KR20120015782A - Method of preparing spherical active carbon for adsorptive removal of iodide and hydrogen sulfide and superior active carbon prepared therefrom - Google Patents

Method of preparing spherical active carbon for adsorptive removal of iodide and hydrogen sulfide and superior active carbon prepared therefrom Download PDF

Info

Publication number
KR20120015782A
KR20120015782A KR1020100078198A KR20100078198A KR20120015782A KR 20120015782 A KR20120015782 A KR 20120015782A KR 1020100078198 A KR1020100078198 A KR 1020100078198A KR 20100078198 A KR20100078198 A KR 20100078198A KR 20120015782 A KR20120015782 A KR 20120015782A
Authority
KR
South Korea
Prior art keywords
activated carbon
spherical
spherical activated
parts
hydrogen sulfide
Prior art date
Application number
KR1020100078198A
Other languages
Korean (ko)
Other versions
KR101176587B1 (en
Inventor
오원춘
김혁
김종규
Original Assignee
주식회사 한일그린텍
오원춘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한일그린텍, 오원춘 filed Critical 주식회사 한일그린텍
Priority to KR1020100078198A priority Critical patent/KR101176587B1/en
Publication of KR20120015782A publication Critical patent/KR20120015782A/en
Application granted granted Critical
Publication of KR101176587B1 publication Critical patent/KR101176587B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/36Reactivation or regeneration
    • C01B32/366Reactivation or regeneration by physical processes, e.g. by irradiation, by using electric current passing through carbonaceous feedstock or by using recyclable inert heating bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/202Single element halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: A method for manufacturing spherical activated carbon and the spherical activated carbon are provided to improve the absorptive effect of iodide and hydrogen sulfide by mixing activated carbon, titanium oxide, copper, or the mixture of the same, a binder, and an organic solvent, shaping the mixture into a spherical shape, and carbonating and activating the shaped mixture. CONSTITUTION: Activated carbon, titanium oxide, copper, or the mixture of the same, a binder, and an organic solvent are mixed(1). The mixture is shaped into pellets(2). Vibrations are applied to the pellets at a temperature between 80 and 90 degrees Celsius using a shaker such that the pellets are formed into spherical shapes(3). The spherical shaped materials are carbonated at a temperature between 600 and 800 degrees Celsius under inert gas atmosphere(4). The carbonated materials are activated at a temperature between 750 and 950 degrees Celsius under carbon dioxide gas atmosphere(5).

Description

요오드 및 황화수소의 흡착제거가 우수한 구형 활성탄의 제조방법 및 그로부터 제조된 구형활성탄 {Method of preparing spherical active carbon for adsorptive removal of Iodide and Hydrogen sulfide and superior active carbon prepared therefrom}Method of preparing spherical activated carbon excellent in adsorption and removal of iodine and hydrogen sulfide {Method of preparing spherical active carbon for adsorptive removal of Iodide and Hydrogen sulfide and superior active carbon prepared therefrom}

본 발명은 요오드 및 황화수소의 흡착제거가 우수한 구형 활성탄의 제조방법 및 그로부터 제조된 구형활성탄에 관한 것으로, 더욱 상세하게는 활성탄; 타이타늄 산화물, 구리, 또는 이들의 혼합물; 결합제; 및 유기용매를 혼합하여 혼련하고, 구형으로 성형한 후, 이를 탄화 및 활성화하여, 내발화성이 향상되고, 요오드 및 황화수소 흡착제거 효과가 뛰어난 구형 활성탄의 제조에 관한 것이다. The present invention relates to a method for producing spherical activated carbon excellent in adsorption and removal of iodine and hydrogen sulfide and spherical activated carbon prepared therefrom, and more particularly, activated carbon; Titanium oxide, copper, or mixtures thereof; Binder; And mixing and kneading an organic solvent, forming a spherical shape, and carbonizing and activating the same, thereby improving spherical fire resistance and producing spherical activated carbon having excellent iodine and hydrogen sulfide adsorption and removal effect.

고정밀 제품의 생산 및 문화생활의 척도가 높아짐에 따라 공기청정기용, 반도체 공정, 정밀 자동차 공정, 각종 공조기용, 배기가스 제거용 등 비교적 높은 온도에서도 발화성이 낮은 고기능성흡착제의 요구가 급격히 증가하고 있다. As the production of high precision products and the standard of cultural life have increased, the demand for highly functional adsorbents with low flammability even at relatively high temperatures such as for air cleaners, semiconductor processes, precision automobile processes, various air conditioners, and exhaust gas removal has increased rapidly. .

따라서, 현재 상업용으로 활성탄, 제올라이트, 알루미나 등의 흡착제를 이용하여 유해가스의 제거를 위한 연구가 활발히 진행되고 있다. Therefore, researches for the removal of noxious gases using commercial adsorbents such as activated carbon, zeolite and alumina have been actively conducted.

특히 활성탄은 미세 망 평면 구조의 물리 흡착을 일으키는 흡착제로서, 자체가 가지고 있는 고기공도, 내열성, 내화학성 등의 장점으로 인해 유기용재회수, 탈취, 유해기체제거, 기체분리, 수처리, 탈색, 의료용, 전극소재, 촉매담채 등의 광범위한 분야에 사용되고 있다.In particular, activated carbon is an adsorbent that causes physical adsorption of fine mesh plane structure, and due to its advantages such as meat porosity, heat resistance, chemical resistance, etc., organic ash recovery, deodorization, harmful gas removal, gas separation, water treatment, decolorization, medical, It is used in a wide range of fields such as electrode materials and catalyst tints.

용제회수과정, 악취, 유해가스 및 병원균등의 효과적이고 지속적인 제거는 범용 활성탄만으로는 실현되기 어려우므로 표면적 및 세공이 매우 발달 되어진 고성능 활성탄을 기재로 유해가스 및 병원균의 제거에 효과적인 금속화합물의 도핑, 적절한 광촉매의 선택 및 복합화 등을 통해 수용 가능한 수준으로 흡착, 분해 제거가 요구되고 있다.Effective and continuous removal of solvent recovery process, odors, harmful gases and pathogens is difficult to realize with general purpose activated carbon alone. Therefore, doping of metal compounds effective for the removal of harmful gases and pathogens based on high-performance activated carbon with highly developed surface area and pores Adsorption, decomposition and removal are required to an acceptable level through the selection and complexation of photocatalysts.

그런데 이러한 활성물질함유 활성탄들은 담지된 활성물질의 촉매작용에 의하여 발화온도가 50 ~100℃ 정도로 저하되어 흡착공정에서 발화가 쉽게 일어나는 안전상의 문제를 야기한다.By the way, the activated carbon containing the active substance lowers the ignition temperature by about 50 to 100 ° C. due to the catalytic action of the supported active substance, thereby causing a safety problem that ignition occurs easily in the adsorption process.

또한 일본 특허공개 소 49-115110호 공보에 기재한 방법에서는 목탄 등의 탄소재에 페놀알데히드계 수지를 가하여 압출 성형한 후에 탄화 혹은 탄화 후에 부활시킴으로써 활성탄 성형체를 제조한 것이고, 일본 특허공개 평 3-42039호 공보에서는 탄소재에 분말 활성탄과 함께 페놀수지계 결합제와 혼합하여 성형한 후에 탄화, 부활을 수행하고 있다. 그러나 제조공정에 있어서, 이러한 활성탄 성형물들은 성형 후에 부활공정이 필요하므로, 성형체의 기계적 강도가 저하되어 버리는 데다, 비용이 많이 들어, 공업적으로 사용하기엔 어려움이 있다.In addition, in the method described in Japanese Patent Application Laid-Open No. 49-115110, an activated carbon molded article is produced by adding a phenolaldehyde-based resin to carbon materials such as charcoal and extruding it and then reactivating it after carbonization or carbonization. In 42039, a carbon material is mixed with a powdered activated carbon and a phenol resin-based binder, and then carbonized and reactivated. However, in the manufacturing process, since the activated carbon moldings need an activating process after molding, the mechanical strength of the molded body is lowered, and it is expensive and difficult to use industrially.

또한 일본국 특허공개 소 55-167118호 공보 및 일본국 특허공개 평 7-207119호 공보에서는 활성탄에 상온에서 액상의 페놀알데히드계수지를 결합제로서 이용하여 성형하고, 건조, 경화시킴으로써 활성탄 성형체를 제조하는 방법이 기재되어 있다. 이 방법의 경우, 부활은 행해지지 않았지만, 결합제 성분이 활성탄의 세공을 폐색하여, 활성탄의 흡착 능력이 현저히 저하된다는 문제점이 있다.In addition, Japanese Patent Laid-Open Publication No. 55-167118 and Japanese Patent Laid-Open Publication No. Hei 7-207119 disclose a method for producing an activated carbon molded article by molding, drying and curing the activated carbon using a liquid phenolaldehyde-based resin as a binder at room temperature. This is described. In the case of this method, activation is not performed, but there is a problem that the binder component occludes the pores of the activated carbon and the adsorption capacity of the activated carbon is significantly lowered.

이에 본 연구에서는 금속 융합 활성탄의 발화온도 및 흡착 능력을 높이기 위하여 무기물-활성탄 융합소재를 개발함으로써 내발화성이 향상된 고급 금속 융합 활성탄을 개발하고 성형공정을 통하여 국내 및 국외 시장의 요구를 충족시키려 한다.Therefore, in this study, the inorganic-activated carbon fused material was developed to increase the ignition temperature and adsorption capacity of the metal fused activated carbon, thereby developing advanced metal fused activated carbon with improved fire resistance and satisfying the needs of domestic and foreign markets through the molding process.

상기 종래 기술의 문제점을 극복하기 위하여 본 발명자들은 활성탄; 타이타늄 산화물, 구리, 또는 이들의 혼합물; 결합제; 및 유기용매를 혼합하여 혼련하고, 구형으로 성형한 후, 이를 탄화 및 활성화하여, 내발화성이 향상되고, 요오드 및 황화수소의 흡착제거 효과가 우수한 구형 활성탄의 제조방법 및 그로부터 제조된 구형활성탄을 제공하는 것이다.In order to overcome the problems of the prior art, the present inventors activated carbon; Titanium oxide, copper, or mixtures thereof; Binder; And kneading and kneading an organic solvent, forming a spherical shape, and carbonizing and activating it to improve spontaneous fire resistance and to provide a method for producing spherical activated carbon excellent in adsorption and removal effect of iodine and hydrogen sulfide and spherical activated carbon prepared therefrom. will be.

상기 목적을 달성하기 위한 것으로, 본 발명은 요오드 및 황화수소의 흡착제거가 우수한 구형 활성탄의 제조방법 및 그로부터 제조된 구형활성탄에 관한 것이다.In order to achieve the above object, the present invention relates to a method for producing spherical activated carbon excellent in adsorption removal of iodine and hydrogen sulfide and spherical activated carbon prepared therefrom.

본 발명의 구형 활성탄의 제조방법은,The manufacturing method of the spherical activated carbon of this invention,

a) 활성탄; 타이타늄 산화물, 구리, 또는 이들의 혼합물; 및 결합제를 혼합하고 유기용매를 첨가하여 혼련하는 단계;a) activated carbon; Titanium oxide, copper, or mixtures thereof; Mixing the binder and kneading by adding an organic solvent;

b) 상기 혼련된 혼합물을 펠렛(pellet)으로 성형하는 1차 성형 단계;b) a primary molding step of molding the kneaded mixture into pellets;

c) 쉐이커(shaker)를 이용하여 80 내지 90℃에서 상기 펠렛에 진동을 가하여 상기 펠렛을 구형으로 성형하는 2차 성형 단계;c) a secondary molding step of forming the pellets into a sphere by applying vibration to the pellets at 80 to 90 ℃ using a shaker;

d) 상기 구형의 성형체를 불활성 가스 분위기에서 600 내지 800℃로 열처리하여 탄화시키는 단계; 및d) carbonizing the spherical shaped body by heat treatment at 600 to 800 ° C. in an inert gas atmosphere; And

e) 상기 구형의 성형체를 탄화시킨 후, 이산화탄소 가스 분위기에서 750 내지 950℃로 열처리하여 활성화시키는 단계;e) carbonizing the spherical shaped body and activating it by heat treatment at 750 to 950 ° C. in a carbon dioxide gas atmosphere;

를 포함하는 것을 특징으로 한다.
Characterized in that it comprises a.

이하 본 발명의 단계에 대하여 구체적으로 설명한다.Hereinafter, the steps of the present invention will be described in detail.

상기 구형 활성탄을 제조하기 위해 사용되는 재료인 활성탄은 탄질분말의 한 종류로서, 100 ~ 400 메쉬(mesh)의 평균입자크기를 갖는 것을 특징으로 한다.Activated carbon, which is a material used to prepare the spherical activated carbon, is a kind of carbonaceous powder, and has an average particle size of 100 to 400 mesh.

상기 탄질분말은 목재숯, 각과류껍질숯, 왕겨 숯 또는 탄분숯 등의 숯 종류를 이용할 수 있으며, 본 발명에 따른 제조방법에서는 탄화 단계와 활성화 단계가 존재하므로 탄화된 것, 또는 탄화될 수 있는 종류의 유기물이 사용될 수 있다. The carbonaceous powder may use a kind of charcoal such as wood charcoal, keratin shell charcoal, chaff charcoal or charcoal charcoal, and the like according to the present invention. Kinds of organics may be used.

상기 a)단계는 활성탄; 타이타늄 산화물, 구리, 또는 이들의 혼합물; 및 결합제를 혼합하는 것이 바람직하나, 더욱 바람직하게는 활성탄, 타이타늄 산화물, 구리 및 결합제를 혼합하는 것이 더욱 바람직하다. Step a) is activated carbon; Titanium oxide, copper, or mixtures thereof; And preferably a binder, but more preferably a mixture of activated carbon, titanium oxide, copper and a binder.

상기 타이타늄 산화물은 특별히 제한하지는 않지만, 그 중에서도 이산화티탄(TiO2)을 사용하는 것이 바람직하다.The titanium oxide is not particularly limited, but among them, titanium dioxide (TiO 2 ) is preferably used.

본 발명에 의한 구형 활성탄에는 금속이 담지된 활성탄이 포함되는 데, 이는 고가의 타이타늄 산화물을 적게 사용할 수 있어서 비용을 절감시킬 수 있을 뿐만 아니라, 놀랍게도 흡착 효과와 분해 효과의 두 가지가 시너지 효과를 내면서 요오드 흡착력 및 황화수소에 대한 제거 효율이 매우 증가 될 수 있기 때문이다.The spherical activated carbon according to the present invention includes a metal-supported activated carbon, which can reduce the cost of using expensive titanium oxide, as well as surprisingly synergistic two of the adsorption effect and decomposition effect. This is because iodine adsorption and removal efficiency for hydrogen sulfide can be greatly increased.

상기 활성탄에 담지되는 금속으로는 구리(Cu)가 바람직하며, 이것의 영향으로 활성탄의 활성이 증가하고, 황화수소 제거 및 요오드 흡착력, 향균성 및 발화점이 증대 되었다.Copper (Cu) is preferable as the metal supported on the activated carbon, and the effect of the activated carbon is increased, hydrogen sulfide removal, iodine adsorption, antibacterial activity, and ignition point are increased.

상기 타이타늄 산화물은 활성탄 100 중량부에 대하여 4~15 중량부를 사용하는 것이 바람직하고, 상기 구리는 활성탄 100 중량부에 대하여 3~10 중량부를 사용하는 것이 바람직하다. 상기 타이타늄 산화물이 4 중량부 미만이면 요오드 흡착력 및 황화수소 제거 효과가 낮아져 적합하지 않고, 15 중량부 이상이면 흡착력의 효율이 감소하며 고가의 이산화티탄으로 인해 경제적이지 못하다. 상기 구리가 3 중량부 미만이면 요오드 및 황화수소 흡착제거의 효율이 좋지 못하고, 10 중량부 이상이면 경제적이지 못하다.The titanium oxide is preferably used 4 to 15 parts by weight based on 100 parts by weight of activated carbon, and the copper is preferably used 3 to 10 parts by weight based on 100 parts by weight of activated carbon. If the titanium oxide is less than 4 parts by weight, the iodine adsorption capacity and the hydrogen sulfide removal effect is low and not suitable, and if more than 15 parts by weight, the efficiency of the adsorption power is reduced and it is not economical due to expensive titanium dioxide. If the copper is less than 3 parts by weight, the efficiency of iodine and hydrogen sulfide adsorption removal is not good, and if it is 10 parts by weight or more, it is not economical.

본 발명의 상기 a)단계의 결합제는 페놀수지이며, 활성탄 100 중량부에 대하여 35~55 중량부를 사용하는 것을 특징으로 한다. 상기 페놀수지는 분 말 형태로 사용되며, 페놀수지가 35 중량부 미만이면 구형화가 이루어지지 않고, 교반과정에서 구형에 쉽게 균열이 생기는 문제점이 있을 수 있으며, 55 중량부 이상이면 교반과정에서 구형이 쉽게 일그러져 구형화가 잘 이루어지지 않을 뿐만 아니라, 기공의 재형성 및 비표면적이 감소 되었다.The binder of step a) of the present invention is a phenol resin, characterized in that using 35 to 55 parts by weight based on 100 parts by weight of activated carbon. The phenolic resin is used in the form of a powder, if the phenolic resin is less than 35 parts by weight spherical form is not made, there may be a problem that the crack easily occurs in the sphere during the stirring process, if more than 55 parts by weight the sphere in the stirring process It is easily distorted, resulting in poor spheroidization, as well as reduced pore remodeling and specific surface area.

상기 페놀수지는 노블락형 고체 페놀 수지를 분말 형태로 사용하였다.The phenol resin was used in the form of a powder of a noblock-type solid phenol resin.

본 발명의 상기 a)단계의 유기용매는 탄소수 1 내지 4의 저급 알코올을 사용하며, 이것은 활성탄; 타이타늄산화물, 구리, 또는 이들의 혼합물; 및 결합제 혼합물의 성형 및 유동성을 부여하기 위하여 첨가되고 이를 혼련하는 것이다. The organic solvent of step a) of the present invention uses a lower alcohol having 1 to 4 carbon atoms, which is activated carbon; Titanium oxide, copper, or mixtures thereof; And kneaded and added to impart moldability and flowability of the binder mixture.

상기 유기용매는 활성탄 100 중량부에 대하여 25~55 중량부를 사용하는 것이 바람직하다. 상기 유기용매인 알코올이 25 중량부 미만이면 상기 혼련된 혼합물의 유동성이 너무 적어서 성형이 잘 이루어지지 않는 문제점이 발생하고, 55 중량부 이상이면 성형성이 좋지 않아 구형이 갈라지고 깨지는 문제점이 발생한다.The organic solvent is preferably used 25 to 55 parts by weight based on 100 parts by weight of activated carbon. If the alcohol, the organic solvent, is less than 25 parts by weight, the flowability of the kneaded mixture is too low, so that molding may not be performed well. If the content is 55 parts by weight or more, the moldability is not good. .

상기 b) 단계의 1차 성형은 길이가 짧은 다수의 원주형의 성형틀에 상기 a)단계의 혼련된 혼합물을 투입 및 가압하여 펠렛(pellet)로 성형하는 단계로, 본 발명에 따른 구형 활성탄의 제조에서 구형으로의 성형을 용이하게 하기 위하여 선행하는 성형단계이다.The primary molding step b) is a step of molding and pelletizing the kneaded mixture of step a) into pellets in a plurality of short cylindrical molds, the spherical activated carbon of the present invention This is a preceding molding step in order to facilitate the molding into a sphere in production.

상기 c)단계의 2차 성형은 30 내지 50 메쉬(mesh)의 크기의 눈금을 갖는 체(sieve)를 이용하여 수행되는 것을 특징으로 하며, 80 내지 90℃의 열풍을 가하고, 10분 내지 20분 동안 진동을 가하여 구형의 성형체가 제조된다.The secondary molding of step c) is performed using a sieve having a scale of the size of 30 to 50 mesh, and a hot air of 80 to 90 ° C. is applied for 10 minutes to 20 minutes. A spherical shaped body is produced by applying vibration during the process.

상기 체(sieve)의 눈금 크기가 30 메쉬 미만 또는 50 메쉬 이상이면, 그 위에서 진동을 받아 성형되는 펠렛들의 성형이 잘 이루어 지지 않아 구형이 잘 이루어 지지 않는다. If the scale of the sieve is less than 30 mesh or more than 50 mesh, the pellets formed by the vibrations formed on the sieve are not well formed and the spherical shape is not well formed.

또한, 상기 열풍은 체(sieve)를 관통하도록 하였으며, 열풍의 온도가 80℃ 이하이면 가열효과가 저하되며, 90℃ 이상이면 페놀수지의 경화현상이 일어나 빠르게 경화되어 구형화가 이루어지지 않게 된다.In addition, the hot air is to penetrate the sieve (sieve), the heating effect is lowered if the temperature of the hot air is 80 ℃ or less, the curing phenomenon of the phenol resin occurs if it is 90 ℃ or more is not spherical to form.

이러한 상기 c)단계의 쉐이커(shaker)는 진동을 야기하는 진동부가 체(sieve)에 연결되어 있는 형태를 의미하며, 진동은 x 및 y 축으로 반복적으로 움직이는 구조를 갖고 있다. The shaker of the step c) refers to a form in which a vibrating portion causing vibration is connected to a sieve, and the vibration has a structure repeatedly moving in the x and y axes.

본 발명의 상기 d)단계는 탄화시키는 단계로, 구형의 성형체를 600 내지 800℃의 온도에서 불활성 가스를 100 내지 200 ml/분의 순환속도로 100 내지 150분간 순환시켜 탄화시키는 것이 바람직하다.Step d) of the present invention is a step of carbonizing, it is preferable to carbonize the spherical shaped body by circulating 100 to 150 minutes at a circulation rate of 100 to 200 ml / min at a temperature of 600 to 800 ℃.

상기 불황성 가스는 아르곤 가스(Argon gas), 헬륨 가스(Helium gas) 또는 질소 가스(Nitrogen gas)가 이용 가능하며, 특히 질소 가스를 사용하는 것이 바람직하다.Argon gas (Argon gas), helium gas (Helium gas) or nitrogen gas (Nitrogen gas) may be used as the inert gas, and it is particularly preferable to use nitrogen gas.

상기 탄화 온도가 600℃ 미만이거나 탄화 시간이 100분 미만이면 탄화가 충분히 이루어 지지 못하여 탄소함량이 낮게 되고, 탄화 온도가 800℃ 이상이거나 탄화 시간이 150분 이상이면 구형 활성탄의 요오드 흡착력이 감소하였다.If the carbonization temperature is less than 600 ℃ or the carbonization time is less than 100 minutes, the carbonization is not sufficiently achieved, the carbon content is low, and if the carbonization temperature is 800 ℃ or more or more than 150 minutes, the iodine adsorption power of the spherical activated carbon decreased.

본 발명의 상기 e)단계는 활성화 단계로, 750 내지 950℃의 온도에서 이산화탄소 가스를 100 내지 200 ml/분의 순환속도로 100 내지 150 분간 순환시켜 활성화 하였다. 상기 활성화 온도가 750℃ 미만이거나 활성화 시간이 100분 미만인 경우, 충분한 활성화가 이루어지지 않게 되어 비표면적이 작아지고, 온도가 950℃ 이상이거나 활성화 시간이 150분 이상인 경우, 경제적인 손실이 커 대량 제조 공정이 어렵기 때문이다.Step e) of the present invention is an activation step, activated by circulating 100 to 150 minutes at a circulation rate of 100 to 200 ml / min at a temperature of 750 to 950 ℃. If the activation temperature is less than 750 ℃ or the activation time is less than 100 minutes, the sufficient activation is not achieved, the specific surface area is small, if the temperature is more than 950 ℃ or the activation time is more than 150 minutes, the economic loss is large, mass production This is because the process is difficult.

본 발명에 따라 제조된 구형 활성탄은 결합제의 탄화 및 열분해의 과정, 그리고 활성화 단계의 과정을 통하여 기공의 재형성 및 비표면적이 증가 된 것을 확인하였다.The spherical activated carbon prepared according to the present invention was confirmed that the remodeling and specific surface area of the pores were increased through the process of carbonization and pyrolysis of the binder and the activation step.

또한 본 발명의 상기 제조방법으로 제조되는 구형 활성탄은 요오드 및 황화수소 흡착제거용으로 사용되는 것을 특징으로 한다.In addition, the spherical activated carbon produced by the production method of the present invention is characterized in that it is used for the adsorption removal of iodine and hydrogen sulfide.

이상에서 상세히 설명한 바와 같이, 본 발명은 활성탄; 타이타늄 산화물, 구리, 또는 이들의 혼합물; 결합제; 및 유기용매를 이용하여 성형, 탄화 및 활성화 단계를 통해 요오드 및 황화수소의 흡착제거 효과가 우수한 구형 활성탄의 제조가 가능하다.As described in detail above, the present invention is activated carbon; Titanium oxide, copper, or mixtures thereof; Binder; And it is possible to manufacture spherical activated carbon excellent in the adsorption removal effect of iodine and hydrogen sulfide through the molding, carbonization and activation step using an organic solvent.

따라서, 상기와 같은 제조방법으로 제조된 구형 활성탄은 슬러지, 염료폐수, 축산폐수, 식품폐수 및 가죽제품 처리공장에서 발생하는 폐수와 같은 유기물이 다량으로 포함되어 있는 악성폐수에서 발생하는 황화수소 가스를 제거하는데 효과적이다.Therefore, the spherical activated carbon prepared by the manufacturing method as described above removes hydrogen sulfide gas generated from malignant wastewater containing a large amount of organic matter such as sludge, dye wastewater, livestock wastewater, food wastewater, and wastewater generated from leather goods processing plants. It is effective to

도 1은 본 발명에 따른 구형 활성탄의 제조방법을 나타내는 순서도 이다.
도 2는 본 발명의 1차 성형 단계에서 사용되는 성형 틀 사진을 나타낸 것이다.
도 3은 본 발명의 2차 성형 단계의 사진을 나타낸 것이다.
1 is a flow chart showing a method for producing spherical activated carbon according to the present invention.
Figure 2 shows a molding frame photograph used in the first molding step of the present invention.
Figure 3 shows a photograph of the secondary molding step of the present invention.

이하, 실시예에 의해 본 발명을 보다 상세하게 설명하나, 이는 발명의 구성 및 효과를 이해시키기 위한 것 일뿐, 본 발명의 범위를 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, which are intended only for understanding the constitution and effects of the present invention, and are not intended to limit the scope of the present invention.

[실시예 1]Example 1

300 메쉬(mesh)의 평균입자크기를 가지는 활성탄 분말(한일그린텍, Coal based actibated carbon) 66 g, 이산화티탄(TiO2) 4 g, 및 결합제인 페놀수지 30 g을 혼합하고 에탄올(95%, Samchun Chmicals) 25 g을 첨가하여 혼련 하였다. 혼련된 혼합물을 길이가 짧은 다수의 원주형의 성형틀에 투입 및 가압하여 펠렛(pellet)로 성형하였고(도2), 이 후, 50 메쉬(mesh)의 체 상에 올려놓고 쉐이커(shaker)에서 85℃의 열풍을 가하며 진동시켜(도3) 구형 성형체를 제조하였다. Activated carbon powder having a mean particle size of 300 mesh (66 g of Coal based actibated carbon), 4 g of titanium dioxide (TiO 2 ), and 30 g of phenol resin as a binder were mixed and ethanol (95%, Samchun Chmicals) was kneaded by adding 25 g. The kneaded mixture was put into a plurality of short cylindrical molds and pressed to form pellets (Fig. 2), and then placed on a 50 mesh sieve and placed in a shaker. A spherical molded body was prepared by vibrating with hot air at 85 ° C. (FIG. 3).

이와 같이 제조된 구형 성형체는 700℃에서 질소 가스를 150 ml/분의 순환속도로 2시간 동안 탄화하였다. 탄화 후 950℃에서 이산화탄소 가스를 사용하여 150 ml/분의 공급 속도로써 2시간 동안 활성화 하여 구형 활성탄을 제조하였다.The spherical shaped body thus prepared was carbonized at 700 ° C. for 2 hours at a circulation rate of 150 ml / min. After carbonization, spherical activated carbon was prepared by activating at 950 ° C. for 2 hours using a carbon dioxide gas at a feed rate of 150 ml / min.

[실시예 2-3]Example 2-3

실시예 1에서 이산화티탄(TiO2) 및 페놀수지의 함량을 표 1에 나타낸 바와 같이 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.Except for changing the content of titanium dioxide (TiO 2 ) and phenol resin in Example 1 as shown in Table 1 was prepared in the same manner as in Example 1.

[실시예 4-5]Example 4-5

실시예 1에서 이산화티탄(TiO2) 대신에 구리(Cu)를 첨가하고, 함량을 표 1에 나타낸 바와 같이 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다. Copper (Cu) was added instead of titanium dioxide (TiO 2 ) in Example 1, and was prepared in the same manner as in Example 1 except that the content was changed as shown in Table 1.

[실시예 6-7]Example 6-7

실시예 1에서 구리(Cu)를 더 첨가하고, 함량을 표 1에 나타낸 바와 같이 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.Copper (Cu) was further added in Example 1, and was prepared in the same manner as in Example 1 except that the content was changed as shown in Table 1.

[비교예 1-3]Comparative Example 1-3

실시예 1에서 활성탄 대신 숯을 사용하고, 함량을 표 1에 나타낸 바와 같이 다르게 한 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.Charcoal was used instead of activated carbon in Example 1, and was prepared in the same manner as in Example 1 except that the contents were changed as shown in Table 1.

[비교예 4-5]Comparative Example 4-5

비교예 1에서 이산화티탄 대신 구리(Cu)를 사용하고 함량을 표 1에 나타낸 바와 같이 다르게 한 것을 제외하고는 비교예 1과 동일한 방법으로 제조하였다.Comparative Example 1 was prepared in the same manner as in Comparative Example 1 except that copper (Cu) instead of titanium dioxide and the content was changed as shown in Table 1.

[비교예 6-7]Comparative Example 6-7

비교예 1에서 구리(Cu)를 더 첨가하고, 함량을 표 1에 나타낸 바와 같이 다르게 한 것을 제외하고는 비교예 1과 동일한 방법으로 제조하였다.Copper (Cu) was further added in Comparative Example 1, and was prepared in the same manner as in Comparative Example 1 except that the content was changed as shown in Table 1.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

[실험예 1] 요오드 흡착력의 측정Experimental Example 1 Measurement of Iodine Adsorption

325 메쉬(Mesh) 건조시료 약 0.5 g을 1 mg 까지 정확히 달아 마개 달린 삼각 플라스크 100 ㎖에 넣고 N/10 요오드용액 50 ㎖을 정확히 가하여 상온에서 15분간 진탕기로 진탕시킨 후 50 ㎖ 침전판에 넣어 원심분리기를 이용하여 시료를 침전시킨다. 이 중에서 상층액 10 ㎖를 분취해 N/10 티오황산나트륨 용액으로 적정하여 요오드의 황색이 엷어지면 지시약으로 1 중량/용적% 전분용액 1 ㎖를 가해 적정을 계속하여 요오드 전분의 청색이 소멸 될 때를 종점으로 하여 하기 수학식 1을 사용하여 시료 1 g당 흡착된 요오드 ㎎수를 구한다. 요오드 흡착량을 계산하는 식은 하기와 같다. Approximately 0.5 g of a 325 mesh dry sample is weighed accurately to 1 mg, 100 ml of a capped Erlenmeyer flask, 50 ml of N / 10 iodine solution is added correctly, shaken with a shaker for 15 minutes at room temperature, and then put into a 50 ml precipitate plate. The sample is precipitated using a separator. Take 10 ml of the supernatant, titrate with N / 10 sodium thiosulfate solution, and when the yellow color of iodine becomes light, add 1 ml of 1 weight / vol% starch solution with indicator and continue titration to stop the blue color of iodine starch. As the end point, the number of mg of iodine adsorbed per 1 g of the sample is obtained using Equation 1 below. The formula for calculating the iodine adsorption amount is as follows.

Figure pat00003
Figure pat00003

[상기 식에서 A는 요오드의 질량수이고, [Wherein A is the mass number of iodine,

상기 B는 티오황산나트륨의 노르말 농도이며, B is the normal concentration of sodium thiosulfate,

상기 S는 시료의 무게이며,S is the weight of the sample,

상기 12.69는 N/10 티오황산나트륨 용액 1㎖에 대응하는 요오드량(㎎)이다.]
12.69 is the amount of iodine (mg) corresponding to 1 ml of N / 10 sodium thiosulfate solution.]

[실험예 2] 황화수소 제거 효율Experimental Example 2 Hydrogen Sulfide Removal Efficiency

H2S 표준가스는 H2S 10%/ N2 90% 사용하였으며, 유속은 20분간 80 mL를 흘려주고 컬럼직경은 15 mm에 5 g의 활성탄을 채워서 초기공급량과 나중 배출량을 측정하여 제거 효율로써 흡착되는 양으로 측정하였다.
H 2 S standard gas was used as H 2 S 10% / N 2 90%. The flow rate was 80 mL for 20 minutes and the column diameter was filled with 5 g of activated carbon at 15 mm to measure the initial supply and later emissions. As measured by the amount adsorbed.

상기 실시예 및 비교예에서 이산화티탄이 포함된 구형 활성탄의 요오드 흡착능력 및 황화수소 제거 효율의 결과를 하기 표 2에 나타내었다.Table 2 shows the results of iodine adsorption capacity and hydrogen sulfide removal efficiency of the spherical activated carbon containing titanium dioxide in the above Examples and Comparative Examples.

[표 2]TABLE 2

Figure pat00004
Figure pat00004

상기 표 2에서 활성탄을 사용한 실시예가 숯을 사용한 비교예 보다 요오드 흡착력 및 황화수소 제거 효율이 우수한 것을 확인하였다.
In Table 2, it was confirmed that the examples using activated carbon had better iodine adsorption and hydrogen sulfide removal efficiency than the comparative examples using charcoal.

상기 실시예 및 비교예에서 구리가 포함된 구형 활성탄의 요오드 흡착능력 및 황화수소 제거 효율의 결과를 하기 표 3에 나타내었다.The results of iodine adsorption capacity and hydrogen sulfide removal efficiency of the spherical activated carbon containing copper in the above Examples and Comparative Examples are shown in Table 3 below.

[표 3][Table 3]

Figure pat00005
Figure pat00005

상기 표 3은 숯 대신 활성탄을 사용한 구형 활성탄이 요오드 흡착능력 및 황화수소 제거 효율이 우수한 것을 확인하였다.Table 3 confirms that spherical activated carbon using activated carbon instead of charcoal has excellent iodine adsorption capacity and hydrogen sulfide removal efficiency.

또한 구리 첨가량이 증가하면, 요오드 흡착량 및 황화수소 제거 효율 또한 증가하는 것을 확인 하였다.
In addition, it was confirmed that as the amount of copper added increased, the amount of iodine adsorption and the hydrogen sulfide removal efficiency also increased.

상기 실시예 및 비교예에서 이산화티탄 및 구리가 포함된 구형 활성탄의 요오드 흡착능력 및 황화수소 제거 효율의 결과를 하기 표 4에 나타내었다.Table 4 shows the results of iodine adsorption capacity and hydrogen sulfide removal efficiency of the spherical activated carbon including titanium dioxide and copper in the examples and the comparative examples.

[표 4][Table 4]

Figure pat00006
Figure pat00006

상기 표 4는 숯 대신 활성탄을 사용한 구형 활성탄이 요오드 흡착능력 및 황화수소 제거 효율이 우수한 것을 확인할 수 있었고, 구리 및 이산화티탄이 모두 첨가된 실시예 6 내지 7 및 비교예 6 내지 7의 경우, 요오드 흡착량 및 황화수소 제거 효율이 다른 실시예 및 비교예 보다 월등히 우수함을 확인하였다. 첨가량이 증가하면, 요오드 흡착량 및 황화수소 제거 효율 또한 증가하는 것을 확인하였다. 또한 실시예 6과 실시예 7을 비교하였을 때, 구리의 첨가량이 증가할수록 요오드 흡착량 및 황화수소 제거 효율이 우수하였다.
Table 4 shows that spherical activated carbon using activated carbon instead of charcoal has excellent iodine adsorption capacity and hydrogen sulfide removal efficiency, and in Examples 6 to 7 and Comparative Examples 6 to 7 where both copper and titanium dioxide were added, iodine adsorption The amount and the hydrogen sulfide removal efficiency was confirmed to be significantly superior to other examples and comparative examples. As the amount added increased, the amount of iodine adsorption and the hydrogen sulfide removal efficiency also increased. In addition, when Example 6 and Example 7 were compared, the amount of iodine adsorption and hydrogen sulfide removal efficiency were excellent as the amount of copper added increased.

따라서, 이산화티탄만 첨가되어 있는 것보다는 이산화티탄 및 구리가 첨가된 구형 활성탄의 요오드 흡착능력이 크게 향상되었고, 탄소 원료로 숯 보다 페놀수지를 사용할 때 높은 요오드 흡착력이 나타났다. 황화수소 제거효율 또한 요오드 흡착능력과 같은 양상을 보이는 것을 확인하였다.Accordingly, the iodine adsorption capacity of titanium activated carbon and copper-added spherical activated carbon was significantly improved rather than only titanium dioxide, and high iodine adsorption power was observed when phenol resin was used as the carbon raw material. Hydrogen sulfide removal efficiency also showed the same pattern as the iodine adsorption capacity.

Claims (12)

a) 활성탄; 타이타늄 산화물, 구리, 또는 이들의 혼합물; 및 결합제를 혼합하고 유기용매를 첨가하여 혼련하는 단계;
b) 상기 혼련된 혼합물을 펠렛(pellet)으로 성형하는 1차 성형 단계;
c) 쉐이커(shaker)를 이용하여 80 내지 90℃에서 상기 펠렛에 진동을 가하여 상기 펠렛을 구형으로 성형하는 2차 성형 단계;
d) 상기 구형의 성형체를 불활성 가스 분위기에서 600 내지 800℃로 열처리하여 탄화시키는 단계; 및
e) 상기 구형의 성형체를 탄화시킨 후, 이산화탄소 가스 분위기에서 750 내지 950℃로 열처리하여 활성화시키는 단계;
를 포함하는 구형 활성탄의 제조방법.
a) activated carbon; Titanium oxide, copper, or mixtures thereof; Mixing the binder and kneading by adding an organic solvent;
b) a primary molding step of molding the kneaded mixture into pellets;
c) a secondary molding step of forming the pellets into a sphere by applying vibration to the pellets at 80 to 90 ℃ using a shaker;
d) carbonizing the spherical shaped body by heat treatment at 600 to 800 ° C. in an inert gas atmosphere; And
e) carbonizing the spherical shaped body and activating it by heat treatment at 750 to 950 ° C. in a carbon dioxide gas atmosphere;
Spherical activated carbon manufacturing method comprising a.
제 1항에 있어서,
상기 a)단계는 활성탄, 타이타늄 산화물, 구리 및 결합제가 혼합하는 것을 특징으로 하는 구형 활성탄의 제조방법.
The method of claim 1,
Step a) is a method for producing spherical activated carbon, characterized in that the mixture of activated carbon, titanium oxide, copper and binder.
제 2항에 있어서,
상기 타이타늄 산화물은 활성탄 100 중량부에 대하여 4~15 중량부인 것을 특징으로 하는 구형 활성탄의 제조방법.
The method of claim 2,
The titanium oxide is a method for producing spherical activated carbon, characterized in that 4 to 15 parts by weight based on 100 parts by weight of activated carbon.
제 3항에 있어서,
상기 구리는 활성탄 100 중량부에 대하여 3~10 중량부인 것을 특징으로 하는 구형 활성탄의 제조방법.
The method of claim 3,
The copper is a method for producing spherical activated carbon, characterized in that 3 to 10 parts by weight based on 100 parts by weight of activated carbon.
제 1항에 있어서,
상기 결합제는 페놀수지이며, 활성탄 100 중량부에 대하여 35~55 중량부인 것을 특징으로 하는 구형 활성탄의 제조방법.
The method of claim 1,
The binder is a phenol resin, and the manufacturing method of the spherical activated carbon, characterized in that 35 to 55 parts by weight based on 100 parts by weight of activated carbon.
제 1항에 있어서,
상기 활성탄은 100 ~ 400 메쉬(mesh)의 평균입자크기를 갖는 것을 특징으로 하는 구형 활성탄의 제조방법.
The method of claim 1,
The activated carbon is a method for producing spherical activated carbon, characterized in that it has an average particle size of 100 ~ 400 mesh.
제 6항에 있어서,
상기 유기 용매는 탄소수 1 내지 4의 저급 알코올인 것을 특징으로 하는 구형 활성탄의 제조방법.
The method of claim 6,
The organic solvent is a method for producing spherical activated carbon, characterized in that the lower alcohol having 1 to 4 carbon atoms.
제 7항에 있어서,
상기 유기 용매는 활성탄 100 중량부에 대하여 25~55 중량부인 것을 특징으로 하는 구형 활성탄의 제조방법.
The method of claim 7, wherein
The organic solvent is a method for producing spherical activated carbon, characterized in that 25 to 55 parts by weight based on 100 parts by weight of activated carbon.
제 1항에 있어서,
상기 c)단계는 30 내지 50 메쉬(mesh)의 크기를 갖는 체(sieve)를 이용하여 수행되는 것을 특징으로 하는 구형 활성탄의 제조방법.
The method of claim 1,
The c) step is a method for producing spherical activated carbon, characterized in that carried out using a sieve (sieve) having a size of 30 to 50 mesh.
제 9항에 있어서,
상기 c)단계는 80 내지 90℃의 열풍을 가하여 제조되는 것을 특징으로 하는 구형 활성탄의 제조방법.
The method of claim 9,
The c) step is a spherical activated carbon manufacturing method, characterized in that the production by applying hot air of 80 to 90 ℃.
제 1항 내지 제 10항에서 선택되는 어느 한 항에 따른 제조방법으로 제조되는 구형 활성탄.Spherical activated carbon produced by the manufacturing method according to any one of claims 1 to 10. 제 11항에 있어서,
상기 제조된 구형 활성탄은 요오드 및 황화수소 흡착제거용인 것을 특징으로 하는 구형 활성탄.
12. The method of claim 11,
The spherical activated carbon prepared is a spherical activated carbon, characterized in that for removing the adsorption of iodine and hydrogen sulfide.
KR1020100078198A 2010-08-13 2010-08-13 Method of preparing spherical active carbon for adsorptive removal of Iodide and Hydrogen sulfide and superior active carbon prepared therefrom KR101176587B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100078198A KR101176587B1 (en) 2010-08-13 2010-08-13 Method of preparing spherical active carbon for adsorptive removal of Iodide and Hydrogen sulfide and superior active carbon prepared therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100078198A KR101176587B1 (en) 2010-08-13 2010-08-13 Method of preparing spherical active carbon for adsorptive removal of Iodide and Hydrogen sulfide and superior active carbon prepared therefrom

Publications (2)

Publication Number Publication Date
KR20120015782A true KR20120015782A (en) 2012-02-22
KR101176587B1 KR101176587B1 (en) 2012-08-24

Family

ID=45838374

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100078198A KR101176587B1 (en) 2010-08-13 2010-08-13 Method of preparing spherical active carbon for adsorptive removal of Iodide and Hydrogen sulfide and superior active carbon prepared therefrom

Country Status (1)

Country Link
KR (1) KR101176587B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949213A (en) * 2014-04-21 2014-07-30 广西大学 Activated carbon based adsorbent composition for recovering sulfur dioxide and nitrogen gas from furnace gas generated by pyrite calcination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102181923B1 (en) 2018-11-09 2020-11-23 (주)포스코케미칼 The method of Preparing Activated Carbon of Various Shape Using Naphthalene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949213A (en) * 2014-04-21 2014-07-30 广西大学 Activated carbon based adsorbent composition for recovering sulfur dioxide and nitrogen gas from furnace gas generated by pyrite calcination

Also Published As

Publication number Publication date
KR101176587B1 (en) 2012-08-24

Similar Documents

Publication Publication Date Title
US9174205B2 (en) Production of catalytically active activated carbons
KR101396374B1 (en) Tungsten carbide catalyst supported on mesoporous carbon, preparation and application thereof
US9737871B2 (en) Granular activated carbon having many mesopores, and manufacturing method for same
Demiral et al. Surface properties of activated carbon prepared from wastes
JP2012507470A5 (en)
CN108439403A (en) A kind of method that low-temperature prewarming solution, raw material fine prepare biomass moulding activated carbon
US10450244B2 (en) Method for oxygen removal from hydrogen using adsorbent
KR101176587B1 (en) Method of preparing spherical active carbon for adsorptive removal of Iodide and Hydrogen sulfide and superior active carbon prepared therefrom
KR20140110145A (en) Complex adsorbent and manufacuring method of complex adsorbent
JP6628885B2 (en) Method for producing activated carbon, activated carbon and canister
US10246336B2 (en) Method of making alkali activated carbon
Aghaei et al. Measurements and modeling of CO2 adsorption behaviors on granular zeolite 13X: Impact of temperature and time of calcination on granules properties in granulation process using organic binders
JP2009057239A (en) Activated carbon preparation method
CN105983389B (en) The preparation method of activated carbon containing lanthanum
KR101752967B1 (en) Pellet-producing apparatus for pelletizing a composition for ignition resistant molded-composite adsorbent comprising activated carbon and zeolite
JPH11349320A (en) Production of activated carbon
KR20110115924A (en) Preparation method of spherical shape mesoporous activated carbon
JP2017154965A (en) Silver-carrying zeolite molded body
EP3047906B1 (en) Method for producing solid acid by molding with a resin binder
KR100193377B1 (en) Manufacturing method of particulate composite molecular sieve composition for tobacco filter
JPH11349318A (en) Production of activated carbon
JPH05146678A (en) Active carbon honeycomb structure and production thereof
TW201601995A (en) Porous carbon, method for producing same, and adsorption/desorption device using porous carbon
JPH11349319A (en) Production of activated carbon
RU2467793C2 (en) Carbon molecular sieve

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151126

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160817

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180323

Year of fee payment: 6

R401 Registration of restoration