JP4421262B2 - Onium salt - Google Patents

Onium salt Download PDF

Info

Publication number
JP4421262B2
JP4421262B2 JP2003364701A JP2003364701A JP4421262B2 JP 4421262 B2 JP4421262 B2 JP 4421262B2 JP 2003364701 A JP2003364701 A JP 2003364701A JP 2003364701 A JP2003364701 A JP 2003364701A JP 4421262 B2 JP4421262 B2 JP 4421262B2
Authority
JP
Japan
Prior art keywords
iodide
onium salt
solvent
conversion efficiency
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003364701A
Other languages
Japanese (ja)
Other versions
JP2005126382A (en
Inventor
直人 永倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2003364701A priority Critical patent/JP4421262B2/en
Publication of JP2005126382A publication Critical patent/JP2005126382A/en
Application granted granted Critical
Publication of JP4421262B2 publication Critical patent/JP4421262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、一次もしくは二次のリチウム電池、色素増感型太陽電池、電気二重層キャパシタ、表示素子等の電気化学デバイスあるいは電析浴、更には化学合成の媒体として利用可能なオニウム塩に関する。   The present invention relates to an electrochemical device such as a primary or secondary lithium battery, a dye-sensitized solar cell, an electric double layer capacitor, a display element, an electrodeposition bath, and an onium salt that can be used as a chemical synthesis medium.

近年多く用いられるようになったリチウム一次電池、リチウム二次電池、電解コンデンサ、電気二重層キャパシタ、エレクトロクロミック表示素子、あるいは将来的な実用化に向けて種々に検討がなされている色素増感型太陽電池などの電気化学デバイスにおける非水系の電解液としては、電解質をエチレンカーボネート、プロピレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、N,N−ジメチルホルムアミド、テトラヒドロフラン、あるいはアセトニトリル等の有機溶媒に溶解させた溶液が用いられてきた。しかし、これらの電解質溶液に用いられる有機溶媒は揮発しやすく、それ自体が危険物であることから、長期の信頼性、耐久性、および安全性に問題がある。   Lithium primary batteries, lithium secondary batteries, electrolytic capacitors, electric double layer capacitors, electrochromic display elements that have been widely used in recent years, or dye-sensitized types that have been studied for various practical applications in the future As a non-aqueous electrolyte solution in an electrochemical device such as a solar battery, an electrolyte was dissolved in an organic solvent such as ethylene carbonate, propylene carbonate, dimethoxyethane, γ-butyrolactone, N, N-dimethylformamide, tetrahydrofuran, or acetonitrile. Solutions have been used. However, since the organic solvent used in these electrolyte solutions is volatile and is a dangerous substance itself, there are problems in long-term reliability, durability, and safety.

そこで電解質として有機溶媒を用いず、常温で液状であるオニウム塩を電解質として応用することが提案され、種々検討されている。例えば1−メチル−3−エチルイミダゾリウムカチオンと、ビストリフルオロメタンスルホン酸アミドアニオンからなるオニウム塩は、周囲温度で液状であり、高いイオン伝導率を示すことが示されている(例えば、特許文献1)。   Therefore, various proposals have been made to apply an onium salt that is liquid at room temperature as an electrolyte without using an organic solvent as the electrolyte. For example, an onium salt composed of a 1-methyl-3-ethylimidazolium cation and a bistrifluoromethanesulfonic acid amide anion is liquid at ambient temperature and has been shown to exhibit high ionic conductivity (for example, Patent Documents). 1).

特に、近年注目を集めている色素増感太陽電池は、製造コストがシリコン型太陽電池の1/5以下で製造できると試算されている。色素増感型太陽電池における光電変換効率には、電解液中の三ヨウ化物イオンとヨウ化物イオンの伝導度が大きな影響があり、高い光電変換効率を得るためには高いイオン伝導度を必要とする。このような高いイオン伝導度を得るためには、電解液の粘度を可能な限り低いものとすることが重要である。色素増感型太陽電池の電解質として用いられてきたヨウ化物は固体であるか、極めて粘度の高い液体であるため、従来は、粘度の低い溶媒と混合して低粘度の電解液を調製する手法が採用されていた。   In particular, it has been estimated that a dye-sensitized solar cell that has attracted attention in recent years can be manufactured at a manufacturing cost of 1/5 or less of a silicon solar cell. The photoelectric conversion efficiency in dye-sensitized solar cells is greatly influenced by the conductivity of triiodide ions and iodide ions in the electrolyte, and high ionic conductivity is required to obtain high photoelectric conversion efficiency. To do. In order to obtain such high ionic conductivity, it is important to make the viscosity of the electrolyte as low as possible. Iodide used as an electrolyte for dye-sensitized solar cells is a solid or extremely high-viscosity liquid. Conventionally, a low-viscosity electrolyte is prepared by mixing with a low-viscosity solvent. Was adopted.

このような目的で用いるヨウ化物としては、1−メチル−3−アルキルイミダゾリウムヨウ化物が知られている(例えば、非特許文献1)。   As an iodide used for such a purpose, 1-methyl-3-alkylimidazolium iodide is known (for example, Non-Patent Document 1).

特開平8−259543号公報JP-A-8-259543 松本 一、松田俊彦、蔭山博之、「ヨウ化物常温溶融塩の物性と色素増感太陽電池特性の相関」、ポリマープレプリンツ ジャパン、社団法人 高分子学会、2001年、第50巻、第13号、p.3464−3465Matsumoto Hajime, Matsuda Toshihiko, Kajiyama Hiroyuki, “Correlation between Physical Properties of Iodide Room Temperature Molten Salt and Dye-Sensitized Solar Cell Properties”, Polymer Preprints Japan, Polymer Society of Japan, 2001, Vol. 50, No. 13, p. 3464-3465

しかしながら、太陽電池は通常太陽光の照射される場所に設置されるが、この太陽光照射によって加熱され、例えば屋根に設置した場合、その温度が100℃以上に上がることがある。そして、上記のような低粘度の溶媒は、通常揮発性も高いため、高温下での使用では経時的に揮発してしまう。そのため、イオン伝導性が高い粘度の低い溶媒を用いると沸点が低くなり寿命が短くなってしまう。他方、沸点の高い溶媒を用いると粘度が高くなり、光電変換効率が低くなってしまい、従来公知の電解液(電荷移動層)を用いた場合には、光電変換効率と高温時の耐久性とを両立させることが困難であるという問題があった。   However, a solar cell is usually installed in a place where sunlight is irradiated. However, when the solar battery is heated by this sunlight irradiation, for example, when installed on a roof, the temperature may rise to 100 ° C. or higher. And since the low-viscosity solvents as described above are usually highly volatile, they will volatilize over time when used at high temperatures. Therefore, when a solvent having high ion conductivity and low viscosity is used, the boiling point is lowered and the life is shortened. On the other hand, when a solvent having a high boiling point is used, the viscosity is increased and the photoelectric conversion efficiency is lowered. When a conventionally known electrolytic solution (charge transfer layer) is used, the photoelectric conversion efficiency and the durability at high temperature are There is a problem that it is difficult to achieve both.

この点を解決するため、揮発を防止する目的で、電解液を擬凝固体としたり、より気密性の高い封止技術について検討されているが、これら方法によっても、いまだ充分な耐久性は得られていないのが現状である。   In order to solve this problem, in order to prevent volatilization, the electrolytic solution is made into a pseudo-solidified body, and more airtight sealing technology has been studied. However, these methods still provide sufficient durability. The current situation is not.

従って、高い光電変換効率を得つつ、その耐久性を高くするために、低粘度の溶媒を用いなくても高いイオン伝導性を発現する電解液の調整が可能な、低粘度のヨウ化物を見出すことが大きな課題の一つであった。   Therefore, in order to increase the durability while obtaining high photoelectric conversion efficiency, a low-viscosity iodide is found that can adjust an electrolyte that exhibits high ionic conductivity without using a low-viscosity solvent. This was one of the major issues.

本発明者らは上記課題を解決すべく、オニウム塩を構成するカチオンの構造について、その特性との相関性に関して鋭意検討を行なった。その結果、ヘテロ芳香環に結合する5つの水素原子すべてがフッ素原子に置換されたフッ化ピリジニウムカチオンのヨウ化物塩が、フッ化物でない対応するピリジニウムカチオンヨウ化物塩の粘度より低下するという新たな知見を得た。そして更に検討を行なった結果、フッ素原子数の置換数が4以上であれば、他のヨウ化物塩も非水電解液用の電解質として使用できることを見い出し本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors diligently studied the correlation between the structure of the cation constituting the onium salt and its characteristics. As a result, the new finding that the iodide salt of the fluorinated pyridinium cation in which all five hydrogen atoms bonded to the heteroaromatic ring are replaced by fluorine atoms is lower than the viscosity of the corresponding pyridinium cation iodide salt that is not fluoride. Got. As a result of further studies, it was found that other iodide salts can be used as electrolytes for non-aqueous electrolytes when the number of substitution of fluorine atoms is 4 or more, and the present invention has been completed.

即ち、本発明は、下記一般式   That is, the present invention has the following general formula:

Figure 0004421262
Figure 0004421262

(式中、Rは総炭素数1〜6の置換若しくは非置換のアルキル基であり、R、R、R、R、Rは、フッ素原子、シアノ基又は総炭素数1〜4の置換若しくは非置換のアルキル基であり、かつR、R、R、R、Rのうちの4つ以上はフッ素原子である。)
で示されるオニウム塩である。
(In the formula, R 1 is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and R 2 , R 3 , R 4 , R 5 , and R 6 are a fluorine atom, a cyano group, or a total carbon number of 1; a to 4 substituted or unsubstituted alkyl group, and R 2, R 3, R 4 , R 5, 4 or more of the R 6 is a fluorine atom.)
It is an onium salt shown by.

上記本発明のオニウム塩は新規の化合物であり、常温において低粘度の液状のイオン性化合物として、非水電解液用の電解質や化学合成における溶媒として使用できる。一般にヨウ化物塩は固体であるか、液体であっても粘度が高くイオン伝導度が低いが、本発明のオニウム塩におけるカチオンは、ピリジニウム環を構成する炭素原子に結合する水素原子の少なくとも4つをフッ素原子に置換したことにより、ヨウ化物であっても粘度が低く高イオン伝導度を発現する。この理由は明らかではないが、フッ素原子により置換することによって、正電荷が分散され、ヨウ化物イオン(アニオン)とピリジニウムカチオン間の相互作用が弱くなるためであると推測される。   The onium salt of the present invention is a novel compound, and can be used as a liquid ionic compound having a low viscosity at room temperature, as an electrolyte for a non-aqueous electrolyte or as a solvent in chemical synthesis. In general, iodide salts are solid or liquid, and have high viscosity and low ionic conductivity. However, the cation in the onium salt of the present invention has at least four hydrogen atoms bonded to carbon atoms constituting the pyridinium ring. By substituting with a fluorine atom, even with iodide, the viscosity is low and high ionic conductivity is exhibited. The reason for this is not clear, but it is presumed that substitution with a fluorine atom disperses the positive charge and weakens the interaction between the iodide ion (anion) and the pyridinium cation.

本発明のオニウム塩は、下記一般式   The onium salt of the present invention has the following general formula

Figure 0004421262
Figure 0004421262

(式中、Rは総炭素数1〜6の置換若しくは非置換のアルキル基であり、R、R、R、R、Rは、フッ素原子、シアノ基又は総炭素数1〜4の置換若しくは非置換のアルキル基であり、かつR、R、R、R、Rのうちの4つ以上はフッ素原子である。)
で示される化合物である。
(In the formula, R 1 is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and R 2 , R 3 , R 4 , R 5 , and R 6 are a fluorine atom, a cyano group, or a total carbon number of 1; a to 4 substituted or unsubstituted alkyl group, and R 2, R 3, R 4 , R 5, 4 or more of the R 6 is a fluorine atom.)
It is a compound shown by these.

このようなフッ化ピリジニウムカチオンはこれまで合成されていないばかりでなく、他のヨウ化物塩よりも粘度を著しく低くすることができる。   Such a pyridinium fluorinated cation has not been synthesized so far, but can have a significantly lower viscosity than other iodide salts.

上記オニウム塩において、Rは総炭素1から6の置換若しくは非置換のアルキル基である。なお該アルキル基は置換基を有していても良いが、その場合には、置換基の有する炭素も含めて炭素数が6以下である必要がある。 In the onium salt, R 1 is a substituted or unsubstituted alkyl group having 1 to 6 total carbons. The alkyl group may have a substituent. In that case, the alkyl group needs to have 6 or less carbon atoms including the carbon of the substituent.

当該アルキル基は、上記炭素数の制限以外は特に制限されるものではなく、直鎖状、分枝状又は環状のいずれでもよい。このようなアルキル基を具体的に例示すると、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基等が例示される。また、これらアルキル基が置換基を有する場合、その置換基も特に制限されるものではないが、粘度を低くし、また、各種電気化学的デバイスにおける電解液として用いた場合に、望ましくない電気化学的反応を起こし難い点で、ハロゲン原子であることが好ましく、フッ素原子であることがより好ましい。このような置換基を有するアルキル基を具体的に例示すると、トリフロロメチル基、2,2,2−トリフルオロエチル基、3,3,3,−トリフロロプロピル基等が挙げられる。   The alkyl group is not particularly limited except for the limitation of the number of carbon atoms, and may be linear, branched or cyclic. Specific examples of such alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, and isobutyl groups. In addition, when these alkyl groups have a substituent, the substituent is not particularly limited, but when the viscosity is lowered and it is used as an electrolytic solution in various electrochemical devices, undesirable electrochemical A halogen atom is preferable and a fluorine atom is more preferable because it is difficult to cause a chemical reaction. Specific examples of the alkyl group having such a substituent include a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a 3,3,3, -trifluoropropyl group, and the like.

これらのなかでも、炭素数が少ないほどオニウム塩の粘度が低くなる傾向が強いため、炭素数1〜4の無置換のアルキル基又はフッ素原子により置換されたアルキル基が特に好ましい。   Among these, since the viscosity of the onium salt tends to be lower as the number of carbon atoms is smaller, an unsubstituted alkyl group having 1 to 4 carbon atoms or an alkyl group substituted with a fluorine atom is particularly preferable.

上記式において、R、R、R、R、Rは、フッ素原子、シアノ基又は総炭素1〜4の置換若しくは非置換のアルキル基であり、かつR、R、R、R、Rのうちの4つ以上はフッ素原子である。ピリジニウム環に結合しているフッ素原子の数が3つ以下である場合には、充分に粘度の低いものとならない。 In the above formula, R 2 , R 3 , R 4 , R 5 and R 6 are a fluorine atom, a cyano group, or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and R 2 , R 3 , R 4 , 4 or more of R 5 and R 6 are fluorine atoms. When the number of fluorine atoms bonded to the pyridinium ring is 3 or less, the viscosity is not sufficiently low.

、R、R、R又はRが置換若しくは非置換のアルキル基である場合、該アルキル基は総炭素数が1〜4の範囲であれば特に制限されるものではない。なお、置換基を有する場合には、置換基の有する炭素も含めた炭素数が4以下である必要がある。具体的には、前記Rとして例示した基のなかの炭素数1〜4のものと同じであり、さらに同様の理由により、炭素数1〜4の無置換のアルキル基又はフッ素原子により置換されたアルキル基が特に好ましい。 When R 2 , R 3 , R 4 , R 5 or R 6 is a substituted or unsubstituted alkyl group, the alkyl group is not particularly limited as long as the total carbon number is in the range of 1 to 4. In addition, when it has a substituent, the carbon number including the carbon which a substituent has needs to be 4 or less. Specifically, it is the same as the group having 1 to 4 carbon atoms among the groups exemplified as R 1 and, for the same reason, is substituted by an unsubstituted alkyl group having 1 to 4 carbon atoms or a fluorine atom. Particularly preferred are alkyl groups.

、R、R、R又はRがシアノ基又は、置換若しくは非置換のアルキル基である場合、その結合位置は特に制限されるものではないが、原料の入手の容易さや合成収率等を考慮すると、Rが当該基であることが好ましい。 When R 2 , R 3 , R 4 , R 5 or R 6 is a cyano group or a substituted or unsubstituted alkyl group, the bonding position is not particularly limited, but the availability of raw materials and synthesis In consideration of the yield and the like, R 4 is preferably the group.

本発明のオニウム塩の製造方法は特に限定されるものではないが、以下のような方法で好適に製造できる。即ち、目的とする化合物に対応する下記式   Although the manufacturing method of the onium salt of this invention is not specifically limited, It can manufacture suitably with the following methods. That is, the following formula corresponding to the target compound

Figure 0004421262
Figure 0004421262

(式中、R〜Rは前記と同じ)
で示されるフッ化ピリジン化合物と、ヨウ化アルキル(R−I)とを反応させる方法である。用いるフッ化ピリジン化合物とヨウ化アルキルの比は特に制限は無いが、反応の効率の点からフッ化ピリジン化合物:ヨウ化アルキルのモル比は0.5〜2:1であるのが望ましい。
(Wherein R 2 to R 6 are the same as above)
Is a method in which an alkyl iodide (R 1 -I) is reacted. The ratio of the fluorinated pyridine compound and the alkyl iodide to be used is not particularly limited, but the molar ratio of the fluorinated pyridine compound to the alkyl iodide is preferably 0.5 to 2: 1 from the viewpoint of reaction efficiency.

反応条件は、特に制限されるものではなく、加熱下、冷却下、加圧下、減圧下、常圧下で行うことができるが、収率を高くするために加熱下で行うのが好ましい。反応温度は特に制限は無いが、常温では反応しにくいことから50℃より高温で、好適には70℃、さらに好適には85℃以上で行う。他方、高温すぎると原料の分解や揮発が生じる可能性があるため、200℃以下、好ましくは150℃以下で行うとよい。   The reaction conditions are not particularly limited, and can be performed under heating, cooling, pressurization, reduced pressure, and normal pressure, but it is preferably performed under heating in order to increase the yield. Although the reaction temperature is not particularly limited, it is difficult to react at room temperature, so that the reaction temperature is higher than 50 ° C., preferably 70 ° C., more preferably 85 ° C. or higher. On the other hand, if the temperature is too high, decomposition or volatilization of the raw material may occur.

反応において、溶媒は用いても用いなくても良いが、製造原料が溶解し、生成するオニウム塩が溶解しない適当な溶媒を選択することにより反応終了後分離が容易となる。このような溶媒は通常、非極性の溶媒であり、具体的には、ベンゼン、トルエン、キシレン等の芳香族系炭化水素溶媒が挙げられる。   In the reaction, a solvent may or may not be used, but separation is facilitated after completion of the reaction by selecting an appropriate solvent that dissolves the raw material for production and does not dissolve the onium salt produced. Such a solvent is usually a nonpolar solvent, and specific examples include aromatic hydrocarbon solvents such as benzene, toluene, and xylene.

このような溶媒を用いた場合には、生成した目的物と、有機溶媒とが相分離するため、反応終了後に有機溶媒層を分離・除去し、さらに、残存する溶媒を真空下や加熱などで除去することにより、目的物であるオニウム塩が単離できる。   When such a solvent is used, since the produced target product and the organic solvent are phase-separated, the organic solvent layer is separated and removed after completion of the reaction, and the remaining solvent is removed by vacuum or heating. By removing, the target onium salt can be isolated.

得られたオニウム塩の同定は、通常NMRと質量分析により可能である。即ち、1H−NMRにより、窒素原子に結合するR及びRの有する水素原子のスペクトルを見出すことができる。また、質量分析により判明する質量数からフッ素化ピリジニウム環であることを見出すことができる。 Identification of the obtained onium salt is usually possible by NMR and mass spectrometry. That is, the spectrum of the hydrogen atom of R 1 and R 2 bonded to the nitrogen atom can be found by 1H-NMR. Moreover, it can be found that it is a fluorinated pyridinium ring from the mass number found by mass spectrometry.

この様にして得られた本発明のオニウム塩は、低融点で高イオン伝導性を示すため、単独で1次及び2次Li電池、色素増感型(湿式)太陽電池、キャパシタ、エレクトロクロミック表示素子等の電気化学的デバイス、あるいはメッキ用の電解液として、あるいは、他の溶媒を加えてこれら電解液における電解質として好適に使用できるし、また合成反応等における溶媒としても使用できる。本発明のオニウム塩は、粘性が低いため、従来公知の他の電解質に比べて、低温でのイオン伝導性に優れ、上記のような用途に用いた場合、低温特性の良好な電気化学デバイスを構築することもできる。   The onium salt of the present invention thus obtained has a low melting point and high ionic conductivity. Therefore, primary and secondary Li batteries, dye-sensitized (wet) solar cells, capacitors, and electrochromic displays alone. It can be suitably used as an electrochemical device such as an element, an electrolytic solution for plating, or as an electrolyte in these electrolytic solutions by adding another solvent, or as a solvent in a synthesis reaction or the like. Since the onium salt of the present invention has low viscosity, it has superior ionic conductivity at low temperatures compared to other conventionally known electrolytes. When used in the above applications, an electrochemical device having good low-temperature characteristics can be obtained. It can also be constructed.

このような電気化学デバイスに用いる場合、本発明のオニウム塩を単独で電解液として用いても良いし、また、必要に応じ、例えば、より電解液の粘度を低下させるために、電気化学デバイスの電解液における溶媒として公知の溶媒と混合して用いても良い(この場合、本発明のオニウム塩は、電解液中の電解質として作用する)。このような溶媒としては、エチレンカーボネートやプロピレンカーボネートのカーボネート類、アセトニトリルやメトキシアセトニトリルやプロピオニトリル、メトキシプロピオニトリルなどのニトリル類、及びこれらの混合物等を挙げることができる。これら溶媒を用いる場合には、本発明のオニウム塩が不揮発性であるという特徴をより生かすために、常圧での沸点が100℃以上のものを用いることが好ましい。   When used in such an electrochemical device, the onium salt of the present invention may be used alone as an electrolytic solution, and if necessary, for example, in order to further reduce the viscosity of the electrolytic solution, You may mix and use a well-known solvent as a solvent in electrolyte solution (In this case, the onium salt of this invention acts as an electrolyte in electrolyte solution). Examples of such solvents include carbonates of ethylene carbonate and propylene carbonate, nitriles such as acetonitrile, methoxyacetonitrile, propionitrile, and methoxypropionitrile, and mixtures thereof. When these solvents are used, it is preferable to use a solvent having a boiling point of 100 ° C. or higher at normal pressure in order to take advantage of the feature that the onium salt of the present invention is nonvolatile.

さらに、このような溶媒と混合して用いる場合には、アクリロイル基やメタクリロイル基のような重合性基を持つ化合物、例えばアクリロニトリルやメタクリロニトリル等を加えてゲル化したマトリックスとし、該マトリックスに本発明のオニウム塩及び上記溶媒を保持させた形で使用することもできる。
また、これら電気化学デバイスに用いる場合には、必要に応じて他の公知の電解質を加えても良い。例えば、色素増感型太陽電池の場合には、リチウムヨウ化物、ナトリウムヨウ化物、カリウムヨウ化物などの金属ヨウ化物、アルキルアンモニウムヨウ化物、四級ピリジニウムヨウ化物、又は四級イミダゾリウムヨウ化物などの従来の色素増感型太陽電池で使用されている電解質をさらに加えることができる。また、tert−ブチルピリジン、N−メチルベンズイミダゾール等の添加剤を加えて使用する事もできる。
このような他の成分を配合して電気化学的デバイスに用いる場合、本発明のオニウム塩の濃度は特に限定されるものではなく、必要に応じて適宜設定すれば良い。好適には、例えば、色素増感型太陽電池の電荷移動層(電解液)として使用する場合には、少量では短絡電流量が小さくなり光電流変換効率の低下を招く可能性があるため、1モル/l以上とするのが好適である。
またいずれの場合においても、本発明のオニウム塩は、一種のみを用いても、複数の種類のものを混合して用いても良い。
以下、実施例を挙げて本発明に用いた化合物の合成方法を更に詳細に説明するが、本発明はこれらに限定されるものではない。
Further, when used in combination with such a solvent, a matrix having a polymerizable group such as an acryloyl group or a methacryloyl group, for example, acrylonitrile or methacrylonitrile, is added to the matrix, and the matrix is added to the matrix. It can also be used in the form of retaining the onium salt of the invention and the above solvent.
Moreover, when using for these electrochemical devices, you may add another well-known electrolyte as needed. For example, in the case of a dye-sensitized solar cell, a metal iodide such as lithium iodide, sodium iodide, or potassium iodide, an alkyl ammonium iodide, a quaternary pyridinium iodide, or a quaternary imidazolium iodide. An electrolyte used in conventional dye-sensitized solar cells can be further added. In addition, additives such as tert-butylpyridine and N-methylbenzimidazole can be added and used.
When such other components are blended and used in an electrochemical device, the concentration of the onium salt of the present invention is not particularly limited, and may be appropriately set as necessary. Preferably, for example, when used as a charge transfer layer (electrolyte) of a dye-sensitized solar cell, a small amount may decrease the amount of short-circuit current and cause a decrease in photocurrent conversion efficiency. It is preferable to set it to mol / l or more.
In either case, the onium salt of the present invention may be used alone or in combination of a plurality of types.
Hereinafter, the synthesis method of the compound used in the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

1.NMR測定
試料10〜20mgを約1mlのジメチルスルフォキシド−d6(標準物質として1,4−ビストリフルオロメチルベンゼン含有)に溶解し日本電子製核磁気共鳴装置JNM−LA500によりH核を測定した。
1. NMR measurement 10 to 20 mg of a sample was dissolved in about 1 ml of dimethyl sulfoxide-d6 (containing 1,4-bistrifluoromethylbenzene as a standard substance), and 1 H nucleus was measured by JEOL nuclear magnetic resonance apparatus JNM-LA500. .

2.光電変換効率の測定方法
各オニウム塩を用いて以下の方法により、色素増感型太陽電池を作製し、該色素増感型太陽電池を用いて、光電変換効率の測定を行った。なお、光化学電池の作製は、“色素増感太陽電池の最新技術”(シーエムシー社、2001)の44〜53項に記載された方法、及びインターネット上の東北大学多元物質科学研究所のホームページに掲載された方法(kuroppe.icrs.tohoku.ac.jp/~masaki/wet_cell/main-j.htm)等に基づき下記(1)〜(3)の手順で作製し、得られた光化学電池の光電変換効率を下記(4)に示すようにして測定した。
2. Method for Measuring Photoelectric Conversion Efficiency A dye-sensitized solar cell was prepared by the following method using each onium salt, and the photoelectric conversion efficiency was measured using the dye-sensitized solar cell. Photochemical cells can be produced by the method described in paragraphs 44 to 53 of “The latest technology of dye-sensitized solar cells” (CMC Corporation, 2001) and on the homepage of the Institute for Multidisciplinary Research for Advanced Materials on the Internet. Based on the published method (kuroppe.icrs.tohoku.ac.jp/~masaki/wet_cell/main-j.htm), etc. The conversion efficiency was measured as shown in (4) below.

(1) 半導体電極の作製
和光純薬工業株式会社から購入したチタンイソプロポキサイド125mlを0.1Mの硝酸水溶液750mlに攪拌しながらゆっくり滴下した。80度8時間攪拌後室温まで放冷後、オートクレーブを用いて225℃で12時間水熱処理を行い酸化チタンの含有量が11重量%になるよう調整した。得られたコロイド溶液1重量部に和光純薬株式会社製Triton−Xを0.02〜0.05重量部加え均一な分散液とした。フッ素をドープした酸化スズ透明電極付ガラス基板にこの分散液をブレード法で塗布し100℃で1時間乾燥した後、450℃で1時間焼成した。その後0.1Mの四塩化チタン水溶液を一滴滴下し一晩放置した。その後水洗し、再び100℃で1時間乾燥した後、450℃で1時間焼成し作製した。
(1) Production of semiconductor electrode 125 ml of titanium isopropoxide purchased from Wako Pure Chemical Industries, Ltd. was slowly added dropwise to 750 ml of 0.1 M nitric acid aqueous solution while stirring. After stirring at 80 ° C. for 8 hours, the mixture was allowed to cool to room temperature and then hydrothermally treated at 225 ° C. for 12 hours using an autoclave so that the titanium oxide content was adjusted to 11% by weight. To 1 part by weight of the obtained colloid solution, 0.02 to 0.05 parts by weight of Triton-X manufactured by Wako Pure Chemical Industries, Ltd. was added to obtain a uniform dispersion. This dispersion was applied to a glass substrate with tin oxide transparent electrodes doped with fluorine by a blade method, dried at 100 ° C. for 1 hour, and then fired at 450 ° C. for 1 hour. Thereafter, a drop of 0.1M titanium tetrachloride aqueous solution was dropped and left overnight. Thereafter, it was washed with water, dried again at 100 ° C. for 1 hour, and then fired at 450 ° C. for 1 hour.

(2) 色素の固定
色素の固定はルテニウム増感色素(シス−ジシアネート−ビス−2、2‘−ジピリジル−4、4’−ジカルボキシレート)ルテニウム(II)0.3mmol含むエタノール溶液に上記チタニア板を一晩浸漬し固定した。
(2) Fixation of dye The fixation of dye is the above titania in an ethanol solution containing 0.3 mmol of ruthenium sensitizing dye (cis-dicyanate-bis-2, 2′-dipyridyl-4, 4′-dicarboxylate) ruthenium (II). The plate was immersed and fixed overnight.

(3) セルの組み立て
前記(1)で作製したチタニア基板を光電変換素子とし、対向電極として白金をスパッタしたガラス基板を用いた。スペーサーをはさんで電極をはさみ、注入口2箇所を残しエポキシ系接着剤で周りを封止後、電解液を注入し、注入後注入口をエポキシ系接着剤で封止した。この後電極にリード線を取り付けて光化学電池とした。
(3) Assembly of cell The titania substrate produced in the above (1) was used as a photoelectric conversion element, and a glass substrate obtained by sputtering platinum as a counter electrode was used. The electrode was sandwiched between spacers, and the injection port was sealed with an epoxy adhesive, leaving two injection ports, and the electrolyte was injected. After the injection, the injection port was sealed with an epoxy adhesive. Thereafter, a lead wire was attached to the electrode to obtain a photochemical battery.

(4) 光電変換効率の測定
500Wのキセノンランプの光をAM1.5フィルターとUVカットフィルターを通した擬似太陽光を作製した光化学電池に照射し発電性能の測定を行った。また、寿命試験として80℃で240時間の照射前後の光電変換効率を測定した。これらによって得られた光電気化学電池の開放電圧、短絡電圧、変換効率をまとめて表1に示す。尚、劣化の度合いを表す数値として
変換効率低下度 =240時間後変換効率/初期変換効率 X 100
を求め、どの程度低下したかの指標とした。
(4) Measurement of photoelectric conversion efficiency The power generation performance was measured by irradiating the photochemical cell which produced the pseudo-sunlight which passed the light of 500W xenon lamp through the AM1.5 filter and the UV cut filter. Moreover, the photoelectric conversion efficiency before and behind irradiation for 240 hours at 80 degreeC was measured as a life test. The open circuit voltage, short circuit voltage, and conversion efficiency of the photoelectrochemical cell obtained by these are summarized in Table 1. In addition, as a numerical value indicating the degree of deterioration, conversion efficiency reduction degree = conversion efficiency after 240 hours / initial conversion efficiency X 100
Was used as an indicator of how much it had declined.

実施例1
1−ブチル−2,3,4,5,6−ペンタフロロピリジニウム・ヨウ化物の合成
2,3,4,5,6−ペンタフロロピリジン2.0g(0.012mol)を温度計、滴下漏斗、及び窒素風船を装着した50mL三口フラスコに入れた後、ヨウ化ブチル4.5g(0.024mol)を添加し、90℃で8時間反応させた。その後、この溶液を一晩80℃で減圧下濃縮し、赤茶色の液体0.6gを得た。H−NMRには、ブチル基に由来する0.98(t)、1.89(m)、2.12(m)、4.58(t)ppmが確認された。さらにMS−ESI測定(溶媒:メタノール:水=1:1)においては、1−ブチル−2,3,4,5,6−ペンタフロロピリジニウムカチオンと考えられる分子量226のカチオンが観察された。以上の測定により目的のヨウ化物塩が合成されたことを確認した。
Example 1
Synthesis of 1-butyl-2,3,4,5,6-pentafluoropyridinium iodide Iodine 2.0 g (0.012 mol) 2,3,4,5,6-pentafluoropyridine was added to a thermometer, a dropping funnel, And a 50 mL three-necked flask equipped with a nitrogen balloon, 4.5 g (0.024 mol) of butyl iodide was added, and the mixture was reacted at 90 ° C. for 8 hours. Thereafter, this solution was concentrated overnight at 80 ° C. under reduced pressure to obtain 0.6 g of a reddish brown liquid. In 1 H-NMR, 0.98 (t), 1.89 (m), 2.12 (m), and 4.58 (t) ppm derived from a butyl group were confirmed. Furthermore, in MS-ESI measurement (solvent: methanol: water = 1: 1), a cation having a molecular weight of 226, which is considered to be 1-butyl-2,3,4,5,6-pentafluoropyridinium cation, was observed. The above measurements confirmed that the desired iodide salt was synthesized.

実施例2
1−ブチル−4−シアノ−2,3,5,6−テトラフロロピリジニウム・ヨウ化物の合成
2,3,4,5,6−ペンタフロロピリジン2.0gに代えて、4−シアノ−2,3,5,6−テトラフロロピリジン2.0gを用いた以外は、実施例1と同様の操作を行って赤茶色の液体0.7gを得た。1H−NMRには、ブチル基に由来する0.99(t)、1.91(m)、2.14(m)、4.54(t)、ppmが確認された。さらにMSESI測定(溶媒:メタノール:水=1:1)においては、1−ブチル−4−シアノ−2,3,5,6−ペンタフロロピリジニウムカチオンと考えられる分子量233のカチオンが観察された。以上の測定により目的のヨウ化物塩が合成されたことを確認した。
Example 2
Synthesis of 1-butyl-4-cyano-2,3,5,6- tetrafluoropyridinium -iodide Instead of 2.0 g of 2,3,4,5,6-pentafluoropyridine, 4-cyano-2, The same operation as in Example 1 was performed except that 2.0 g of 3,5,6-tetrafluoropyridine was used to obtain 0.7 g of a reddish brown liquid. In 1H-NMR, 0.99 (t), 1.91 (m), 2.14 (m), 4.54 (t), and ppm derived from a butyl group were confirmed. Furthermore, in MSESI measurement (solvent: methanol: water = 1: 1), a cation having a molecular weight of 233, which is considered to be 1-butyl-4-cyano-2,3,5,6-pentafluoropyridinium cation, was observed. The above measurements confirmed that the desired iodide salt was synthesized.

実施例3
1−ブチル−4−メチル−2,3,5,6−テトラフロロピリジニウム・ヨウ化物の合成
2,3,4,5,6−ペンタフロロピリジン2.0gに代えて、4−メチル−2,3,5,6−テトラフロロピリジン2.0gを用いた以外は、実施例1と同様の操作を行って赤茶色の液体0.9gを得た。1H−NMRには、ブチル基に由来する0.99(t)、1.93(m)、2.17(m)、4.51(t)、ppmが確認された。さらにMSESI測定(溶媒:メタノール:水=1:1)においては、1−ブチル−4−メチル−2,3,5,6−ペンタフロロピリジニウムカチオンと考えられる分子量222のカチオンが観察された。以上の測定により目的のヨウ化物塩が合成されたことを確認した。
Example 3
Synthesis of 1-butyl-4-methyl-2,3,5,6- tetrafluoropyridinium iodide iodide In place of 2.0 g of 2,3,4,5,6-pentafluoropyridine, 4-methyl-2, Except using 2.0 g of 3,5,6-tetrafluoropyridine, the same operation as in Example 1 was performed to obtain 0.9 g of a reddish brown liquid. In 1H-NMR, 0.99 (t), 1.93 (m), 2.17 (m), 4.51 (t), and ppm derived from a butyl group were confirmed. Further, in MSESI measurement (solvent: methanol: water = 1: 1), a cation having a molecular weight of 222, which is considered to be 1-butyl-4-methyl-2,3,5,6-pentafluoropyridinium cation, was observed. The above measurements confirmed that the desired iodide salt was synthesized.

実施例4
実施例1で合成した1−ブチル−2,3,4,5,6−ペンタフロロピリジニウム・ヨウ化物に、ヨウ素0.05M、N−メチルベンズイミダゾール0.5Mとなるように添加して電解液を調整し、この電解液を用いて色素増感型太陽電池を製造した。初期、及び240時間後の光電変換効率を測定した。結果を表1に示す。
Example 4
To 1-butyl-2,3,4,5,6-pentafluoropyridinium iodide synthesized in Example 1, iodine was added to 0.05 M and N-methylbenzimidazole to 0.5 M, and an electrolyte solution A dye-sensitized solar cell was manufactured using this electrolytic solution. The photoelectric conversion efficiency at the initial stage and after 240 hours was measured. The results are shown in Table 1.

実施例5
1−ブチル−2,3,4,5,6−ペンタフロロピリジニウム・ヨウ化物に代えて、実施例2で合成した1−ブチル−4−シアノ−2,3,5,6−テトラフロロピリジニウム・ヨウ化物を用いた以外は、実施例4と同様にして初期、及び240時間後の光電変換効率を測定した。結果を表1に示す。
Example 5
Instead of 1-butyl-2,3,4,5,6-pentafluoropyridinium iodide, 1-butyl-4-cyano-2,3,5,6-tetrafluoropyridinium synthesized in Example 2 The photoelectric conversion efficiency at the initial stage and after 240 hours was measured in the same manner as in Example 4 except that iodide was used. The results are shown in Table 1.

実施例6
1−ブチル−2,3,4,5,6−ペンタフロロピリジニウム・ヨウ化物に代えて、実施例3で合成した1−ブチル−4−メチル−2,3,5,6−テトラフロロピリジニウム・ヨウ化物を用いた以外は、実施例4と同様にして初期、及び240時間後の光電変換効率を測定した。結果を表1に示す。
Example 6
Instead of 1-butyl-2,3,4,5,6-pentafluoropyridinium iodide, 1-butyl-4-methyl-2,3,5,6-tetrafluoropyridinium synthesized in Example 3 was used. The photoelectric conversion efficiency at the initial stage and after 240 hours was measured in the same manner as in Example 4 except that iodide was used. The results are shown in Table 1.

比較例1
1−ブチル−2,3,4,5,6−ペンタフロロピリジニウム・ヨウ化物に代えて、1−ブチル−2,6−ジフロロピリジニウム・ヨウ化物を用いた以外は、実施例4と同様にして初期、及び240時間後の光電変換効率を測定した。結果を表1に示す。
Comparative Example 1
Example 1 was repeated except that 1-butyl-2,6-difluoropyridinium iodide was used instead of 1-butyl-2,3,4,5,6-pentafluoropyridinium iodide. The photoelectric conversion efficiency at the initial stage and after 240 hours was measured. The results are shown in Table 1.

比較例2
1−ブチル−2,3,4,5,6−ペンタフロロピリジニウム・ヨウ化物に代えて、1−メチル−3−プロピル−2−フロロイミダゾリウム・ヨウ化物を用いた以外は、実施例4と同様にして初期、及び240時間後の光電変換効率を測定した。結果を表1に示す。
Comparative Example 2
Example 4 was used except that 1-methyl-3-propyl-2-fluoroloyazolium iodide was used instead of 1-butyl-2,3,4,5,6-pentafluoropyridinium iodide. Similarly, the photoelectric conversion efficiency at the initial stage and after 240 hours was measured. The results are shown in Table 1.

比較例3
1−ブチル−2,3,4,5,6−ペンタフロロピリジニウム・ヨウ化物に代えて、ピリジニウム環がフッ素原子により置換されていない化合物である1−ブチル−ピリジニウム・ヨウ化物を用いた以外は、実施例4と同様にして初期、及び240時間後の光電変換効率を測定した。結果を表1に示す。


Comparative Example 3
Instead of 1-butyl-2,3,4,5,6-pentafluoropyridinium iodide, 1-butyl-pyridinium iodide, which is a compound in which the pyridinium ring is not substituted by a fluorine atom, was used. In the same manner as in Example 4 , the photoelectric conversion efficiency at the initial stage and after 240 hours was measured. The results are shown in Table 1.


比較例4
プロピオニトリルにヨウ化リチウム0.3M、1、2−ジメチル−3−プロピルイミダゾリウムヨウ化物0.5M、ヨウ素0.05M、N−メチルベンズイミダゾール0.5Mとなるように添加して電解液を調整した。この電解液を用いて色素増感型太陽電池を製造した。初期、及び240時間後の光電変換効率を測定した。結果を表1に示す。
Comparative Example 4
Electrolyte added by adding 0.3M lithium iodide, 0.5M 1,2-dimethyl-3-propylimidazolium iodide, 0.05M iodine, 0.5M N-methylbenzimidazole to propionitrile Adjusted. A dye-sensitized solar cell was manufactured using this electrolytic solution. The photoelectric conversion efficiency at the initial stage and after 240 hours was measured. The results are shown in Table 1.

Figure 0004421262
Figure 0004421262

表1に示したように、本発明のフッ素化されたピリジニウム塩を用いた色素増感型太陽電池は、光電変換効率、耐久性共に良好であった。他方、ピリジニウム環がフッ素置換されているが、該フッ素原子の置換数が本発明で規定するよりも少ない場合の例である比較例1、従来公知の化合物を用いた場合の例である比較例2、3は耐久性に優れるが、光電変換効率が上記実施例よりも劣っていた。   As shown in Table 1, the dye-sensitized solar cell using the fluorinated pyridinium salt of the present invention had good photoelectric conversion efficiency and durability. On the other hand, although the pyridinium ring is substituted with fluorine, Comparative Example 1 is an example when the number of substitution of fluorine atoms is less than that defined in the present invention, and Comparative Example is an example when using a conventionally known compound Although 2 and 3 were excellent in durability, the photoelectric conversion efficiency was inferior to the said Example.

また、揮発性溶媒を用いた比較例4では、初期の光電変換効率は良好であるが、耐久性に劣るものであった。
Moreover, in the comparative example 4 using a volatile solvent, although the initial photoelectric conversion efficiency was favorable, it was inferior to durability.

Claims (3)

下記一般式
Figure 0004421262
(式中、Rは総炭素数1〜6の置換若しくは非置換のアルキル基であり、R、R、R、R、Rは、フッ素原子、シアノ基又は総炭素数1〜4の置換若しくは非置換のアルキル基であり、かつR、R、R、R、Rのうちの4つ以上はフッ素原子である。)
で示されるオニウム塩。
The following general formula
Figure 0004421262
(In the formula, R 1 is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and R 2 , R 3 , R 4 , R 5 , and R 6 are a fluorine atom, a cyano group, or a total carbon number of 1; a to 4 substituted or unsubstituted alkyl group, and R 2, R 3, R 4 , R 5, 4 or more of the R 6 is a fluorine atom.)
Onium salt indicated by
請求項1に記載のオニウム塩を含む非水電解液。 A nonaqueous electrolytic solution comprising the onium salt according to claim 1. 請求項2記載の電解液を用いることを特徴とする電気化学的デバイス。
An electrochemical device using the electrolytic solution according to claim 2.
JP2003364701A 2003-10-24 2003-10-24 Onium salt Expired - Fee Related JP4421262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364701A JP4421262B2 (en) 2003-10-24 2003-10-24 Onium salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364701A JP4421262B2 (en) 2003-10-24 2003-10-24 Onium salt

Publications (2)

Publication Number Publication Date
JP2005126382A JP2005126382A (en) 2005-05-19
JP4421262B2 true JP4421262B2 (en) 2010-02-24

Family

ID=34643609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364701A Expired - Fee Related JP4421262B2 (en) 2003-10-24 2003-10-24 Onium salt

Country Status (1)

Country Link
JP (1) JP4421262B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561170B2 (en) * 2004-05-06 2010-10-13 株式会社Gsユアサ Non-aqueous electrolyte flame retardancy imparting agent, method of using the same, non-aqueous electrolyte and non-aqueous electrolyte battery
US8034956B2 (en) 2004-11-12 2011-10-11 Kaneka Corporation Ionic liquid and method for producing the same, method for forming oxide film on metal surface, electrolyte capacitor and electrolyte
JP5591153B2 (en) * 2011-03-01 2014-09-17 大阪瓦斯株式会社 Electrolytic solution and photoelectric conversion element

Also Published As

Publication number Publication date
JP2005126382A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
US8674215B2 (en) Photoelectric device
Shi et al. All-solid-state dye-sensitized solar cells with alkyloxy-imidazolium iodide ionic polymer/SiO2 nanocomposite electrolyte and triphenylamine-based organic dyes
EP1819005A1 (en) Ionic liquid electrolyte
JP4377148B2 (en) Material for photoelectric conversion element and photoelectric conversion element
JP5261068B2 (en) Electrolyte composition for photoelectric conversion element and photoelectric conversion element using the same
Wu et al. Quasi-solid state dye-sensitized solar cells-based gel polymer electrolytes with poly (acrylamide)–poly (ethylene glycol) composite
US20090032105A1 (en) Electrolyte Composition for Photoelectric Converter and Photoelectric Converter Using Same
KR101432247B1 (en) Quasi-solid polymer electrolyte for dye-sensitized solar cell, hole transport material contained in same, and dye-sensitized solar cell containing the electrolyte
Lee et al. A new siloxane containing imidazolium iodide as electrolyte for dye-sensitized solar cell
WO2010100930A1 (en) Photoelectric conversion element and method for manufacturing the same, optical sensor and solar battery
He et al. Stable, high-efficiency pyrrolidinium-based electrolyte for solid-state dye-sensitized solar cells
Raju et al. Design, synthesis and DSSC performance of o-fluorine substituted phenylene spacer sensitizers: effect of TiO 2 thickness variation
JP5350851B2 (en) Composition for photoelectric conversion element and photoelectric conversion element using the same
US7910824B2 (en) Dye-sensitized solar cell using ion-bound oligomer complex and method of manufacturing the same
JP4500523B2 (en) Onium salt
Bagheri et al. Pyridine derivatives; new efficient additives in bromide/tribromide electrolyte for dye sensitized solar cells
KR101352904B1 (en) Electrolyte composition for dye­sensitized solar cell having the same
JP4421262B2 (en) Onium salt
TW201024267A (en) Electrolyte composition and dye-sensitized solar cell using the same
KR100969676B1 (en) Novel julolidine-based dye and preparation thereof
KR101158767B1 (en) New imidazolium salts and electrolyte composition for dye-sensitized sollar cells containing the salt
Prasad et al. Above 800 mV open-circuit voltage in solid-state photovoltaic devices using phosphonium cation-based solid ionic conductors
TW201422595A (en) Redox pair, and photoelectric conversion element produced using same
JP4947919B2 (en) Ruthenium complex, dye-sensitized oxide semiconductor electrode and dye-sensitized solar cell using the same
JP5614807B2 (en) Electrolyte composition for photoelectric conversion element and photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4421262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151211

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees