KR20120007172A - New imidazolium salts and electrolyte composition for dye-sensitized sollar cells containing the salt - Google Patents

New imidazolium salts and electrolyte composition for dye-sensitized sollar cells containing the salt Download PDF

Info

Publication number
KR20120007172A
KR20120007172A KR1020100067783A KR20100067783A KR20120007172A KR 20120007172 A KR20120007172 A KR 20120007172A KR 1020100067783 A KR1020100067783 A KR 1020100067783A KR 20100067783 A KR20100067783 A KR 20100067783A KR 20120007172 A KR20120007172 A KR 20120007172A
Authority
KR
South Korea
Prior art keywords
ppm
dye
electrolyte composition
mmol
sensitized solar
Prior art date
Application number
KR1020100067783A
Other languages
Korean (ko)
Other versions
KR101158767B1 (en
Inventor
김강범
김인자
김환기
서동완
임영돈
이순호
Original Assignee
주식회사 에이씨엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이씨엠 filed Critical 주식회사 에이씨엠
Priority to KR20100067783A priority Critical patent/KR101158767B1/en
Publication of KR20120007172A publication Critical patent/KR20120007172A/en
Application granted granted Critical
Publication of KR101158767B1 publication Critical patent/KR101158767B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

PURPOSE: An electrolyte composition for dye-sensitized solar cells containing a novel imidazolium salt is provided to ensure excellent ion conductivity. CONSTITUTION: An electrolyte composition for dye-sensitized solar cells contains imidazolium salt and iodine. The imidazolium salt is denoted by chemical formula 1. In chemical formula 1, R1 is alkyl group or vinyl group of C1-C10; R2 is H or alkyl group of C1-C3; and n1 is 1-5 integer. The iodine is contained in 0.5-10 wt% of the imidazolium salt. The composition additionally contains acetonitrile, 3-methoxy propionitrile, valeronitrile, ethylene carbonate, propylene carbonate, gamma-butyrolactoen, or N-methyl-2-pyrrolidone.

Description

신규한 이미다졸륨 염 및 이를 함유하는 염료감응 태양전지용 전해질 조성물{New imidazolium salts and electrolyte composition for dye-sensitized sollar cells containing the salt}New imidazolium salts and electrolyte composition for dye-sensitized solar cells containing the same

본 발명은 이온 전도성이 우수한 상온 이온성 액체의 성질을 갖는 이미다졸륨 염 및 광전환 효율이 우수하고 안전성 및 내구성을 향상시킨 상기 이미다졸륨 염을 함유하는 염료감응 태양전지용 전해질 조성물에 관한 것이다.
The present invention relates to an imidazolium salt having a property of a room temperature ionic liquid having excellent ion conductivity and an electrolyte composition for dye-sensitized solar cells containing the imidazolium salt having excellent light conversion efficiency and improving safety and durability.

최근 들어 직면하는 에너지 문제를 해결하기 위하여 수십년 이내에 고갈될 석유 자원을 대체할 수 있는 풍력, 원자력, 태양력 등의 자연 에너지를 활용하기 위한 광범위한 연구가 진행되어 오고 있다. 이들 중 태양에너지를 이용한 태양 전지는 자원이 무한하고 환경친화적이어서 1983년 개발된 이후 각광을 받고 있다. 처음 개발된 태양전지는 실리콘 태양전지로 제작 비용이 상당히 고가이기 때문에 실용화가 곤란하고, 전지효율을 개선하는데도 많은 어려움이 있었다. 이러한 문제를 극복하기 위하여 최근에는 제작 비용이 현저히 저렴한 염료 감응형 태양 전지를 주축으로 태양전지가 개발되고 있다.In recent years, extensive research has been conducted to harness natural energy such as wind, nuclear power and solar power, which can replace petroleum resources that will be exhausted within decades to solve the energy problem. Of these, solar cells using solar energy have been in the limelight since their development in 1983 because of their infinite resources and environmental friendliness. The first solar cell developed is a silicon solar cell, the manufacturing cost is very expensive, it is difficult to put practical use, and there are many difficulties in improving the cell efficiency. In order to overcome this problem, solar cells have recently been developed based on dye-sensitized solar cells, which are significantly cheaper to manufacture.

1991년 스위스의 그라첼(Gratzel) 등에 의해 발표된 태양전지는 지금까지 알려진 염료 감응 태양전지의 대표적인 예이다. 그라첼 등에 의한 태양전지는 가시광선을 흡수하여 전자홀 쌍(electron-hole pair)을 생성할 수 있는 감광성 염료분자가 입혀진 금속 산화물의 반도체 전극, 백금 촉매를 포함하는 대향 전극 및 그 사이에 채워진 전해질로 구성되어 있다. Solar cells, published in 1991 by Gratzel et al., Switzerland, are representative examples of dye-sensitized solar cells known to date. The solar cell by Gratzel et al. Is a semiconductor electrode of a metal oxide coated with a photosensitive dye molecule capable of absorbing visible light to produce an electron-hole pair, an opposite electrode including a platinum catalyst, and an electrolyte filled therebetween. Consists of

상기 구성요소 중 전해질은 반도체 전극과 대향 전극 사이에서 전자를 수송하는 역할을 하며, 특히 태양전지의 광전효율과 내구성을 좌우하는 핵심요소이다. 종래 염료감응 태양전지에서는 휘발성 유기용매를 이용하는 액체 전해질을 주로 사용하였다. 액체 전해질은 이온 전도도 특성이 우수하여 광전환 효율은 우수하지만, 태양광에 의해 태양전지의 온도가 증가되면 전해질의 용매가 태양전지로부터 휘발될 가능성이 있으며 누액 현상이 쉽게 발생하여 결정이 형성되므로 내구성이 낮아 태양전지의 실용화에 문제점으로 작용한다.Among the components, the electrolyte plays a role of transporting electrons between the semiconductor electrode and the counter electrode, and is a key factor in determining the photoelectric efficiency and durability of the solar cell. In the conventional dye-sensitized solar cell, a liquid electrolyte using a volatile organic solvent was mainly used. Liquid electrolytes have excellent ionic conductivity and excellent light conversion efficiency.However, when the temperature of solar cell is increased by sunlight, solvent of electrolyte may be volatilized from the solar cell. This low value acts as a problem in the practical use of solar cells.

이러한 문제를 해소하기 위하여 반고체 전해질이 개발되고 있으며, 이를 통해 종래의 액상 전해질이 갖는 휘발성 또는 누액 가능성 등에 대해서는 어느 정도 개선이 가능하다. 반고체 전해질을 형성하는 방법으로는 전해질 형성용 고분자에 가소제를 첨가하는 방법, 액체 전해질에 유기 단분자 겔화제를 부가하는 방법, 유기 단분자의 고분자화 또는 가교반응을 이용하는 방법, 수소 결합기를 가진 단분자를 이용하는 방법 등이 알려져 있다. 그러나, 상기 방법들에 따라 제조된 반고체 전해질은 온도 상승에 대한 안정성이 취약하고 금속 산화물층과의 접착력이 부족하며 전해질 내의 산화환원 쌍에서 발생하는 전자의 이동통로를 방해하여 이온 전도도 특성이 만족할 만한 수준에 도달하지 못하는 등 개선의 여지가 많다.In order to solve this problem, semi-solid electrolytes have been developed, and through this, it is possible to some extent improve the volatility or leakage potential of the conventional liquid electrolyte. The semi-solid electrolyte may be formed by adding a plasticizer to the polymer for forming an electrolyte, by adding an organic monomolecule gelling agent to a liquid electrolyte, by using a polymerized or crosslinked reaction of an organic monomolecule, or by using a hydrogen bond group. Methods of using molecules are known. However, the semi-solid electrolyte prepared according to the above methods is poor in stability to temperature rise, lacks adhesion to the metal oxide layer, and satisfies the ion conductivity characteristics by disturbing the migration path of electrons generated from the redox pair in the electrolyte. There is plenty of room for improvement, such as not reaching the level.

최근에는 상온 이온성 액체(RTIL, room temperature ionic liquid)를 이용하여 기존의 전해질을 대체하려는 연구가 계속되고 있다. 금속 양이온과 비금속 음이온으로 이루어진 이온성 염화합물이 통상 800℃ 이상의 고온에서 녹는 것과는 달리 100℃ 이하의 온도에서 액체로 존재하는 이온성 염을 이온성 액체라고 하며, 특히 상온에서 액체로 존재하는 이온성 액체를 상온 이온성 액체 (room temperature ionic liquid, RTIL)라 한다. 상온 이온성 액체는 (1) 화학적 안정성, (2) 비교적 넓은 전위창을 가지는 전기화학적 안정성, (3) 높은 이온전도도, (4) 저융점, (5) 열안정성 등의 여러 가지 장점으로 기존의 전해질을 대체하고 있다. 또한 상온 이온성 액체는 상온 용융형으로 휘발성이 전혀 없으므로 휘발로 인한 문제가 없다. 염료감응 태양전지는 가시광선의 빛을 받아 염료에서 여기된 전자를 n형 반도체인 이산화티타늄과 같은 산화 금속으로 전달하고 액체 전해질에 포함되어 있는 I-/I3 - 의 전기화학적인 산화-환원 반응을 통해 염료를 재생시킴으로써 전류를 생성하게 된다. 대표적인 상온 이온성 액체로는 이미다졸륨 계 화합물을 등 수 있으며, 이미다졸륨의 3번 위치에 탄소 사슬이 C3이상인 유도체들이 이온성 용융염 성질을 갖는 것으로 알려져 있다. 그러나 종래 기술에 의한 상온 이온성 액체 역시 아직 이온 전도도 특성이 미흡하기 때문에 보다 효율적인 전해질의 개발이 시급하다.Recently, research is being conducted to replace the existing electrolyte by using room temperature ionic liquid (RTIL). Unlike ionic salt compounds consisting of metal cations and non-metal anions, usually melting at high temperatures above 800 ° C, ionic salts that exist as liquids at temperatures below 100 ° C are called ionic liquids, especially ionic liquids that exist as liquids at room temperature. The liquid is called room temperature ionic liquid (RTIL). Room temperature ionic liquids have several advantages such as (1) chemical stability, (2) electrochemical stability with relatively wide potential window, (3) high ion conductivity, (4) low melting point, and (5) thermal stability. It is replacing the electrolyte. In addition, the room temperature ionic liquid is a room temperature melting type, there is no volatility, there is no problem due to volatilization. A reduction-sensitized solar cell has a visible light transmission of excited electrons in the dye receiving light of a metal oxide, such as the n-type semiconductor, titanium dioxide, and I that is included in the liquid electrolyte electrochemical oxidation of the - / I 3 By regenerating the dye, current is generated. Typical room temperature ionic liquids include imidazolium-based compounds, and derivatives having a carbon chain of C 3 or more at position 3 of imidazolium are known to have ionic molten salt properties. However, since the room temperature ionic liquid according to the prior art still lacks the ionic conductivity, it is urgent to develop a more efficient electrolyte.

실리콘(Si)은 반도체의 특성을 갖는 원소로, 분자 내에 실리콘 도입되는 경우 녹는점이 낮아져 분자량이 증가하여도 액체의 물성을 갖는 경향이 있으며, 반도체의 특성 상 이온 전도도가 향상될 것으로 기대된다. 이러한 특성을 이용하여 이미다졸륨 염에 실리콘 원소를 도입하여 이온 전도특성이 우수하고 상온 이온성 액체의 성질을 갖는 새로운 화합물을 개발하여 본 발명을 완성하였다.
Silicon (Si) is an element having characteristics of a semiconductor. When silicon is introduced into a molecule, silicon (Si) tends to have a physical property of a liquid even when its molecular weight is increased due to a lower melting point, and ionic conductivity is expected to be improved due to the characteristics of a semiconductor. Using this property, a silicon compound was introduced into the imidazolium salt to develop a new compound having excellent ionic conductivity and having properties of room temperature ionic liquid to complete the present invention.

본 발명은 상기 종래 기술의 문제점을 해결하기 위하여 이온 전도 특성이 우수한 새로운 이미다졸륨 염을 제공하는 것을 목적으로 한다.The present invention aims to provide a novel imidazolium salt with excellent ion conducting properties in order to solve the problems of the prior art.

또한 본 발명은 상기 이미다졸륨 염을 함유하여 내구성과 염료감응 태양전지의 효율을 높일 수 있는 염료감응 태양전지용 전해질 조성물을 제공하고자 하는 것을 또 다른 목적으로 한다.In addition, another object of the present invention is to provide an electrolyte composition for dye-sensitized solar cells that can contain the imidazolium salt to increase durability and efficiency of dye-sensitized solar cells.

본 발명의 또 다른 목적은 상기 전해질 조성물을 사용하여 광전환 효율이 우수하고, 수명 특성이 향상된 염료감응 태양전지를 제공하는 것이다.
Still another object of the present invention is to provide a dye-sensitized solar cell having excellent light conversion efficiency and improved lifespan using the electrolyte composition.

전술한 목적을 달성하기 위한 본 발명은 하기 화학식 1로 표기되는 이미다졸륨 염에 관한 것이다.The present invention for achieving the above object relates to an imidazolium salt represented by the formula (1).

Figure pat00001
Figure pat00001

[화학식 1][Formula 1]

이때, R1은 C1-C10의 알킬기 또는 바이닐(vinyl)기; R2는 H 또는 C1-C3의 알킬기, n1은 1 내지 6인 정수; n2는 1 내지 3인 정수이다.
At this time, R 1 is an alkyl group of C1-C10 or Vinyl group; R 2 is H or a C1-C3 alkyl group, n 1 is an integer of 1 to 6; n 2 is an integer of 1 to 3.

본 발명의 또 다른 일 양태는 상기 화학식 1로 표기되는 이미다졸륨 염과 요오드를 함유하는 것을 특징으로 하는 염료감응 태양전지용 전해질 조성물에 관한 것이다.Another aspect of the present invention relates to an electrolyte composition for dye-sensitized solar cells, comprising an imidazolium salt represented by Formula 1 and iodine.

이때, 요오드는 화학식 1의 암모늄 이미다졸륨 염의 용액 중에서 음이온과 반응하여 I-와 I3-이온을 생성하고 산화-환원 반응에 의해 감광성 염료를 재생시킨다. 상기 요오드는 이미다졸륨 염의 중량의 0.5~10 중량%가 혼합되어 용해되어 있는 것이 바람직하다. 요오드의 양이 너무 적은 경우 산화-환원 반응에 의한 염료 분자로의 전자 전달에 의한 재생이 효율적이지 않으며, 요오드 양이 너무 많은 경우에는 상대적으로 이미다졸륨 염의 양이 너무 적어져 이온 전도가 효율적이지 못하므로 태양전지의 효율이 낮아진다. In this case, iodine reacts with an anion in a solution of the ammonium imidazolium salt of formula 1 to generate I and I 3 ions and regenerates the photosensitive dye by redox reaction. It is preferable that the said iodine is melt | dissolved in 0.5-10 weight% of the weight of an imidazolium salt. If the amount of iodine is too small, the regeneration by electron transfer to the dye molecule by the redox reaction is not efficient, and if the amount of iodine is too large, the amount of imidazolium salt is relatively small so that the ion conduction is efficient. As a result, the efficiency of the solar cell is lowered.

상기 화학식 1의 이미다졸륨 염은 상온에서 액체상태이고 유기 양이온과 음이온으로 구성되어 있어 추가로 유기용매를 사용하지 않더라도 요오드와 혼합물로서 그 자체로 혹은 다른 이온성 용융염과 혼합하여 염료감응 태양전지의 전해질로 사용할 수 있다. The imidazolium salt of Chemical Formula 1 is a liquid state at room temperature and is composed of organic cations and anions, so that dye-sensitized solar cells may be mixed with ionic or other ionic molten salts by themselves or as a mixture even without an organic solvent. Can be used as an electrolyte.

상기 전해질 조성물은 비휘발성 혹은 저휘발성 유기용매를 추가로 함유하여 점도를 조절하여 사용할 수 있다. 상기 유기용매로는 아세토니트릴(acetonitrile), 3-메톡시 프로피오니트릴(3-methoxy propionitrile), 발레로니트릴(valeronitrile)과 같은 니트릴계열 용매나 에틸렌 카보네이트(ethylene carbonate), 프로필렌 카보네이트(propylene carbonate) 등의 카보네이트 계열 용매 또는 감마-부틸로락톤(γ-butyrolatone)이나 N-메틸-2-피롤리돈 등을 사용할 수 있으며, 이에 한정되는 것은 아니고 종래 기술에서 태양전지의 전해질 용매로 사용되는 것이라면 어느 것이라도 사용할 수 있다. 상기 유기용매는 이미다졸륨 화합물의 중량에 대해 0~10배를 사용하는 것이 바람직하다. 본 발명의 이미다졸륨 화합물은 용매가 없어도 사용이 가능하므로 하한은 그 의미가 없다. 다만, 유기용매의 사용 비율이 너무 높으면, 전해질 용액이 충분한 전도도를 나타내지 못하므로 10배 이하의 유기용매를 사용하는 것이 바람직하다.
The electrolyte composition may further contain a nonvolatile or low volatile organic solvent to adjust the viscosity. The organic solvent may be a nitrile solvent such as acetonitrile, 3-methoxy propionitrile, valeronitrile, ethylene carbonate, propylene carbonate, or the like. Carbonate-based solvents such as gamma-butyrolatone, γ-butyrolatone, N-methyl-2-pyrrolidone, and the like, and the like, but are not limited thereto. Anything can be used. The organic solvent is preferably used from 0 to 10 times the weight of the imidazolium compound. Since the imidazolium compound of this invention can be used even without a solvent, a minimum has no meaning. However, if the use ratio of the organic solvent is too high, it is preferable to use an organic solvent of 10 times or less since the electrolyte solution does not exhibit sufficient conductivity.

본 발명은 또 다른 일양태는 상기의 염료감응 태양전지용 전해질 조성물이 적용된 염료감응 태양전지에 관한 것이다. 즉, 감광성 염료가 흡착된 금속 산화물로 이루어진 반도체전극과 대향전극 사이에 상기 본 발명의 전해질 조성물이 충진되어 있는 것을 특징으로 하는 염료감응 태양전지에 관한 것이다. 당업자라면 종래 기술을 참조하여 본 발명의 염료감응 태양전지를 구성하는 것은 어려움이 없으며, 염료감응 태양전지의 구체적인 구성이나, 제조 방법에 의해 본 발명이 한정되는 것은 아니므로 이에 대한 구체적인 기술은 생략한다.
Another embodiment of the present invention relates to a dye-sensitized solar cell to which the electrolyte composition for dye-sensitized solar cell is applied. That is, the present invention relates to a dye-sensitized solar cell, wherein the electrolyte composition of the present invention is filled between a semiconductor electrode and a counter electrode made of a metal oxide adsorbed with a photosensitive dye. Those skilled in the art will not be able to construct the dye-sensitized solar cell of the present invention with reference to the prior art, and the present invention is not limited by the specific structure or manufacturing method of the dye-sensitized solar cell, and thus the detailed description thereof will be omitted. .

이상과 같이 본 발명의 이미다졸륨 화합물은 이온 전도도가 우수하여, 전해질 조성물로 제조되었을 때 광전환 효율이 높은 염료감응 태양전지를 제공할 수 있다. 전해질 조성물은 상온 및 고온의 넓은 범위에서 액체상태로 존재하며 열안정성이 우수하고 휘발의 우려가 없어 장기간 사용이 가능한 염료감응 태양전지의 제조가 가능하다.
As described above, the imidazolium compound of the present invention is excellent in ionic conductivity and can provide a dye-sensitized solar cell having high light conversion efficiency when prepared as an electrolyte composition. The electrolyte composition is present in a liquid state in a wide range of room temperature and high temperature, and excellent in thermal stability and there is no fear of volatilization, thus making it possible to manufacture a dye-sensitized solar cell that can be used for a long time.

이하 실시예를 통하여 본 발명을 상세하게 설명한다. 그러나, 이들 실시예는 예시적인 목적일 뿐 본 발명이 이에 한정되는 것은 아니다. 또한 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다.
The present invention will be described in detail through the following examples. However, these examples are for illustrative purposes only and the present invention is not limited thereto. In addition, it will be apparent to those skilled in the art that various modifications and changes can be made within the scope of the present invention based on these examples.

<< 실시예Example >>

제조예 : 이미다졸륨 염의 제조Preparation Example: Preparation of Imidazolium Salt

표 1에 기재된 제조예 1~14의 화합물을 하기 방법에 의해 제조하였다.
The compound of manufacture examples 1-14 of Table 1 was manufactured by the following method.

Figure pat00002
Figure pat00002

Figure pat00003

Figure pat00003

제조예 1 Preparation Example 1

Figure pat00004
Figure pat00004

1) BMDS와 1-methyl imidazole의 coupling 1) Coupling of BMDS and 1-methyl imidazole

1,3-Bis(chloromethyl)tetramethyl-disiloxane(BMDS) 3g(12.97mmol, Aldrich)을 acetonitrile 30mL에 녹인 후 1-methylimidazole 3.19g(38.91mmol, Aldrich)을 넣고 48시간 교반하며 환류시켰다. 48시간 환류 후 반응액을 감압농축하고, 반응하지 않고 남은 1-methylimidazole을 제거하기 위하여 잔사를 THF로 3회 세척하였다. 세척후 잔사를 감압 농축하여 4.62g(수율 90%)의 액체를 얻었다.1,3-Bis (chloromethyl) tetramethyl-disiloxane (BMDS) 3g (12.97mmol, Aldrich) was dissolved in 30mL of acetonitrile, and 3.19g (38.91mmol, Aldrich) of 1-methylimidazole was added and stirred for 48 hours. After refluxing for 48 hours, the reaction solution was concentrated under reduced pressure, and the residue was washed three times with THF in order to remove 1-methylimidazole remaining without reaction. After washing, the residue was concentrated under reduced pressure to obtain 4.62 g (yield 90%) of liquid.

2) 요오드염의 제조 2) Preparation of Iodine Salt

1)에서 얻은 액체 중 3g (7.59 mmol)을 acetonitrile 40mL에 녹인 후 NaI 4.54g(30.34mmol, Aldrich)을 첨가하고 24시간 교반하며 환류시켰다. 환류 후 반응액을 감압 여과한 다음 여액을 감압 농축하였다. 농축 잔사에서 NaI를 제거하기 위하여 잔사를 THF를 이용하여 세척한 후 반응액을 감압 농축하여 2.70 g의 갈색 액체를 얻었다. (BMDS로부터의 수율 : 80%)3 g (7.59 mmol) of the liquid obtained in 1) was dissolved in 40 mL of acetonitrile, and 4.54 g of NaI (30.34 mmol, Aldrich) was added thereto, and the mixture was refluxed with stirring for 24 hours. After reflux, the reaction solution was filtered under reduced pressure, and the filtrate was concentrated under reduced pressure. To remove NaI from the concentrated residue, the residue was washed with THF, and the reaction solution was concentrated under reduced pressure to obtain 2.70 g of a brown liquid. (Yield from BMDS: 80%)

1H NMR (400 MHz ; DMSOd6) : 9.12ppm(s, 2H), 7.74ppm(d, 2H), 7.67ppm(d, 2H), 3.79ppm(s, 4H), 3.75ppm(s, 6H), 0ppm(s, 12H).
1 H NMR (400 MHz; DMSO d6 ): 9.12 ppm (s, 2H), 7.74 ppm (d, 2H), 7.67 ppm (d, 2H), 3.79 ppm (s, 4H), 3.75 ppm (s, 6H) , 0 ppm (s, 12H).

제조예 2Production Example 2

Figure pat00005
Figure pat00005

1) 1,5-1) 1,5- bisbis (( chloromethylchloromethyl )-1,1,3,3,5,5-) -1,1,3,3,5,5- hexamethylhexamethyl TrisiloxaneTrisiloxane (( BMTSBMTS )의 합성 ) Synthesis

Triethylamine 4.7g(46.49mmol), 증류수 0.9mL(49.98mmol), Ethyl ether 70mL, Acetone 7mL를 혼합한 후 0℃로 냉각하고 온도를 유지하면서 Dichlorodimethylsilane 3g(23.25mmol)을 Ethyl ether 30mL에 녹인 용액을 1시간 동안 천천히 적가하였다. 적가가 완료되면 0℃에서 30분 동안 추가로 교반한 후, 감압 여과하여 Triethylamine Hydrochloride를 제거하였다. 여액에 Hexane 10mL를 넣고 1/10로 감압 농축하여 생성된 결정을 여과하고 차가운 Hexane으로 세척하여 결정상태의 dimethylsilanediol을 1.76g (수율 82%)을 얻었다.4.7 g (46.49 mmol) of triethylamine, 0.9 mL (49.98 mmol) of distilled water, 70 mL of Ethyl ether, and 7 mL of Acetone were mixed, cooled to 0 ° C, and maintained at a temperature of 3 g (23.25 mmol) of Dichlorodimethylsilane in 30 mL of Ethyl ether. Slowly added dropwise over time. After the addition was completed, the mixture was further stirred at 0 ° C. for 30 minutes, and then filtered under reduced pressure to remove Triethylamine Hydrochloride. 10 mL of Hexane was added to the filtrate, and the resulting crystal was concentrated under reduced pressure at 1/10. The resulting crystals were filtered and washed with cold Hexane to obtain 1.76 g (82%) of crystalline dimethylsilanediol.

Dimethylsilanediol 3g(32.55mmol)을 Ethylether 30mL에 희석시켰다. Chloro(chloromethyl)dimethylsilane 11.18g(78.12mmol)을 Ethylether 20mL에 녹인 후 0℃에서 교반하며 상기에서 제조한 Dimethylsilanediol 희석액을 1시간에 걸쳐 천천히 적가하였다. 적가가 완료되면 0℃에서 30분간 추가로 교반한 후 감압 농축 하였다. 농축잔사로부터 실리카겔 컬럼크로마토그래피(Ethylacetate:Hexane 1:9)을 이용하여 BMTS 8.45g(수율 85%)를 분리 정제하였다. 3 g (32.55 mmol) of dimethylsilanediol was diluted in 30 mL of Ethylether. 11.18 g (78.12 mmol) of chlororo (chloromethyl) dimethylsilane was dissolved in 20 mL of Ethylether, stirred at 0 ° C., and the dimethylsilanediol dilution prepared above was slowly added dropwise over 1 hour. After the addition was completed, the mixture was further stirred at 0 ° C. for 30 minutes and concentrated under reduced pressure. 8.45 g (85% yield) of BMTS was separated and purified from the concentrated residue using silica gel column chromatography (Ethylacetate: Hexane 1: 9).

2) BMTS와 1-methyl imidazole의 coupling 2) Coupling of BMTS and 1-methyl imidazole

BMDS 대신 상기 1)에서 제조한 BMTS 3g(9.82mmol)을 사용하고, 1-methylimidazole을 2.42g(29.46mmol) 사용한 것을 제외하고는 제조예 1의 1)과 동일한 방법에 의해 액체 상태의 coupling product를 얻었다. 3M (9.82 mmol) of BMTS prepared in 1) was used instead of BMDS and 2.42 g (29.46 mmol) of 1-methylimidazole was used in the same manner as in Example 1, to prepare a liquid coupling product. Got it.

3) 요오드염의 제조3) Preparation of Iodine Salt

2)에서 얻은 액체 중 3g(6.39mmol)과 NaI 3.83g(25.55mmol)을 사용하여 제조예 1의 2)와 동일한 방법으로 제조예 2의 화합물 4.93g을 BMTS로부터 77%의 수율로 제조하였다.In the same manner as in Preparation Example 1 2) using 3g (6.39mmol) and NaI 3.83g (25.55mmol) in the liquid obtained in 2) 4.93g of the compound of Preparation Example 2 was prepared in 77% yield from BMTS.

1H NMR (400 MHz ; DMSOd6) : 9.12ppm(s, 2H), 7.74ppm(d, 2H), 7.67ppm(d, 2H), 3.79ppm(s, 4H), 3.75ppm(s, 6H), 0ppm(s, 18H).
1 H NMR (400 MHz; DMSO d6 ): 9.12 ppm (s, 2H), 7.74 ppm (d, 2H), 7.67 ppm (d, 2H), 3.79 ppm (s, 4H), 3.75 ppm (s, 6H) , 0 ppm (s, 18H).

제조예Manufacturing example 3 3

Figure pat00006
Figure pat00006

1-methylimidazole 대신 1-butylimidazole 4.83g(38.91mmol, Aldrich)을 사용한 것을 제외하고는 제조예 1의 1)과 동일한 방법에 의해 coupling을 수행하였다. 4.83 g (38.91 mmol, 1-butylimidazole instead of 1-methylimidazole, Coupling was carried out by the same method as 1) of Preparation Example 1, except that Aldrich) was used.

coupling에 의해 얻은 액체 중 3g(6.25mmol)과 NaI 3.75g(25.02mmol)을 사용하여 제조예 1의 2)와 동일한 방법으로 제조예 3의 화합물 3.73g을 BMTS로부터 80%의 수율로 제조하였다.3.73 g of the compound of Preparation Example 3 was prepared in the same manner as in 2) of Preparation Example 1 using 3 g (6.25 mmol) and NaI 3.75 g (25.02 mmol) in the liquid obtained by the coupling in 80% yield from BMTS.

1H NMR (400 MHz ; DMSOd6) : 9.12ppm(s, 2H), 7.75ppm(d, 2H), 7.67ppm(d, 2H), 3.79ppm(s, 4H), 3.77ppm(t, 4H), 1.78-1.79ppm(m, 4H), 1.33-1.34ppm(m, 4H), 0.98ppm(t, 6H), 0ppm(s, 12H).
1 H NMR (400 MHz; DMSO d6 ): 9.12 ppm (s, 2H), 7.75 ppm (d, 2H), 7.67 ppm (d, 2H), 3.79 ppm (s, 4H), 3.77 ppm (t, 4H) , 1.78-1.79 ppm (m, 4H), 1.33-1.34 ppm (m, 4H), 0.98 ppm (t, 6H), 0 ppm (s, 12H).

제조예 4Preparation Example 4

Figure pat00007
Figure pat00007

1-methylimidazole 대신 1-Vinyl imidazole 3.66g(38.91mmol, Aldrich)을 사용한 것을 제외하고는 제조예 1의 1)과 동일한 방법에 의해 coupling을 수행하였다. 3.66 g (38.91 mmol, 1-Vinyl imidazole instead of 1-methylimidazole, Coupling was carried out by the same method as 1) of Preparation Example 1, except that Aldrich) was used.

coupling에 의해 얻은 액체 중 3g(7.15mmol)과 NaI 4.29g(28.61mmol)을 사용하여 제조예 1의 2)와 동일한 방법으로 제조예 4의 화합물 3.88g을 BMTS로부터 80%의 수율로 제조하였다.3.88 g of the compound of Preparation Example 4 was prepared in the same manner as in 2) of Preparation Example 1 using 3 g (7.15 mmol) of NaI and 4.29 g (28.61 mmol) in the liquid obtained by the coupling in 80% yield from BMTS.

1H NMR (400 MHz ; DMSOd6) : 9.12ppm(s, 2H), 7.74ppm(d, 2H), 7.68ppm(d, 2H), 5.42ppm(t, 2H), 5.13ppm(d, 4H), 3.79ppm(s, 4H), 0ppm(s, 12H).
1 H NMR (400 MHz; DMSO d6 ): 9.12 ppm (s, 2H), 7.74 ppm (d, 2H), 7.68 ppm (d, 2H), 5.42 ppm (t, 2H), 5.13 ppm (d, 4H) , 3.79 ppm (s, 4H), 0 ppm (s, 12H).

제조예 5 Preparation Example 5

Figure pat00008
Figure pat00008

1-methylimidazole 대신 1,2-dimethylimidazole 3.74g(38.91mmol, Aldrich)을 사용한 것을 제외하고는 제조예 1의 1)과 동일한 방법에 의해 coupling을 수행하였다. Coupling was carried out by the same method as 1) of Preparation Example 1, except that 3.74 g (38.91 mmol, Aldrich) of 1,2-dimethylimidazole was used instead of 1-methylimidazole.

coupling에 의해 얻은 액체 중 3g(7.08mmol)과 NaI 4.25g(28.33mmol)을 사용하여 제조예 1의 2)와 동일한 방법으로 제조예 5의 화합물 3.86g을 BMTS로부터 80%의 수율로 제조하였다.3.86 g of the compound of Preparation Example 5 was prepared in the same manner as in 2) of Preparation Example 1 using 3 g (7.08 mmol) of NaI and 4.25 g (28.33 mmol) of the liquid obtained by the coupling in 80% yield from BMTS.

1H NMR (400 MHz ; DMSOd6) : 7.74ppm(d, 2H), 7.68ppm(d, 2H), 3.79ppm(s, 4H), 3.75ppm(s, 6H), 2.42ppm(s, 6H), 0ppm(s, 12H).
1 H NMR (400 MHz; DMSO d6 ): 7.74ppm (d, 2H), 7.68ppm (d, 2H), 3.79ppm (s, 4H), 3.75ppm (s, 6H), 2.42ppm (s, 6H) , 0 ppm (s, 12H).

제조예 6Preparation Example 6

Figure pat00009
Figure pat00009

1-methylimidazole 대신 1,2-dimethylimidazole 3.78g(39.29mmol, Aldrich)을 사용한 것을 제외하고는 제조예 2의 2)와 동일한 방법에 의해 coupling을 수행하였다. Coupling was carried out by the same method as 2) of Preparation Example 2, except that 3.78 g of 1,2-dimethylimidazole (39.29 mmol, Aldrich) was used instead of 1-methylimidazole.

coupling에 의해 얻은 액체 중 3g(6.03mmol)과 NaI 3.62g(24.12mmol)을 사용하여 제조예 2의 3)과 동일한 방법으로 제조예 6의 화합물 2.95g을 BMTS로부터 72%의 수율로 제조하였다.2.95 g of the compound of Preparation Example 6 was prepared in the same manner as in 3) of Preparation Example 2 using 3 g (6.03 mmol) of NaI and 3.62 g (24.12 mmol) of the liquid obtained by coupling in 72% yield from BMTS.

1H NMR (400 MHz ; DMSOd6) : 7.74ppm(d, 2H), 7.68ppm(d, 2H), 3.79ppm(s, 4H), 3.76ppm(s, 6H), 3.75ppm(s, 6H), 0ppm(s, 18H).
1 H NMR (400 MHz; DMSO d6 ): 7.74ppm (d, 2H), 7.68ppm (d, 2H), 3.79ppm (s, 4H), 3.76ppm (s, 6H), 3.75ppm (s, 6H) , 0 ppm (s, 18H).

제조예 7 Preparation Example 7

Figure pat00010
Figure pat00010

1-methylimidazole 대신 1-decyl-2-methylimidazole 8.65g(38.91mmol, Aldrich)을 사용한 것을 제외하고는 제조예 1의 1)과 동일한 방법에 의해 coupling을 수행하였다. Coupling was carried out by the same method as 1) of Preparation Example 1, except that 8.65 g (38.91 mmol, Aldrich) of 1-decyl-2-methylimidazole was used instead of 1-methylimidazole.

coupling에 의해 얻은 액체 중 3g(4.44mmol)과 NaI 2.66g(17.75mmol)을 사용하여 제조예 1의 2)와 동일한 방법으로 제조예 7의 화합물 2.70g을 BMTS로부터 80%의 수율로 제조하였다.2.70 g of the compound of Preparation Example 7 was prepared in the same manner as in 2) of Preparation Example 1 using 3 g (4.44 mmol) of NaI and 2.66 g (17.75 mmol) in the liquid obtained by the coupling in 80% yield from BMTS.

1H NMR (400 MHz ; DMSOd6) : 7.75ppm(d, 2H), 7.68ppm(d, 2H), 3.79ppm(s, 4H), 3.76-3.78ppm(t, 4H), 2.42ppm(s, 6H), 1.79-1.82(m, 4H), 1.26-1.31(m, 28H), 0.89ppm(t, 6H), 0ppm(s, 12H).
1 H NMR (400 MHz; DMSO d6 ): 7.75 ppm (d, 2H), 7.68 ppm (d, 2H), 3.79 ppm (s, 4H), 3.76-3.78 ppm (t, 4H), 2.42 ppm (s, 6H), 1.79-1.82 (m, 4H), 1.26-1.31 (m, 28H), 0.89 ppm (t, 6H), 0 ppm (s, 12H).

제조예Manufacturing example 8 8

Figure pat00011
Figure pat00011

1) 1,5- Bis (3- chloropropyl )-1,1,3,3,5,5- hexamethyl trisiloxane ( BPTS )의 제조 1) 1,5- Bis (3- chloropropyl ) -1,1,3,3,5,5- hexamethyl Preparation of trisiloxane ( BPTS )

질소 대기 하에서 1,1,3,3,5,5-Hexamethyl Trisiloxane 3g(14.39mmol, Aldrich)과 Allyl alcohol 3.91mL(57.56mmol, Aldrich)을 Toluene 30mL를 넣고 용해시킨 후 Platinum(0)-1,3-divinyl-1,1,3,3-tetra methyl disiloxane complex 0.05mL(Aldrich)를 첨가하고 12시간 동안 교반하며 환류하여 반응하였다. 12시간 후 반응액을 감압 농축한 후 잔사를 Methanol 30mL에 녹이고 cellite를 통과시켜 감압 여과하였다. 여액을 감압 농축하여 투명한 액체 상태의 1,5-bis(3-hydroxypropyl)-1,1,3,3,5,5-hexamethyl trisiloxane 4.20g을 얻었다(수율 95%).In nitrogen atmosphere, 1,1,3,3,5,5-Hexamethyl Trisiloxane 3g (14.39mmol, Aldrich) and Allyl alcohol 3.91mL (57.56mmol, Aldrich) were dissolved in 30mL of Toluene, followed by Platinum (0) -1, 0.05 mL (Aldrich) of 3-divinyl-1,1,3,3-tetra methyl disiloxane complex was added and reacted by refluxing with stirring for 12 hours. After 12 hours, the reaction solution was concentrated under reduced pressure, and the residue was dissolved in 30 mL of methanol and filtered through a cellite under reduced pressure. The filtrate was concentrated under reduced pressure to obtain 4.20 g of 1,5-bis (3-hydroxypropyl) -1,1,3,3,5,5-hexamethyl trisiloxane in a transparent liquid state (yield 95%).

상기 반응에 의해 제조된 1,5-bis(3-hydroxypropyl)-1,1,3,3,5,5-hexamethyl trisiloxane 3g(9.24mmol)을 0℃로 냉각하고 thionyl chloride 6.74mL(92.41mmol)와 pyridine 0.074mL(0.92mmol)을 천천히 적가하며 30분 동안 교반하였다. 적가가 완료되면 가열하여 6시간 동안 환류하며 반응시켰다. 환류 후 반응액을 감압 농축하여 잔여 thionyl chloride를 제거하고, 반응액을 증류수 100mL에 넣고 30분 동안 교반하였다. 이후, ethyl acetate 50mL를 넣고 교반한 후 ethyl acetate층을 분별 깔대기를 이용하여 추출하였다. 추출은 3회 반복하였으며, ethyl acetate 층을 합하여 NaHCO3 과포화 용액 100mL와 brine 100mL를 사용하여 순차적으로 세척하였다. 세척이 완료되면 유기층을 Na2SO4를 사용하여 잔여 수분을 제거하고 여과한 후 여액을 60℃에서 감압 농축하여 옅은 갈색 액체 상태의 1,5-bis(3-chloroppropyl)-1,1,3,3,5,5-hexamethyl trisiloxane(BPTS) 2.84g을 얻었다(수율 85%).3 g (9.24 mmol) of 1,5-bis (3-hydroxypropyl) -1,1,3,3,5,5-hexamethyl trisiloxane prepared by the above reaction was cooled to 0 ° C and 6.74 mL (92.41 mmol) of thionyl chloride And pyridine 0.074mL (0.92mmol) was slowly added dropwise and stirred for 30 minutes. When the addition was completed, the mixture was heated to reflux for 6 hours and reacted. After refluxing, the reaction solution was concentrated under reduced pressure to remove residual thionyl chloride. The reaction solution was poured into 100 mL of distilled water and stirred for 30 minutes. Thereafter, 50 mL of ethyl acetate was added thereto, followed by stirring. The ethyl acetate layer was extracted using a separatory funnel. The extraction was repeated three times, and the ethyl acetate layers were combined and washed sequentially using 100 mL of NaHCO 3 supersaturated solution and 100 mL of brine. After washing, the organic layer was removed using Na 2 SO 4 , filtered, and the filtrate was concentrated under reduced pressure at 60 ° C. to give 1,5-bis (3-chloroppropyl) -1,1,3 as a pale brown liquid. 2.84 g of, 3,5,5-hexamethyl trisiloxane (BPTS) were obtained (yield 85%).

2) BPTS와 1-methyl imidazole의 coupling 2) Coupling of BPTS and 1-methyl imidazole

1)에서 얻은 BPTS 3g(8.30mmol)을 acetonitrile 30mL에 녹인 후 1-methylimidazole 1.98mL(24.90mmol)을 넣고 48시간 교반하며 환류시켰다. 48시간 환류 후 반응액을 감압농축하고, 반응하지 않고 남은 1-methylimidazole을 제거하기 위하여 잔사를 THF로 3회 세척하였다. 세척 후 잔사를 감압 농축하여 짙은 갈색의 점성 있는 액체 3.49g 얻었다. (수율 80%)BPTS 3g (8.30mmol) obtained in 1) was dissolved in 30mL of acetonitrile, and 1-methylimidazole 1.98mL (24.90mmol) was added thereto, and the mixture was refluxed for 48 hours. After refluxing for 48 hours, the reaction solution was concentrated under reduced pressure, and the residue was washed three times with THF in order to remove 1-methylimidazole remaining without reaction. After washing, the residue was concentrated under reduced pressure to obtain 3.49 g of a dark brown viscous liquid. (Yield 80%)

3) 요오드염의 제조 3) Preparation of Iodine Salt

2)에서 얻은 액체 중 3g(5.71mmol)을 acetonitrile 40mL에 녹인 후 NaI 3.42g(22.84mmol)을 첨가하고 24시간 교반하며 환류시켰다. 환류 후 반응액을 감압 여과한 다음 여액을 감압 농축하였다. 농축 잔사에서 NaI를 제거하기 위하여 잔사를 THF를 이용하여 세척한 후 반응액을 감압 농축하였다. (수율 : 90%)3 g (5.71 mmol) of the liquid obtained in 2) was dissolved in 40 mL of acetonitrile, and then 3.42 g (22.84 mmol) of NaI were added and refluxed with stirring for 24 hours. After reflux, the reaction solution was filtered under reduced pressure, and the filtrate was concentrated under reduced pressure. To remove NaI from the concentrated residue, the residue was washed with THF and the reaction solution was concentrated under reduced pressure. (Yield: 90%)

1H NMR (400 MHz ; DMSOd6) : 9.12ppm(s, 2H), 7.74ppm(d, 2H), 7.67ppm(d, 2H), 4.10ppm(t, 4H), 3.81ppm(s, 6H), 1.67-1.75ppm(m, 4H), 0.38ppm(t, 4H), 0ppm(s, 18H).
1 H NMR (400 MHz; DMSO d6 ): 9.12ppm (s, 2H), 7.74ppm (d, 2H), 7.67ppm (d, 2H), 4.10ppm (t, 4H), 3.81ppm (s, 6H) , 1.67-1.75 ppm (m, 4H), 0.38 ppm (t, 4H), 0 ppm (s, 18H).

제조예Manufacturing example 9 9

Figure pat00012
Figure pat00012

1-methylimidazole 대신 1-butylimidazole 3.09g(24.90mmol)을 사용한 것을 제외하고는 제조예 8의 2)와 동일한 방법에 의해 coupling을 수행하였다. Coupling was carried out by the same method as 2) of Preparation Example 8, except that 3.09 g (24.90 mmol) of 1-butylimidazole was used instead of 1-methylimidazole.

coupling에 의해 얻은 액체 중 3g(4.92mmol)과 NaI 2.95g(19.68mmol)을 사용하여 제조예 8의 3)과 동일한 방법으로 제조예 9의 화합물 4.94g을 BPTS로부터 72%의 수율로 제조하였다. 4.94 g of the compound of Preparation Example 9 was prepared in the same manner as in 3) of Preparation Example 8 using 3 g (4.92 mmol) of NaI and 2.95 g (19.68 mmol) in the liquid obtained by coupling in 72% yield from BPTS.

1H NMR (400 MHz ; DMSOd6) : 9.12ppm(s, 2H), 7.74ppm(d, 2H), 7.68ppm(d, 2H), 4.10ppm(t, 4H), 3.82ppm(t, 4H), 1.77-1.82ppm(m, 4H), 1.67-1.75ppm(m, 4H), 1.33-1.39ppm(m, 4H), 0.98ppm(t, 6H), 0.38ppm(t, 4H), 0ppm(s, 18H).
1 H NMR (400 MHz; DMSO d6 ): 9.12 ppm (s, 2H), 7.74 ppm (d, 2H), 7.68 ppm (d, 2H), 4.10 ppm (t, 4H), 3.82 ppm (t, 4H) , 1.77-1.82 ppm (m, 4H), 1.67-1.75 ppm (m, 4H), 1.33-1.39 ppm (m, 4H), 0.98 ppm (t, 6H), 0.38 ppm (t, 4H), 0 ppm (s , 18H).

제조예 10 Preparation Example 10

Figure pat00013
Figure pat00013

1-methylimidazole 대신 1,2-dimethylimidazole 2.39g(24.85mmol)을 사용한 것을 제외하고는 제조예 8의 2)와 동일한 방법에 의해 coupling을 수행하였다. Coupling was carried out by the same method as 2) of Preparation Example 8, except that 2.39 g (24.85 mmol) of 1,2-dimethylimidazole was used instead of 1-methylimidazole.

coupling에 의해 얻은 액체 중 3g(5.42mmol)과 NaI 3.25g(21.67mmol)을 사용하여 제조예 8의 3)과 동일한 방법으로 제조예 10의 화합물 4.48g을 BPTS로부터 70%의 수율로 제조하였다.4.48 g of the compound of Preparation Example 10 was prepared in the same manner as in 3) of Preparation Example 8 using 3 g (5.42 mmol) and NaI 3.25 g (21.67 mmol) in the liquid obtained by the coupling in 70% yield from BPTS.

1H NMR (400 MHz ; DMSOd6) : 7.74ppm(d, 2H), 7.68ppm(d, 2H), 4.10ppm(t, 4H), 3.81ppm(s, 6H), 2.42ppm(s, 6H), 1.67-1.75ppm(m, 4H), 0.39ppm(t, 4H), 0ppm(s, 18H).
1 H NMR (400 MHz; DMSO d6 ): 7.74ppm (d, 2H), 7.68ppm (d, 2H), 4.10ppm (t, 4H), 3.81ppm (s, 6H), 2.42ppm (s, 6H) , 1.67-1.75 ppm (m, 4H), 0.39 ppm (t, 4H), 0 ppm (s, 18H).

제조예Manufacturing example 11  11

Figure pat00014
Figure pat00014

1-methylimidazole 대신 1-decyl-2-methylimidazole 5.54g(24.85mmol)을 사용한 것을 제외하고는 제조예 8의 2)와 동일한 방법에 의해 coupling을 수행하였다. Coupling was carried out by the same method as 2) of Preparation Example 8, except that 5.54 g (24.85 mmol) of 1-decyl-2-methylimidazole was used instead of 1-methylimidazole.

coupling에 의해 얻은 액체 중 3g(3.72mmol)과 NaI 2.23g(14.88mmol)을 사용하여 제조예 8의 3)과 동일한 방법으로 제조예 11의 화합물 6.16g을 BPTS로부터 75%의 수율로 제조하였다.6.16 g of the compound of Preparation Example 11 was prepared in the same manner as in 3) of Preparation Example 8 using 3 g (3.72 mmol) and NaI 2.23 g (14.88 mmol) in the liquid obtained by the coupling in 75% yield from BPTS.

1H NMR (400 MHz ; DMSOd6) : 7.75ppm(d, 2H), 7.67ppm(d, 2H), 4.10ppm(t, 4H), 3.77ppm(t, 4H), 2.42ppm(s, 6H), 1.79-1.82(m, 4H), 1.67-1.75ppm(m, 4H), 1.26-1.31(m, 28H), 0.89ppm(t, 6H), 0.39ppm(t, 4H), 0ppm(s, 18H).
1 H NMR (400 MHz; DMSO d6 ): 7.75 ppm (d, 2H), 7.67 ppm (d, 2H), 4.10 ppm (t, 4H), 3.77 ppm (t, 4H), 2.42 ppm (s, 6H) , 1.79-1.82 (m, 4H), 1.67-1.75 ppm (m, 4H), 1.26-1.31 (m, 28H), 0.89 ppm (t, 6H), 0.39 ppm (t, 4H), 0 ppm (s, 18H ).

제조예 12 Production Example 12

Figure pat00015
Figure pat00015

1) 1,5- Bis (3- chlorohexyl )-1,1,3,3,5,5- hexamethyl trisiloxane 의 제조 1) 1,5- Bis (3- chlorohexyl ) -1,1,3,3,5,5- hexamethyl Manufacture of trisiloxane

Allyl alcohol 대신 5-hexen-1-ol 6.91mL(57.56mmol)을 사용한 것을 제외하고는 제조예 8의 1)과 동일한 방법에 의해 옅은 갈색 액체 상태의 1,5-bis(3-chlorohexyl)-1,1,3,3,5,5-hexamethyltrisiloxane(BHTS) 5.01g을 얻었다(수율 79%).1,5-bis (3-chlorohexyl) -1 in a pale brown liquid state by the same method as 1) in Preparation Example 8, except that 6.91 mL (57.56 mmol) of 5-hexen-1-ol was used instead of allyl alcohol. 5.01 g of 1,3,3,5,5-hexamethyltrisiloxane (BHTS) Obtained (yield 79%).

2) BHTS와 1-methyl imidazole의 coupling 2) Coupling of BHTS and 1-methyl imidazole

Figure pat00016
Figure pat00016

1)에서 얻은 BHTS 3g(6.73mmol)을 acetonitrile 30mL에 녹인 후 1-methylimidazole 1.61mL(20.19mmol)을 넣고 48시간 교반하며 환류시켰다. 48시간 환류 후 반응액을 감압농축하고, 반응하지 않고 남은 1-methylimidazole을 제거하기 위하여 잔사를 THF로 3회 세척하였다. 세척 후 잔사를 감압 농축하여 짙은 갈색의 점성 있는 액체 3.28g을 얻었다.After dissolving 3 g (6.73 mmol) of BHTS obtained in 1) in 30 mL of acetonitrile, 1.61 mL (20.19 mmol) of 1-methylimidazole was added thereto, and the mixture was refluxed for 48 hours. After refluxing for 48 hours, the reaction solution was concentrated under reduced pressure, and the residue was washed three times with THF in order to remove 1-methylimidazole remaining without reaction. After washing, the residue was concentrated under reduced pressure to give 3.28 g of a dark brown viscous liquid.

3) 요오드염의 제조 3) Preparation of Iodine Salt

2)에서 얻은 액체 중 3g(4.92mmol)을 acetonitrile 40mL에 녹인 후 NaI 2.95g(19.68mmol)을 첨가하고 24시간 교반하며 환류시켰다. 환류 후 반응액을 감압 여과한 다음 여액을 감압 농축하였다. 농축 잔사에서 NaI를 제거하기 위하여 잔사를 THF를 이용하여 세척한 후 반응액을 감압 농축하여 제조예 12의 화합물 3.73g을 BHTS로부터 70%의 수율로 제조하였다. 3 g (4.92 mmol) of the liquid obtained in 2) was dissolved in 40 mL of acetonitrile, and then 2.95 g (19.68 mmol) of NaI were added and stirred under reflux for 24 hours. After reflux, the reaction solution was filtered under reduced pressure, and the filtrate was concentrated under reduced pressure. To remove NaI from the concentrated residue, the residue was washed with THF, and the reaction solution was concentrated under reduced pressure to prepare 3.73 g of the compound of Preparation 12 in 70% yield from BHTS.

1H NMR (400 MHz ; DMSOd6) : 9.12ppm(s, 2H), 7.75ppm(d, 2H), 7.67ppm(d, 2H), 4.10ppm(t, 4H), 3.81ppm(s, 6H), 1.65-1.74ppm(m, 4H), 1.54-1.58ppm(m, 4H), 1.42-1.47ppm(m, 4H), 1.23-1.28ppm(m, 4H), 0.97ppm(t, 4H), 0ppm(s, 18H).
1 H NMR (400 MHz; DMSO d6 ): 9.12ppm (s, 2H), 7.75ppm (d, 2H), 7.67ppm (d, 2H), 4.10ppm (t, 4H), 3.81ppm (s, 6H) , 1.65-1.74ppm (m, 4H), 1.54-1.58ppm (m, 4H), 1.42-1.47ppm (m, 4H), 1.23-1.28ppm (m, 4H), 0.97ppm (t, 4H), 0ppm (s, 18 H).

제조예 13Preparation Example 13

Figure pat00017
Figure pat00017

1-methylimidazole 대신 1,2-dimethylimidazole 2.12g(22.01mmol)을 사용한 것을 제외하고는 제조예 12의 2)와 동일한 방법에 의해 coupling을 수행하였다. Coupling was carried out by the same method as 2) of Preparation Example 12, except that 2.12 g (22.01 mmol) of 1,2-dimethylimidazole was used instead of 1-methylimidazole.

coupling에 의해 얻은 액체 중 3g(4.70mmol)과 NaI 2.82g(18.80mmol) 을 사용하여 제조예 12의 3)과 동일한 방법으로 제조예 13의 화합물 3.87g을 BHTS로부터 70%의 수율로 제조하였다. 3 g (4.70 mmol) and 2.82 g (18.80 mmol) NaI in the liquid obtained by coupling 3.87 g of the compound of Preparation Example 13 was prepared in the same manner as in 3) of Preparation Example 12 using BHTS in a yield of 70%.

1H NMR (400 MHz ; DMSOd6) : 7.75ppm(d, 2H), 7.67ppm(d, 2H), 4.10ppm(t, 4H), 3.81ppm(s, 6H), 2.42ppm(s, 6H), 1.65-1.74ppm(m, 4H), 1.54-1.58ppm(m, 4H), 1.42-1.47ppm(m, 4H), 1.23-1.28ppm(m, 4H), 0.99ppm(t, 4H), 0ppm(s, 18H).
1 H NMR (400 MHz; DMSO d6 ): 7.75ppm (d, 2H), 7.67ppm (d, 2H), 4.10ppm (t, 4H), 3.81ppm (s, 6H), 2.42ppm (s, 6H) , 1.65-1.74 ppm (m, 4H), 1.54-1.58 ppm (m, 4H), 1.42-1.47 ppm (m, 4H), 1.23-1.28 ppm (m, 4H), 0.99 ppm (t, 4H), 0 ppm (s, 18 H).

제조예 14 Preparation Example 14

Figure pat00018
Figure pat00018

1-methylimidazole 대신 1-decyl-2-methylimidazole 4.90g(22.01mmol)을 사용한 것을 제외하고는 제조예 12의 2)와 동일한 방법에 의해 coupling을 수행하였다. Coupling was carried out by the same method as 2) of Preparation Example 12, except that 4.90 g (22.01 mmol) of 1-decyl-2-methylimidazole was used instead of 1-methylimidazole.

coupling에 의해 얻은 액체 중 3g(3.37mmol)과 NaI 2.02g(13.48mmol)을 사용하여 제조예 12의 3)과 동일한 방법으로 제조예 13의 화합물 5.42g을 BHTS로부터 75%의 수율로 제조하였다. 5.42 g of the compound of Preparation Example 13 was prepared in the same manner as in 3) of Preparation Example 12 using 3 g (3.37 mmol) and NaI 2.02 g (13.48 mmol) in the liquid obtained by the coupling in 75% yield from BHTS.

1H NMR (400 MHz ; DMSOd6) : 7.75ppm(d, 2H), 7.68ppm(d, 2H), 4.11ppm(t, 4H), 3.77ppm(t, 4H), 2.42ppm(s, 6H), 1.79-1.82(m, 4H), 1.65-1.74ppm(m, 4H), 1.54-1.58ppm(m, 4H), 1.42-1.47ppm(m, 4H), 1.26-1.31(m, 28H), 1.23-1.28ppm(m, 4H), 0.97ppm(t, 4H), 0.89ppm(t, 6H), 0ppm(s, 18H).
1 H NMR (400 MHz; DMSO d6 ): 7.75 ppm (d, 2H), 7.68 ppm (d, 2H), 4.11 ppm (t, 4H), 3.77 ppm (t, 4H), 2.42 ppm (s, 6H) , 1.79-1.82 (m, 4H), 1.65-1.74 ppm (m, 4H), 1.54-1.58 ppm (m, 4H), 1.42-1.47 ppm (m, 4H), 1.26-1.31 (m, 28H), 1.23 -1.28 ppm (m, 4H), 0.97 ppm (t, 4H), 0.89 ppm (t, 6H), 0 ppm (s, 18H).

실시예 I : 용액상 전해질 조성물의 제조Example I Preparation of Solution Phase Electrolyte Composition

하기 표 2에 기재된 이미다졸륨 염 0.6M, 0.1M guanidinium thiocyanate, 0.03M I2 및 0.5M 4-tert-부틸 피리딘을 총 부피가 1L가 되도록 아세토나이트릴(ACN) 또는 3-메톡시 프로피오니트릴(MPN)에 용해시켜 전해질 용액을 제조하였다. 하기 표 2에서 DMII는 1,3-디메틸 이미다졸륨 아이오다이드를 나타낸다.Acetonitrile (ACN) or 3-methoxy propionitrile so that the total volume is 1 L of the imidazolium salt 0.6M, 0.1M guanidinium thiocyanate, 0.03MI 2 and 0.5M 4- tert -butyl pyridine described in Table 2 below It was dissolved in (MPN) to prepare an electrolyte solution. In Table 2 below, DMII represents 1,3-dimethyl imidazolium iodide.

Figure pat00019
Figure pat00019

실시예Example IIII :  : 무용매Solvent free 전해질 조성물의 제조 Preparation of Electrolyte Composition

하기 표 3에 기재된 이미다졸륨 염 20 M, 0.2 M guanidinium thiocyanate, 1 M I2 및 1 M NMB(1-methylbenzimidazole)를 혼합하여 무용매 전해질 조성물을 제조하였다. Solvent electrolyte composition was prepared by mixing 20 M imidazolium salt, 0.2 M guanidinium thiocyanate, 1 MI 2 and 1 M NMB (1-methylbenzimidazole) described in Table 3 below.

Figure pat00020
Figure pat00020

태양전지의 효율특성 측정Measurement of efficiency characteristics of solar cell

1) 태양전지의 제조1) Manufacture of Solar Cell

(1) 음극 반도체 전극의 제조(1) Preparation of Cathode Semiconductor Electrode

나노입자 이산화티탄 페이스트(일본, CCIC 사, 20nm TiO2 paste)를 ITO 또는 SnO2가 코팅되어 있는 투명한 전도성 유리기판(미국, pilkington glass) 위에 약 12~13㎛의 두께로 코팅한 후, 약 450~550℃의 온도로 3시간 가열하여 나노입자 산화물들간의 접촉 및 충진이 이루어지도록 하였다. 나노입자 이산화티탄이 코팅되어 있는 상기 유리기판을 루테늄 착제로 이루어지는 염료 용액(N719, 0.3mM in ethyl alcohol) 내에 24시간 담가 두어 염료가 흡착된 전이금속 산화물층을 포함하는 반도체 전극을 완성하였다.
A nanoparticle titanium dioxide paste (20nm TiO 2 paste, CCIC, Japan) was coated on a transparent conductive glass substrate (pilkington glass, USA) coated with ITO or SnO 2 to a thickness of about 12 to 13 μm, and then about 450 It was heated for 3 hours at a temperature of ~ 550 ℃ to contact and fill the nanoparticle oxides. Dye solution consisting of ruthenium complex on the glass substrate coated with nanoparticle titanium dioxide (N719, 0.3 mM in ethyl alcohol) After soaking for 24 hours, a semiconductor electrode including a transition metal oxide layer adsorbed with a dye was completed.

(2) 양극 대향 전극의 제조 (2) Preparation of the anode counter electrode

ITO 또는 FTO가 코팅되어 있는 투명한 전도성 유리기판 위에 20mM H2PtCl6ㅇxH2O (aldrich 사) 농도의 이소프로필 알콜 용액으로 백금층을 코팅하여 대향전극을 제조하였다. hand drill 을 이용하여 직경 1mm 정도의 2개의 미세구멍을 대향전극에 관통하도록 형성시켰다.
On the transparent conductive glass substrate coated with ITO or FTO, a counter electrode was prepared by coating a platinum layer with an isopropyl alcohol solution having a concentration of 20 mM H 2 PtCl 6占 xH 2 O (aldrich). Using a hand drill, two micro holes about 1 mm in diameter were formed to penetrate the counter electrode.

(3) 염료감응 태양전지의 조립(3) Assembly of Dye-Sensitized Solar Cell

(1)과 (2)에서 각각 제조된 반도체전극 및 대향전극을 전이금속 산화물층과 백금층이 대향되도록 하고, 상기 전극 사이의 공간이 30㎛ 두께가 되도록 sulyn (Du Pont사)을 이용하여 100~150℃의 가열판 상에서 두 전극을 클립으로 밀착시켜 접합시켰다. The semiconductor electrode and the counter electrode manufactured in (1) and (2), respectively, were made to face the transition metal oxide layer and the platinum layer, and the sulyn (Du Pont Co.) 100 The two electrodes were bonded together by a clip on a heating plate at ˜150 ° C.

이후 상기 대향전극의 표면에 형성된 미세 구멍을 통하여 상기 두 전극 사이의 공간에 상기 실시예 1~41 또는 비교예 1~11에서 제조된 전해질 조성물 중 하나를 충진하였다. 전해질이 충진되면, 대향전극 표면의 구멍을 sulyn(Du Pont사)과 커버 유리를 사용하여 순간적으로 가열하여 부착시킴으로써 봉지하였다.
Thereafter, one of the electrolyte compositions prepared in Examples 1 to 41 or Comparative Examples 1 to 11 was filled in the space between the two electrodes through the minute hole formed on the surface of the counter electrode. When the electrolyte was filled, the pores on the surface of the counter electrode were sealed by instantaneous heating and adhesion using sulyn (Du Pont) and cover glass.

2) 태양전지의 효율특성 측정2) Measurement of efficiency characteristics of solar cell

1)에서 제조된 태양전지에 AM 1.5 global 필터가 장착된 300W 제논램프를 사용하여 100mW/㎠의 태양광 모사광원을 조사하였다. 이때 형성되는 광전류밀도 (Jsc), 단락전압(Voc), 충밀도(fill factor)로부터 에너지 변환효율(η)을 Newport/Oriel Solar Simulator(class 3A, 모델 : 94083A)을 사용하여 측정하고 그 결과를 하기 표 4 및 표 5에 기재하였다. The solar cell fabricated in 1) was irradiated with 100mW / ㎠ solar radiation light source using 300W xenon lamp equipped with AM 1.5 global filter. At this time, the energy conversion efficiency (η) from the photocurrent density (J sc ), the short circuit voltage (V oc ), and the fill factor formed was measured using a Newport / Oriel Solar Simulator (class 3A, model: 94083A). The results are shown in Tables 4 and 5 below.

표 4는 용액상 전해질 조성물을 사용한 태양전지의 광전환효율을 나타낸 표로, 상기 제조예에서 제조된 이미다졸륨을 함유한 전해질 용액을 사용한 태양전지(실시예 1~14)의 경우 6.1~7.5%의 광전환 효율을 나타내었다. 가장 널리 사용되는 DMI를 비롯한 PMI 또는 HMI의 이미다졸륨 염을 포함한 전해질 용액을 사용한 태양전지의 경우(실시예 1~3) 광전환효율은 5.9~6.3%로 본 발명에 의한 전해질 조성물은 이미다졸륨 염 중 광전환효율이 가장 높은 DMII 보다 최대 20% 광전환효율의 증대효과를 나타내었다. 보다 구체적으로는, n1이나 n2가 감소함에 따라 광전환효율이 다소 감소하는 경향을 나타내었다. R1은 치환체가 작을수록(탄소 수가 작을수록), R2는 치환체의 크기가 클수록 광전환효율이 증가하였으며, 이러한 경향은 n1이 작을수록 더욱 두드러졌다. Table 4 is a table showing the light conversion efficiency of the solar cell using a solution electrolyte composition, 6.1 to 7.5% for a solar cell using an electrolyte solution containing an imidazolium prepared in the above production example (Examples 1 to 14) It showed the light conversion efficiency of. In the case of a solar cell using an electrolyte solution containing an imidazolium salt of PMI or HMI including DMI which is the most widely used (Examples 1 to 3), the light conversion efficiency is 5.9 to 6.3%, and the electrolyte composition according to the present invention is already The increase in the light conversion efficiency of up to 20% was higher than that of the DMII, which had the highest light conversion efficiency among the solium salts. More specifically, the light conversion efficiency tended to decrease slightly as n1 or n2 decreased. The smaller the substituent was (the smaller the number of carbons), the larger the substituent was, the larger the R1 was, and the light conversion efficiency was increased.

종래기술에 의한 이미다졸염을 혼합하여 사용한 비교예 4~8의 경우, 단독으로 사용한 비교예 1~3에 비해 모두 광전환효율이 다소 감소하는 추세를 나타내었으며, 본 발명에 의한 이미다졸륨 역시 혼합 사용한 경우에는 광전환효율이 단독사용 시 보다 다소 감소하는 경향을 나타내었다. 그러나, 제조예 4의 화합물을 혼합하는 경우에는 광전환효율이 크게 증가하였다. In Comparative Examples 4 to 8, which used a mixture of imidazole salts according to the prior art, all showed a tendency to decrease the light conversion efficiency slightly compared to Comparative Examples 1 to 3, which were used alone, and also imidazolium according to the present invention. In the case of mixed use, the light conversion efficiency tended to decrease slightly. However, when the compound of Preparation Example 4 was mixed, the light conversion efficiency was greatly increased.

Figure pat00021
Figure pat00021

Figure pat00022
Figure pat00022

표 5는 상온 이온성 액체의 특성을 이용하여 유기용매를 사용하지 않은 전해질 조성물의 광전환효율을 측정한 결과이다. 표 4와 마찬가지로 용매를 사용하지 않은 조성물 역시 비교예에 비해 광전환효율이 크게 향상된 것을 확인할 수 있다.Table 5 shows the results of measuring the light conversion efficiency of the electrolyte composition using no organic solvent using the characteristics of the room temperature ionic liquid. As in Table 4, it can be seen that the composition which does not use a solvent is also greatly improved in light conversion efficiency compared to the comparative example.

보다 구체적으로 DMII와 종래 기술에 의한 상온 이온성 액체인 PMII 또는 HMII를 혼합한 전해질 조성물과 PMII와 HMII를 혼합한 조성물은 각각 3.2, 3.1 및 3.0%의 광전환 효율을 나타내었다. 이에 반해, 본 발명의 제조예 화합물들과 DMII, PMII 또는 HMII의 혼합물을 포함한 전해질 조성물은 3.4~4.7%의 광전환효율을 나타내었다. 광전환효율은 특히 n1값이 작을수록 증대효과가 더욱 현저하여 n1=1인 경우에는 4.3~4.7%의 광전환 효율을 나타내었다.More specifically, the electrolyte composition in which PMII or HMII, which is a room temperature ionic liquid according to the prior art, and the composition in which PMII and HMII were mixed showed light conversion efficiency of 3.2, 3.1, and 3.0%, respectively. In contrast, the electrolyte composition including a mixture of the preparation compounds of the present invention and DMII, PMII, or HMII exhibited an optical conversion efficiency of 3.4 to 4.7%. In particular, the smaller the n1 value, the more significant the effect of increasing the optical conversion efficiency. When n1 = 1, the optical conversion efficiency was 4.3-4.7%.

Claims (7)

하기 화학식 1로 표기되는 이미다졸륨 염.
Figure pat00023

[화학식 1]
단, R1은 C1-C10의 알킬기 또는 바이닐(vinyl)기; R2는 H 또는 C1-C3의 알킬기, n1은 1 내지 6인 정수; n2는 1 내지 3인 정수.
Imidazolium salt represented by following formula (1).
Figure pat00023

[Formula 1]
Provided that R 1 is an alkyl group of C1-C10 or Vinyl group; R 2 is H or a C1-C3 alkyl group, n 1 is an integer of 1 to 6; n 2 is an integer of 1 to 3.
제 1 항의 이미다졸륨 염과 요오드을 함유하는 것을 특징으로 하는 염료감응 태양전지용 전해질 조성물.
An electrolyte composition for dye-sensitized solar cells, comprising the imidazolium salt of claim 1 and iodine.
제 2 항에 있어서,
상기 이미다졸륨 염은 하기 화학식 2의 화합물과의 혼합물인 것을 특징으로 하는 염료감응 태양전지용 전해질 조성물.
Figure pat00024

[화학식 2]
The method of claim 2,
The imidazolium salt is a dye-sensitized solar cell electrolyte composition, characterized in that the mixture with the compound of formula (2).
Figure pat00024

(2)
제 2 항 또는 제 3 항에 있어서,
상기 요오드는 이미다졸륨 염 중량의 0.5~10 중량%가 함유되어 있는 것을 특징으로 하는 염료감응 태양전지용 전해질 조성물.
The method according to claim 2 or 3,
The iodine is a dye-sensitized solar cell electrolyte composition, characterized in that it contains 0.5 to 10% by weight of the imidazolium salt weight.
제 2 항에 있어서,
아세토니트릴(acetonitrile), 3-메톡시 프로피오니트릴(3-methoxy ppropionitrile), 발레로니트릴(valeronitrile), 에틸렌 카보네이트(ethylene carbonate), 프로필렌 카보네이트(propylene carbonate), 감마-부틸로락톤(γ-butyrolatone) 또는 N-메틸-2-피롤리돈의 유기용매를 추가로 함유하는 것을 특징으로 하는 염료감응 태양전지용 전해질 조성물.
The method of claim 2,
Acetonitrile, 3-methoxy ppropionitrile, valeronitrile, ethylene carbonate, propylene carbonate, gamma-butylolactone Or N-methyl-2-pyrrolidone. An electrolyte composition for a dye-sensitized solar cell, further comprising an organic solvent.
제 5 항에 있어서,
상기 유기용매는 상기 암모늄 이미다졸륨 염의 중량의 10배 이하인 것을 특징으로 하는 염료감응 태양전지용 전해질 조성물.
The method of claim 5, wherein
The organic solvent is a dye-sensitized solar cell electrolyte composition, characterized in that less than 10 times the weight of the ammonium imidazolium salt.
제 2 항에 의한 염료감응 태양전지용 전해질 조성물을 사용하여 제조된 염료감응 태양전지.The dye-sensitized solar cell manufactured using the electrolyte composition for dye-sensitized solar cell according to claim 2.
KR20100067783A 2010-07-14 2010-07-14 New imidazolium salts and electrolyte composition for dye-sensitized sollar cells containing the salt KR101158767B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20100067783A KR101158767B1 (en) 2010-07-14 2010-07-14 New imidazolium salts and electrolyte composition for dye-sensitized sollar cells containing the salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100067783A KR101158767B1 (en) 2010-07-14 2010-07-14 New imidazolium salts and electrolyte composition for dye-sensitized sollar cells containing the salt

Publications (2)

Publication Number Publication Date
KR20120007172A true KR20120007172A (en) 2012-01-20
KR101158767B1 KR101158767B1 (en) 2012-06-22

Family

ID=45612572

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20100067783A KR101158767B1 (en) 2010-07-14 2010-07-14 New imidazolium salts and electrolyte composition for dye-sensitized sollar cells containing the salt

Country Status (1)

Country Link
KR (1) KR101158767B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021017427A (en) * 2019-07-23 2021-02-15 長瀬産業株式会社 Bishaloalkylsiloxane compound and method of producing the same, and method of producing siloxane compound with both terminals functionalized
KR20210054363A (en) * 2019-11-05 2021-05-13 주식회사 유라마 Imidazole compound for a secondary battery electrolyte solution and the electrolyte composition including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150103950A (en) 2014-03-04 2015-09-14 현대자동차주식회사 A method for improving efficiency of electrolyte having long term stability and dye sensitized solar cells using thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115250A2 (en) 2006-07-03 2008-09-25 Matheson Tri-Gas, Inc. Fluid storage and purification method and system using ionic liquid in particular di-imidazolium cation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021017427A (en) * 2019-07-23 2021-02-15 長瀬産業株式会社 Bishaloalkylsiloxane compound and method of producing the same, and method of producing siloxane compound with both terminals functionalized
KR20210054363A (en) * 2019-11-05 2021-05-13 주식회사 유라마 Imidazole compound for a secondary battery electrolyte solution and the electrolyte composition including the same

Also Published As

Publication number Publication date
KR101158767B1 (en) 2012-06-22

Similar Documents

Publication Publication Date Title
JP5404058B2 (en) Ionic liquid electrolyte
Gao et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells
JP5204848B2 (en) Photoelectric element
TWI345840B (en) Electrolyte composition and photoelectric conversion element using same
KR101348391B1 (en) Imidazole salt-bound nanoparticle, prepraration method thereof and nanogel-type electrolyte for dye-sensitized solarcell using the same
Shen et al. Novel polymer gel electrolyte with organic solvents for quasi-solid-state dye-sensitized solar cells
JP5261068B2 (en) Electrolyte composition for photoelectric conversion element and photoelectric conversion element using the same
WO2013099567A1 (en) Electrode assembly and photoelectric element provided with same
Raju et al. Effect of mono-and di-anchoring dyes based on o, m-difluoro substituted phenylene spacer in liquid and solid state dye sensitized solar cells
JP5350851B2 (en) Composition for photoelectric conversion element and photoelectric conversion element using the same
KR20110095439A (en) Ammonium imidazolium salt and electrolyte composition for dye-sensitized sollar cells containing the salt
US7910824B2 (en) Dye-sensitized solar cell using ion-bound oligomer complex and method of manufacturing the same
KR101158767B1 (en) New imidazolium salts and electrolyte composition for dye-sensitized sollar cells containing the salt
JP4420645B2 (en) Low temperature organic molten salt, photoelectric conversion element and photovoltaic cell
Guo et al. Novel hydrophobic ionic liquids electrolyte based on cyclic sulfonium used in dye-sensitized solar cells
KR101352904B1 (en) Electrolyte composition for dye­sensitized solar cell having the same
TW201024267A (en) Electrolyte composition and dye-sensitized solar cell using the same
KR101264082B1 (en) Photosensitizer containing benzothiazole for photovoltaic cell, and photovoltaic cell including the same
JP2005112733A (en) Onium salt
KR101396294B1 (en) Quasi-solid state electrolyte for dye-sensitized solarcell compring cyclosiloxane tetraimidazolium tetraiodides, preparation method thereof and dye-sensitized solarcell compring the quasi-solid state electrolyte
KR20110127026A (en) Organic dye and dye-sensitized solar cell
JP4421262B2 (en) Onium salt
JP5614807B2 (en) Electrolyte composition for photoelectric conversion element and photoelectric conversion element
US20090084443A1 (en) Electrolyte composition for photoelectric conversion device and photoelectric conversion device using the same
Prasad et al. Above 800 mV open-circuit voltage in solid-state photovoltaic devices using phosphonium cation-based solid ionic conductors

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee