KR20120008299U - structure of multiple electron beam side scan sonar - Google Patents

structure of multiple electron beam side scan sonar Download PDF

Info

Publication number
KR20120008299U
KR20120008299U KR2020110004547U KR20110004547U KR20120008299U KR 20120008299 U KR20120008299 U KR 20120008299U KR 2020110004547 U KR2020110004547 U KR 2020110004547U KR 20110004547 U KR20110004547 U KR 20110004547U KR 20120008299 U KR20120008299 U KR 20120008299U
Authority
KR
South Korea
Prior art keywords
transducer
elements
underwater
resolution
high speed
Prior art date
Application number
KR2020110004547U
Other languages
Korean (ko)
Other versions
KR200466278Y1 (en
Inventor
박승수
Original Assignee
소나테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소나테크 주식회사 filed Critical 소나테크 주식회사
Priority to KR2020110004547U priority Critical patent/KR200466278Y1/en
Publication of KR20120008299U publication Critical patent/KR20120008299U/en
Application granted granted Critical
Publication of KR200466278Y1 publication Critical patent/KR200466278Y1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8902Side-looking sonar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

본 고안은 음파를 송수신하는 엘리먼트부와 이를 각각 연결하는 내부 배선부로 트랜스듀서를 구성하고 케이블부와 커넥터부로 연결되어 몰딩부로 외부의 충격으로부터 내부를 보호한 후 수중탐사체의 좌우측에 장착되어 사용되며, 트랜스듀서 내부는 12개의 엘리먼트로 각각 분리하여 구성하고 2개의 엘리먼트를 한 배열로 설정하여 배열 사이의 간격을 계산해 빔을 수신하도록 하며, 엘리먼트 배열간의 간격을 기존의 λ/2가 아닌 62λ로 배치하여 트랜스듀서의 길이와 필요 엘리먼트수를 최적화하고, 0.15˚의 빔각을 형성해 수중탐사체의 진행방향에 대한 해상도를 향상시켜 고속으로 운용 시에도 안정되게 수중탐색데이터를 취득할 수 있도록 한 것이며, 이로부터 트랜스듀서의 길이 및 엘리먼트 수를 최소화하도록 구성된 멀티빔 사이드스캔소나의 트랜스듀서이다.
고속으로 운용 시 다중채널의 분할수신이 가능한 구조로 각 엘리먼트 배열구조를 설계하여 수중탐사체의 진행방향에 대한 해상도를 단빔에 비해 수 배 이상 향상시켜 보다 효율적이고 빠르게 탐사를 수행할 수 있으며, 장비를 고속으로 운용함으로써 해상상황에 큰 영향을 받지 않고 원하는 해상도를 얻으면서 장비를 효과적으로 운용할 수 있는 것이다.
The present invention constitutes a transducer with an element part that transmits and receives sound waves and an internal wiring part that connects them, respectively, and is connected to the cable part and the connector part to protect the inside from external shocks by the molding part, and is mounted on the left and right sides of the underwater probe. Inside the transducer, it is composed of 12 elements separately and sets two elements into one array to calculate the gap between the arrays to receive the beam, and arranges the gaps between the element arrays as 62λ instead of λ / 2. By optimizing the length of the transducer and the required number of elements, and forming a beam angle of 0.15˚, the resolution of the traveling direction of the underwater probe can be improved so that underwater search data can be obtained stably even when operating at high speed. Of multi-beam sidescanners configured to minimize transducer length and number of elements I'm a lance producer.
It is possible to divide and receive multiple channels when operating at high speed. By designing each element arrangement structure, the resolution of the underwater probe can be improved several times more than the single beam. By operating it at high speed, it is possible to operate the equipment effectively with the desired resolution without being affected by the sea situation.

Description

멀티빔 사이드스캔소나의 트랜스듀서 구조{structure of multiple electron beam side scan sonar}Structure of multiple electron beam side scan sonar

본 고안은 멀티빔 사이드스캔소나의 트랜스듀서 구조에 관한 것으로, 보다 상세하게는 수중탐사체의 몸체에 설치되어 0.15˚의 빔각을 형성하여 초음파를 발신하고, 표적에 반사된 음파 수신시 다중채널로 분할하여 최대 0.15˚간격으로 수신하는 엘리먼트 배열구조로 설계하여, 고속으로 운용 시에도 정밀한 빔각을 유지하고 수중탐사체의 진행방향에 대한 해상도를 향상시켜 해저면의 탐색 데이터를 효과적으로 취득할 수 있도록 한 것이다.
The present invention relates to a transducer structure of a multi-beam side scan sonar, and more particularly, it is installed on the body of an underwater probe and forms a beam angle of 0.15˚ to transmit ultrasonic waves, and to receive a sound wave reflected by a target to a multi-channel. Designed with an element array structure that divides and receives at intervals of up to 0.15˚, it maintains a precise beam angle and improves the resolution of the underwater probe, even when operating at high speed, so that search data on the bottom can be effectively acquired. will be.

일반적으로 수중탐사체를 이용하여 해저지형을 탐색하거나 해양환경조사, 침선 및 수중물체 탐색, 인공어초 조사, 어군탐지 등에 사용하고 있으며, 싱글빔 사이드스캔소나의 경우 선박의 견인속도가 증가함에 따라 수중탐사체의 진행방향에 대한 해상도가 현저하게 저하되어 해저면의 탐색 데이터를 정상적으로 취득할 수 없기에 낮은 속도로 견인하여 장비를 운용하고 있다. 하지만 선박을 저속으로 운용함으로, 조류나 파도의 영향을 많이 받아 수중탐사체가 균형을 잃어 견인 자세가 안정되지 않을 뿐만 아니라, 수중탐사체의 진행방향에 대한 해상도가 저하되어 취득한 탐색데이터의 신뢰성이 떨어지고 탐사 시간이 길어지는 등 장비 운용의 효율성 또한 저하되는 문제점이 있었다.
In general, underwater exploration is used to explore the seabed topography, marine environment survey, acupuncture and underwater objects search, artificial reef survey, fish group detection, etc.In the case of single beam side scan sonar Since the resolution of the exploration body's moving direction is considerably lowered, the navigational data of the sea floor cannot be obtained normally, and the equipment is towed at a low speed. However, by operating the vessel at low speed, the underwater probe will not be balanced due to the effects of tidal currents or waves, and the towing posture will not be stabilized, and the resolution of the underwater probe will be degraded, resulting in poor reliability of the acquired search data. There was also a problem that the efficiency of equipment operation is also reduced, such as long exploration time.

본 고안은 상기와 같은 문제점을 해결하기 위해, 트랜스듀서의 내부 구조를 기존의 일체형 엘리먼트 배치 방식에서 채널별 배치 방식으로 개선하여 0.15˚의 빔폭을 형성할 수 있도록 하고, 트랜스듀서의 길이와 엘리먼트 수를 최소화함과 동시에 엘리먼트 간격을 계산해 내부 구조를 설계함으로써 수중탐사체의 진행방향에 대한 해상도를 향상시키고, 엘리먼트 사이마다 빔을 수신하도록 하는 것에 그 목적이 있다.
In order to solve the above problems, the present invention improves the internal structure of the transducer from the conventional integrated element arrangement to the channel-by-channel arrangement to form a beam width of 0.15 °, and the length and number of elements of the transducer. The purpose is to improve the resolution of the underwater probe and to receive beams between elements by designing the internal structure by calculating the element spacing while minimizing the.

상기와 같은 목적을 달성하기 위해 본 고안은 트랜스듀서 내부를 12개의 엘리먼트로 각각 분리하여 구성하고 2개의 엘리먼트를 한 배열로 설정하여 배열 사이의 간격을 계산해 빔을 수신하도록 하며, 엘리먼트 배열간의 간격을 기존의 λ/2가 아닌 62λ로 배치하여 트랜스듀서의 길이와 필요 엘리먼트수를 최적화하고, 0.15˚의 빔각을 형성해 수중탐사체의 진행방향에 대한 해상도를 향상시켜 고속으로 운용 시에도 안정되게 수중탐색데이터를 취득할 수 있도록 한 것이다.
In order to achieve the above object, the present invention separates the inside of the transducer into 12 elements, sets two elements in one array, calculates the distance between the arrays, and receives the beams. Optimize the transducer length and the number of elements required by placing it at 62λ instead of λ / 2, and improve the resolution of the underwater probe's moving direction by forming a beam angle of 0.15˚. The data can be obtained.

이와 같이 본 고안은, 수중탐사체를 이용하여 수중탐색데이터를 수집할 때 고속으로 장비 운용 시에도 해저면의 데이터를 효과적으로 획득할 수 있도록 하고, 고속 운행에 의해 탐사 시간을 크게 단축할 수 있을 뿐만 아니라, 파도나 조류의 영향을 최소화하여 수중탐사체가 균형을 잃는 것을 방지하고 안전사고를 미연에 방지하는 등의 효과가 있는 것이다.
In this way, the present invention, when collecting underwater search data using the underwater probe, to effectively acquire the data of the sea floor even when operating the equipment at high speed, and can greatly reduce the exploration time by high speed operation In addition, by minimizing the effects of waves and tides, the underwater exploration body is prevented from losing balance and safety accidents are prevented.

도 1은 본 고안의 사시도
도 2는 본 고안의 엘리먼트와 케이블의 배선을 나타낸 상태도
도 3는 본 고안의 사용상태 예시도로서 엘리먼트 간격과 음파를 발신하고 수신하는 상태를 나타낸 사시도
도 4은 종래의 트랜스듀서의 엘리먼트 간격과 음파를 발신하고 수신하는 상태를 나타낸 사시도
도 5는 본 고안이 장착된 상태의 수중탐사체 사시도
1 is a perspective view of the present invention
2 is a state diagram showing the wiring of the element and the cable of the present invention
Figure 3 is a perspective view showing a state of transmitting and receiving element intervals and sound waves as an exemplary state of use of the present invention
Figure 4 is a perspective view showing a state of transmitting and receiving element spacing and sound waves of a conventional transducer
5 is a perspective view of the underwater exploration body equipped with the present invention

트랜스듀서(1)에 있어서,
In the transducer (1),

트랜스듀서(1)는 엘리먼트부(2)와 이를 각각 연결하는 내부 배선부(6)를 통해 6개 단위로 케이블부(3)와 커넥터부(4)에 연결되어 있으며, 몰딩부(5)로 내부를 보호하고 있으며 트랜스듀서(1)는 수중탐사체(7)의 좌우측에 장착되는 것이다. 트랜스듀서(1)는 내부를 12개의 엘리먼트로 각각 분리하여 구성하고 2개의 엘리먼트(2)를 한 배열로 설정하여 배열 사이의 간격을 계산해 빔을 수신하도록 하며, 엘리먼트 배열간의 간격을 62λ로 배치하여 수신해상도를 향상시킬 수 있도록 트랜스듀서(1)구조를 설계한 것이다.
The transducer 1 is connected to the cable part 3 and the connector part 4 in six units through the element part 2 and the internal wiring part 6 connecting them, respectively, to the molding part 5. It protects the inside and the transducer 1 is mounted on the left and right sides of the underwater probe (7). Transducer 1 consists of 12 elements inside each of them and sets two elements 2 into one array to calculate the interval between arrays to receive the beam, and arranges the elements between 62 arrays The transducer 1 is designed to improve the reception resolution.

미설명부호 8 은 기존의 트랜스듀서를 표시한 것임.
Reference numeral 8 denotes a conventional transducer.

이와 같이 된 본 고안은 도 3 ~ 도 5에서 보는 바와 같이 수중탐사체(7)를 고속으로 운용하면서 해저의 수중정보를 수집할 때 62λ의 간격으로 되어있는 각각의 엘리먼트부(2) 배열 사이로 표적에 반사된 수중음파신호를 다중채널로 분할수신하여 수중탐사체(7)의 진행방향에 대한의 해상도를 종래의 엘리먼트 간격이 λ/2로 구성되어 있는 트랜스듀서의 단빔에 비해 수 배 이상 향상시킬 수 있어서, 보다 효율적이고 빠르게 탐사를 수행할 수 있도록 한 것이다.
3 to 5, the present invention has a target between the arrays of elements 2 arranged at intervals of 62 lambda when collecting underwater information while operating the underwater probe 7 at high speed as shown in FIGS. By splitting and receiving the sonar signal reflected on the multi-channel, the resolution of the traveling direction of the underwater probe 7 can be improved several times more than the single beam of the transducer whose element spacing is λ / 2. In this way, exploration can be performed more efficiently and quickly.

본 고안은 첨부된 도면을 참고로 설명되었으나 이는 예시적인 것으로 상기의 설명에 한정되는 것이 아니고, 통상의 지식을 가진 자라면 이로부터 다양한 개작 및 변형이 가능함은 자명한 것이다.Although the present invention has been described with reference to the accompanying drawings, which are illustrative and not limited to the above description, it will be apparent to those skilled in the art that various modifications and variations are possible.

1; 트랜스듀서
2; 엘리먼트부
3; 케이블부
4; 커넥터부
5; 몰딩부
6; 내부 배선부
7; 수중탐사체
8; 기존 트랜스듀서
One; Transducer
2; Element part
3; Cable section
4; The connector portion
5; Molding part
6; Internal wiring
7; Underwater probe
8; Conventional transducer

Claims (1)

트랜스듀서(1)에 있어서;
상기 트랜스듀서(1)는 엘리먼트부(2)와 이를 각각 연결하는 내부 배선부(6)를 통해 6개 단위로 케이블부(3)와 커넥터부(4)에 연결되어 있으며, 외부의 충격으로 부터 내부를 보호하는 몰딩부(5)를 포함하며, 상기 엘리먼트부(2)는 12개의 엘리먼트로 각각 분리하여 구성하고 2개의 엘리먼트를 한 배열로 설정하여 배열 사이의 간격을 62λ로 배치하여 수신해상도를 향상시킬 수 있을 뿐만 아니라 운용속도를 수 배 향상시킬 수 있는 것을 특징으로 하는 멀티빔 사이드스캔소나의 트랜스듀서 구조.




In the transducer (1);
The transducer 1 is connected to the cable part 3 and the connector part 4 in six units through the element part 2 and the internal wiring part 6 connecting them, respectively. And a molding part 5 which protects the inside, and the element part 2 is composed of 12 elements each separately and two elements are arranged in an array so that the spacing between the arrays is set to 62 lambda. Transducer structure of a multi-beam side scan sonar, which can not only be improved but also several times faster.




KR2020110004547U 2011-05-25 2011-05-25 multiple electron beam side scan sonar KR200466278Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR2020110004547U KR200466278Y1 (en) 2011-05-25 2011-05-25 multiple electron beam side scan sonar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR2020110004547U KR200466278Y1 (en) 2011-05-25 2011-05-25 multiple electron beam side scan sonar

Publications (2)

Publication Number Publication Date
KR20120008299U true KR20120008299U (en) 2012-12-05
KR200466278Y1 KR200466278Y1 (en) 2013-04-08

Family

ID=47517812

Family Applications (1)

Application Number Title Priority Date Filing Date
KR2020110004547U KR200466278Y1 (en) 2011-05-25 2011-05-25 multiple electron beam side scan sonar

Country Status (1)

Country Link
KR (1) KR200466278Y1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030982A (en) * 2021-03-17 2021-06-25 中国科学院声学研究所 Double-frequency ultra-high resolution sounding side-scan sonar system
US11706438B2 (en) 2012-01-18 2023-07-18 Electronics And Telecommunications Research Institute Method and device for encoding and decoding image

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0126897Y1 (en) * 1995-11-29 1999-03-20 배순훈 Towed array sonar system with array stablization module
KR101028071B1 (en) 2009-10-23 2011-04-08 한국해양연구원 Imaging sonar with optimized array structure of receiving transducers considering beam pattern of transducer element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11706438B2 (en) 2012-01-18 2023-07-18 Electronics And Telecommunications Research Institute Method and device for encoding and decoding image
US12003752B2 (en) 2012-01-18 2024-06-04 Electronics And Telecommunications Research Institute Method and device for encoding and decoding image
CN113030982A (en) * 2021-03-17 2021-06-25 中国科学院声学研究所 Double-frequency ultra-high resolution sounding side-scan sonar system

Also Published As

Publication number Publication date
KR200466278Y1 (en) 2013-04-08

Similar Documents

Publication Publication Date Title
US11609316B2 (en) Integrated sonar devices and methods
de MOUSTIER State of the art in swath bathymetry survey systems
US11119211B2 (en) Acoustic doppler system and method
US10379256B2 (en) Combined seismic and electromagnetic survey configurations
US20060215489A1 (en) Systems and methods for seismic streamer positioning
KR101521857B1 (en) 3 dimension seismic exploration apparatus and method in small ships
US11280903B2 (en) Acoustic doppler system and method
WO2008105932A2 (en) System and method for forward looking sonar
EP3273264B1 (en) Underwater detection apparatus
US20180224544A1 (en) Forward scanning sonar system and method with angled fan beams
GB2362715A (en) Marine seismic survey
KR101033111B1 (en) Ocean observation ship having echo sounder
KR200466278Y1 (en) multiple electron beam side scan sonar
CN105629249A (en) Multi-beam side-scan sonar device
KR200470486Y1 (en) Using a high-resolution multi-beam sonar system the direction of the side injectin for improving the resolution cell of the rtansducer arrangement
RU2576352C2 (en) Towed device for measurement of acoustic characteristics of sea ground
JP6337311B2 (en) Information collecting method by acoustic of sediment layer under water bottom and information collecting device by acoustic of sediment layer under water bottom
JP4075472B2 (en) Ship detecting method and ship detecting device using cross fan beam
CN210279751U (en) Acoustic positioning main control transducer of submarine detector
CN101706574A (en) Dual-fin array sonar equipment
KR101656860B1 (en) Deflector system with angle adjustable vane of towing receiver onto the underwater for the based on divided type of marine seismic survey of 3dimension
CN112740073B (en) Acoustic dual frequency phased array with common beam angle
Sreedev et al. Effectiveness of Indigenously developed Chirp imaging SONAR in ship wreck detection
EP4339652A1 (en) Negative offset interleaved high resolution system for seismic surveys
Jean Shadows, a new synthetic aperture sonar system, by IXSEA SAS

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
REGI Registration of establishment
FPAY Annual fee payment

Payment date: 20160222

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170303

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190328

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200310

Year of fee payment: 8