in Example 1 (see Fig. 4b).

실시예Example 3 3

상기 에어로겔 분말 90vol%에 열가소성 수지 분말 10vol%을 혼합하는 것을 제외하곤, 나머지 조건은 상기 실시예 1과 동일하다(도 4c 참조).Except for mixing 10vol% of the thermoplastic resin powder to 90vol% of the airgel powder, the remaining conditions are the same as in Example 1 (see Fig. 4c).

본 발명에 따른 실리카 에어로겔 복합체 보드 제조방법에서 사용되는 상기 가압은 에어로겔 분말 함량이 50vol%인 경우, 3~7Kgf/㎤ 정도이다.The pressurization used in the method for preparing a silica airgel composite board according to the present invention is about 3-7 Kgf / cm 3 when the airgel powder content is 50 vol%.

이상과 같이 본 발명은 양호한 실시 예에 근거하여 설명하였지만, 이러한 실시 예는 본 발명을 제한하려는 것이 아니라 예시하려는 것이므로, 본 발명이 속하는 기술분야의 숙련자라면 본 발명의 기술사상을 벗어남이 없이 위 실시 예에 대한 다양한 변화나 변경 또는 조절이 가능할 것이다. 그러므로, 본 발명의 보호 범위는 본 발명의 기술적 사상의 요지에 속하는 변화 예나 변경 예 또는 조절 예를 모두 포함하는 것으로 해석되어야 할 것이다.As described above, the present invention has been described based on the preferred embodiments, but these embodiments are intended to illustrate the present invention, not to limit the present invention, so that those skilled in the art to which the present invention pertains can perform the above without departing from the technical spirit of the present invention. Various changes, modifications or adjustments to the example will be possible. Therefore, the protection scope of the present invention should be construed as including all changes, modifications or adjustments belonging to the gist of the technical idea of the present invention.

Claims (5)

에어로겔 분말과 열가소성 수지 분말을 혼합하는 단계와;
상기 혼합된 분말을 금형몰드에 투입하는 단계와;
상기 금형몰드를 가압하여 150℃~200℃에서 2시간 동안 열처리하는 단계와;
상기 열처리된 금형몰드를 냉각하는 단계 및;
상기 냉각된 금형몰드에서 성형된 성형체를 탈형하는 단계를 포함하며;
상기 열가소성 수지는 비닐중합계인 폴리비닐부티랄(PVB: polyvinyl butyral), 폴리에틸렌(PE: polyethylen), 폴리프로필렌(PP: polypropylen), 폴리스틸렌(PS: polystyren), 염화비닐리텐(PVDC; polyvinylidene chloride), 아크릴(acryl) 수지, 폴리아세트산비닐(polyvinyl acetate) 수지, 플로오르(fluoro) 수지, 또는 중축합개환 중합계인 폴리아미드(PA: polyamide) 수지, 폴리카보네이트(PC: polycarbonate) 수지, 아세탈(acetal) 수지, 폴리페닐렌옥사이드(PPO: polyphehyleneoxide) 수지, 폴리에스테르(polyester) 수지, 폴리술폰(polysulfone) 수지, 폴리이미드(PI: polyimide) 수지 중 어느 하나의 분말 수지 또는 두개 이상의 혼합 분말 수지인 것을 특징으로 하는 실리카 에어로겔 복합체 보드 제조방법.
Mixing the airgel powder and the thermoplastic resin powder;
Injecting the mixed powder into a mold mold;
Pressing the mold mold to heat-treat at 150 ° C. to 200 ° C. for 2 hours;
Cooling the heat-treated mold mold;
Demoulding a molded article from the cooled mold mold;
The thermoplastic resin is polyvinyl butyral (PVB), polyethylene (PE: polyethylen), polypropylene (PP: polypropylen), polystyrene (PS: polystyren), polyvinylidene chloride (PVDC) , Acrylic resins, polyvinyl acetate resins, fluoro resins, or polyamide (PA: polyamide) resins, polycarbonate (PC: polycarbonate) resins, acetals ) Resin, polyphenylene oxide (PPO: polyphehyleneoxide) resin, polyester (polyester) resin, polysulfone (polysulfone) resin, polyimide (PI: polyimide) resin of any one of the resin or two or more mixed powder resin Silica airgel composite board manufacturing method characterized in that.
제1항에 있어서, 상기 열가소성 수지 분말은 1~50㎛ 인 것을 특징으로 하는 실리카 에어로겔 복합체 보드 제조방법.
The method of claim 1, wherein the thermoplastic resin powder is a silica airgel composite board manufacturing method, characterized in that 1 ~ 50㎛.
제1항에 있어서, 상기 열가소성 수지의 물성을 향상시키기 위해 강화재가 부가되는 것을 특징으로 하는 실리카 에어로겔 복합체 보드 제조방법.
The method of claim 1, wherein a reinforcing material is added to improve physical properties of the thermoplastic resin.
제1항에 있어서, 상기 에어로겔 분말의 함유량은 5~95vol%인 것을 특징으로 하는 실리카 에어로겔 복합체 보드 제조방법.
The method of claim 1, wherein the content of the airgel powder is 5 to 95vol%.
제1항에 있어서, 상기 가압은 에어로겔 분말 함량이 50vol%의 경우 3~7Kgf/㎤인 것을 특징으로 하는 실리카 에어로겔 복합체 보드 제조방법.The method of claim 1, wherein the pressurization is a silica airgel composite board manufacturing method, characterized in that 3 to 7kgf / cm3 when the airgel powder content is 50vol%.
KR1020100090612A 2010-09-15 2010-09-15 Manufacturing method of silica aerogel composite board KR101255621B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100090612A KR101255621B1 (en) 2010-09-15 2010-09-15 Manufacturing method of silica aerogel composite board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100090612A KR101255621B1 (en) 2010-09-15 2010-09-15 Manufacturing method of silica aerogel composite board

Publications (2)

Publication Number Publication Date
KR20120028635A true KR20120028635A (en) 2012-03-23
KR101255621B1 KR101255621B1 (en) 2013-04-16

Family

ID=46133404

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100090612A KR101255621B1 (en) 2010-09-15 2010-09-15 Manufacturing method of silica aerogel composite board

Country Status (1)

Country Link
KR (1) KR101255621B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288736B1 (en) * 2012-08-16 2013-07-29 주식회사 엠쓰리텍 Aerogel paste and method to manufacture thereof
KR101519013B1 (en) * 2013-11-19 2015-05-12 한국기계연구원 Light emitting unit with lens array and manufacturing method of light diffusion member of the light emitting unit
WO2016017850A1 (en) * 2014-07-30 2016-02-04 주식회사 지오스에어로젤 Aluminum composite panel containing aerogel and method for manufacturing same
KR20170040998A (en) 2015-10-06 2017-04-14 주식회사 페코텍 Manufacturing method of vacuum adsorption nozzzle
KR20190081024A (en) 2017-12-29 2019-07-09 에스케이씨 주식회사 Apparatus for manufacturing plate type aerogel composites and manufacturing method of the plate type aerogel composites applying thereof
KR20190093334A (en) 2018-02-01 2019-08-09 에스케이씨 주식회사 Apparatus for manufacturing aerogel composites and manufacturing method of the aerogel composites applying thereof
KR20200083352A (en) 2018-12-31 2020-07-08 (주) 세이크 Polyurethane Composite Foam Having Silica Aerogel And The Method Thereof
US11261563B2 (en) 2013-07-24 2022-03-01 Armacell Jios Aerogels Limited Heat insulation composition for improving heat insulation and soundproofing functions, containing aerogel, and method for manufacturing heat insulation fabric by using same
CN115895022A (en) * 2022-12-16 2023-04-04 南京工业大学 Preparation method of thermoplastic resin reinforced polyimide aerogel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160721A (en) * 1998-11-26 2000-06-13 Matsushita Electric Works Ltd Production of silica aerogel panel
KR100890365B1 (en) * 2007-07-30 2009-03-25 주식회사 선일팩 Silica aerogel resin based photodegradable disposable container and method for preparing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288736B1 (en) * 2012-08-16 2013-07-29 주식회사 엠쓰리텍 Aerogel paste and method to manufacture thereof
US11261563B2 (en) 2013-07-24 2022-03-01 Armacell Jios Aerogels Limited Heat insulation composition for improving heat insulation and soundproofing functions, containing aerogel, and method for manufacturing heat insulation fabric by using same
KR101519013B1 (en) * 2013-11-19 2015-05-12 한국기계연구원 Light emitting unit with lens array and manufacturing method of light diffusion member of the light emitting unit
WO2016017850A1 (en) * 2014-07-30 2016-02-04 주식회사 지오스에어로젤 Aluminum composite panel containing aerogel and method for manufacturing same
US10953632B2 (en) 2014-07-30 2021-03-23 Jios Aerogel Corporation Aluminum composite panel containing aerogel and method for manufacturing same
KR20170040998A (en) 2015-10-06 2017-04-14 주식회사 페코텍 Manufacturing method of vacuum adsorption nozzzle
KR20190081024A (en) 2017-12-29 2019-07-09 에스케이씨 주식회사 Apparatus for manufacturing plate type aerogel composites and manufacturing method of the plate type aerogel composites applying thereof
KR20190093334A (en) 2018-02-01 2019-08-09 에스케이씨 주식회사 Apparatus for manufacturing aerogel composites and manufacturing method of the aerogel composites applying thereof
KR20200083352A (en) 2018-12-31 2020-07-08 (주) 세이크 Polyurethane Composite Foam Having Silica Aerogel And The Method Thereof
CN115895022A (en) * 2022-12-16 2023-04-04 南京工业大学 Preparation method of thermoplastic resin reinforced polyimide aerogel

Also Published As

Publication number Publication date
KR101255621B1 (en) 2013-04-16

Similar Documents

Publication Publication Date Title
KR101255621B1 (en) Manufacturing method of silica aerogel composite board
Wang et al. Polymer‐based EMI shielding composites with 3D conductive networks: a mini‐review
Yin et al. Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties
Xia et al. A review on graphene‐based electromagnetic functional materials: electromagnetic wave shielding and absorption
Wang et al. Carbon-based aerogels and foams for electromagnetic interference shielding: a review
Wu et al. Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation
JP6578443B2 (en) Multi-layer composite including polyester foam and polyester resin layer and use thereof
US20170210108A1 (en) Laminates comprising reinforced aerogel composites
Zeng et al. Significantly toughened SiC foams with enhanced microwave absorption via in situ growth of Si3N4 nanowires
Song et al. Tunable oriented cellulose/BNNSs films designed for high-performance thermal management
US20170356589A1 (en) Thermally Insulative Expanded Polytetrafluoroethylene Article
Liu et al. Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding
Chand et al. Recent progress in MXene and graphene based nanocomposites for microwave absorption and electromagnetic interference shielding
Wang et al. Flexible and heat-resistant carbon nanotube/graphene/polyimide foam for broadband microwave absorption
TW201817586A (en) Electronic device housing and method for producing same
KR100998474B1 (en) Polymer-Coated Aerogels, Method for Preparing Thereof and Insulative Resin Compositions Using the Same
Li et al. Polyimide composite aerogels towards highly efficient microwave absorption and thermal insulation
Zeng et al. Nanocellulose‐assisted preparation of electromagnetic interference shielding materials with diversified microstructure
Singh et al. Porous materials for EMI shielding
KR20120054389A (en) Aerogel-open cell foam composite
Feng et al. Superelastic and thermal insulating multilayer organic-inorganic hybrid aerogel built from boron nitride nanoribbons and aramid nanofibers
Han et al. Biopolymer‐Based Aerogels for Electromagnetic Wave Shielding and Absorbing
KR101498577B1 (en) Cushioning article for automobile interior
Liu et al. New construction strategies of carbon‐based composites for flexible electromagnetic interference shielding films
CN108384120B (en) Preparation process of low-dielectric-constant polymer-based composite material

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160329

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180404

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190404

Year of fee payment: 7