KR20120005255A - Recycling method of wasted air bag fabrics - Google Patents

Recycling method of wasted air bag fabrics Download PDF

Info

Publication number
KR20120005255A
KR20120005255A KR20100065902A KR20100065902A KR20120005255A KR 20120005255 A KR20120005255 A KR 20120005255A KR 20100065902 A KR20100065902 A KR 20100065902A KR 20100065902 A KR20100065902 A KR 20100065902A KR 20120005255 A KR20120005255 A KR 20120005255A
Authority
KR
South Korea
Prior art keywords
silicone rubber
air bag
bubble paper
airbag
nylon
Prior art date
Application number
KR20100065902A
Other languages
Korean (ko)
Other versions
KR101144035B1 (en
Inventor
양준호
이동준
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR20100065902A priority Critical patent/KR101144035B1/en
Publication of KR20120005255A publication Critical patent/KR20120005255A/en
Application granted granted Critical
Publication of KR101144035B1 publication Critical patent/KR101144035B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0203Separating plastics from plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PURPOSE: A recycling method of waste air bag fabrics is provided to effectively remove a coating layer from the waste air bag fabrics using silicon rubber for obtain nylon-66 pellets. CONSTITUTION: A recycling method of waste air bag fabrics comprises the following steps: dipping the waste air bag fabrics coated with silicon rubber into a fluoroboric acid solution for swelling the silicon rubber; dipping the waste air bag fabrics with the swollen silicon rubber into 1,2-propanediol for separating the silicon rubber from the waste air bag fabrics; drying the waste air bag fabrics; and melting and extrude-molding the waste air bag fabrics to obtain nylon-66 pellets.

Description

폐 에어백 기포지의 재활용 방법{Recycling method of Wasted air bag fabrics}Recycling method of Wasted air bag fabrics

본 발명은 폐 에어백 기포지에서 실리콘 고무를 제거함으로써 에어백 기포지를 재활용 하는 방법에 관한 것이다.
The present invention relates to a method for recycling air bag bubble paper by removing silicone rubber from waste air bag bubble paper.

일반적으로 자동차용 에어백은 차량 충돌시 충격으로부터 승객을 보호하기 위해 설치되는 부품으로서, 자동차 사고시 부풀어 올라 승객에게 미치는 충격량을 감소시킨다. 에어백 기포지는 에어백 모듈내에 장착되는 섬유로서 차량사고 등의 긴급한 상황에서 전개되기 때문에, 급격한 팽창에 의한 고압 및 고온을 견디는 내부 품질요건을 만족해야 한다. 이에 따라 에어백 기포지는 기본적으로 고가의 엔지니어링 플라스틱인 나일론66(nylon66, polyamide66)으로 이루어져 있다. 그러나, 나일론66은 플라스틱 소재 중 고가의 소재로 2010년 기준으로 3400원/㎏ 이상의 가격으로 거래되고 있으며, 이러한 고가의 소재를 이용하여 제조되는 에어백 기포지를 재활용하기 위한 연구가 활발히 진행되고 있다.In general, an airbag for a vehicle is a component installed to protect a passenger from an impact in a vehicle crash, and inflates during an automobile accident to reduce the amount of impact on the passenger. Since air bag bubble paper is a fiber mounted in an air bag module, it is developed in an emergency situation such as a vehicle accident, and therefore, an internal quality requirement to withstand high pressure and high temperature caused by rapid expansion should be satisfied. Accordingly, airbag bubble paper is basically made of nylon 66 (nylon66, polyamide66), an expensive engineering plastic. However, nylon 66 is an expensive material among plastic materials and is traded at a price of 3,400 won / kg or more as of 2010, and studies are being actively conducted to recycle airbag bubble papers manufactured using such expensive materials.

자동차 내부에 설치되는 에어백 기포지의 종류는 장착 부위에 따라 통상 운전적 에어백 기포지, 조수석 에어백 기포지, 측면 에어백 기포지, 커튼 에어백 기포지 등 네 가지 종류로 구분된다. 이 중 운전석 에어백 기포지와 커튼 에어백 기포지는 열특성, 기밀성 등의 품질확보를 위해 실리콘 고무로 표면 처리되어 있다. 실리콘 고무로 표면 처리하는 경우, 나일론 원단(PA66) 위에 실리콘 고무를 적층한 다음 160℃에서 약 3분 동안 가열시키면 실리콘 고무의 Si와 나일론 원단의 O가 결합하여 Si-O 경화층이 형성되는데, 이 Si-O의 결합은 나일론 원단(기포지 원단)과 실리콘 고무와의 반응을 높여 표면간의 부착력을 증대시킨다. 그러나, 이는 실리콘 고무와 나일론 원단의 접착 구조를 물리적 및 화학적으로 분리시키는 것을 매우 어렵게 하여 에어백 기포지를 재활용하는데 있어서 걸림돌이 되고 있다.There are four types of airbag bubblers installed inside a vehicle, such as a driving airbag bubble sheet, a passenger seat airbag bubble sheet, a side airbag bubble sheet, and a curtain airbag bubble sheet, depending on the mounting portion. Among these, the driver's seat airbag bubble and curtain airbag bubble paper are surface-treated with silicone rubber to ensure the quality of thermal characteristics and airtightness. In the case of surface treatment with silicone rubber, the silicone rubber is laminated on a nylon fabric (PA66), and then heated at 160 ° C. for about 3 minutes to form Si-O cured layer by combining Si of the silicone rubber and O of the nylon fabric. This Si-O bond increases the adhesion between the nylon fabric (bubble fabric) and the silicone rubber to increase the adhesion between the surfaces. However, this makes it very difficult to physically and chemically separate the adhesive structure of the silicone rubber and the nylon fabric, which is an obstacle in recycling the airbag bubble paper.

도 1은 실리콘 고무로 표면 처리한 기포지(우)와 무처리한 기포지(좌)를 확대한 도면으로서, 실리콘 고무로 코팅되지 않은 나일론 원단은 단일상으로 되어 있으나, 실리콘 고무로 코팅된 나일론 원단은 표면에 실리콘 고무가 불균일하게 분포되어 있으며, 실리콘 고무 드롭플릿(droplet)의 크기는 약 5 ~ 26 ㎛ 정도이다. 상기 실리콘 고무로 코팅된 기포지의 경우 나일론66과 실리콘 고무가 블렌딩되지 않고 상분리된 상태로 존재하는데, 이는 하기 표 1에서 보이는 바와 같이 기계적 물성을 저하시키는 원인이 되고 있다.1 is an enlarged view of a bubble paper (right) and an untreated bubble paper (left) surface-treated with silicone rubber, wherein a nylon fabric not coated with silicone rubber has a single phase, but is coated with silicone rubber The fabric has a non-uniform distribution of silicone rubber on the surface, and the size of the silicone rubber droplet is about 5 to 26 μm. In the case of the bubble coated with the silicone rubber, the nylon 66 and the silicone rubber are present in a phase-separated state without being blended, which causes a decrease in mechanical properties as shown in Table 1 below.

구분division 비중importance 인장강도[kgf/cm2]
※내열노화조건:
140℃,1000hr
Tensile Strength [kg f / cm 2 ]
※ Heat-resistant aging condition:
140 ℃, 1000hr
신율
(%)
Elongation
(%)
굴곡
강도
[kgf/cm2]
curve
burglar
[kg f / cm 2 ]
굴곡
탄성율
[kgf/cm2]
curve
Modulus
[kg f / cm 2 ]
아이조드
충격강도
[kgf·cm/cm]
Izod
Impact strength
[kg f cm / cm]
상온Room temperature -40℃-40 ° C 내열노화
Heat Aging
Before
내열노화
Heat Aging
변화율
(%)
Rate of change
(%)
코팅
사출물
coating
Injection
1.021.02 520520 417417 19.819.8 1010 671671 1941119411 4.34.3 2.72.7
無 코팅
사출물
Zero coating
Injection
1.081.08 857857 744744 13.213.2 1818 10901090 3002230022 6.16.1 4.24.2
기준값Reference value 1.12 ~
1.16
1.12 ~
1.16
750
이상
750
More than
-- 25
이하
25
Below
20
이상
20
More than
1050
이상
1050
More than
24000
이상
24000
More than
4
이상
4
More than
2
이상
2
More than

실리콘 고무 코팅 처리된 기포지를 실리콘 제거 없이 재활용시, 경화된 실리콘 고무가 재료의 1.5%를 차지하는데, 이는 나일론 원단과의 비상용성(non-compatibility)으로 인해 재활용 재료의 물성저하를 초래하게 된다. 또한, 실리콘 고무가 코팅된 기포지를 압출할 경우 불균일한 실리콘 고무와 나일론과의 비상용성으로 인해 수지의 흐름이 저하되어 압출시 수지가 절단되어 이로 인해 연속적인 압출이 어려운 문제가 발생하며, 실리콘 고무의 가교 결합을 파괴하지 않고 사출할 경우 제품 표면에 실리콘 노출로 인해 표면이 고르지 못하여 성형성이 떨어지고 상품 가치가 저하되는 문제도 발생하게 된다.When the silicone rubber coated bubble is recycled without removing silicon, the cured silicone rubber accounts for 1.5% of the material, which results in a decrease in the properties of the recycled material due to non-compatibility with the nylon fabric. In addition, when extruding a bubble coated with silicone rubber, the flow of the resin is reduced due to the incompatibility between the non-uniform silicone rubber and nylon, and the resin is cut during extrusion, which causes a problem of continuous extrusion difficult. If the injection without breaking the cross-linking of the product, the surface is uneven due to the exposure of silicon on the surface of the product is uneven formability and product value is also lowered.

현재 국내의 경우, 에어백 기포지를 제조하는 과정에서 발생하는 기포지 스크랩은 플라스틱 성형업체에서 약 10 ~ 20% 정도 신재와 혼합하여 재활용하고 있으나, 실리콘 고무로 표면 처리된 에어백 기포지는 재활용되지 못하고 전량 소각, 매립 또는 중국에 수출되고 있다. 이러한 소각 또는 매립에 의한 처리방법은 환경 문제를 발생시켜 심각한 문제를 초래할 수 있다. 이에, 기포지를 pH 10 이상의 알칼리 용액에 침지한 후 탈수하여 코팅층을 박리하는 기술이 제안된 바 있으나 나일론 원단 표면에서 화학변화가 발생하는 문제가 있었으며, 대한민국 공개특허 제 10-2009-0130948 호에서는 실리콘 고무가 코팅된 에어백 기포지에 마이크로파를 조사한 후, 상용화제를 첨가하고 용융블렌드시켜 압출하는 에어백 기포지의 재활용 방법을 제안하고 있으나, 실리콘 고무를 근본적으로 제거하지 못하여 압출성형된 소재가 나일론66 소재와 동등 수준의 기계적 물성을 갖기 어려운 문제가 있었다.
Currently, in Korea, bubble scrap generated in the process of manufacturing air bag bubble paper is recycled by mixing with 10 ~ 20% new material by plastic molding company, but air bag bubble paper surface-treated with silicone rubber is not recycled and incinerated all , Landfill or are exported to China. Such treatment by incineration or landfill may cause environmental problems and cause serious problems. Thus, although a technique of immersing the bubble paper in an alkaline solution of pH 10 or higher and then dehydrating the coating layer has been proposed, there has been a problem that a chemical change occurs on the surface of the nylon fabric, and in Korea Patent Publication No. 10-2009-0130948 Although the airbag bubble paper coated with the rubber is coated with microwaves, a method of recycling the airbag bubble paper by adding a compatibilizer and melt blending is proposed. However, since the silicone rubber is not fundamentally removed, the extruded material is made of nylon 66 material. There was a problem that it is difficult to have equivalent mechanical properties.

이에 본 발명자들은 상기와 같은 문제점을 해결하고자 노력한 결과, 실리콘 고무가 표면에 코팅된 폐 에어백 기포지를 붕불산(fluoroboric acid, HBF4) 수용액에 침지시킨 다음 1,2-프로판디올 용액에 침지시키면 표면의 실리콘 고무를 효과적으로 제거할 수 있음을 알게되어 본 발명을 완성하게 되었다. 따라서, 본 발명은 실리콘 고무가 코팅된 폐 에어백 기포지에서 실리콘 고무를 제거함으로써 에어백 기포지를 재활용 하는 방법을 제공하는데 그 목적이 있다
Therefore, the present inventors have tried to solve the above problems, as a result of immersing the waste air bag bubble paper coated on the surface of silicone rubber in aqueous solution of fluoroboric acid (fluoroboric acid, HBF 4 ) and then immersed in 1,2-propanediol solution surface It was found that the silicone rubber can be effectively removed to complete the present invention. Accordingly, an object of the present invention is to provide a method of recycling an air bag bubble paper by removing the silicone rubber from the waste air bag bubble paper coated with the silicon rubber.

본 발명은 실리콘 고무로 코팅된 에어백 기포지를 붕불산 수용액에 침지시켜 실리콘 고무를 팽윤시키는 단계; 상기 실리콘 고무를 녹인 에어백 기포지를 1,2-프로판디올에 침지시켜 에어백 기포지에서 실리콘 고무를 분리시키는 단계; 및 상기 실리콘 고무가 분리된 에어백 기포지를 건조 후 용융 및 압출성형하여 펠릿화된 나일론66을 제조하는 단계;를 포함하는 폐 에어백 기포지의 재활용 방법을 그 특징으로 한다.
The present invention comprises the steps of swelling the silicone rubber by immersing the air bag bubble paper coated with silicone rubber in an aqueous solution of boric acid; Dipping the silicon rubber from the airbag bubble paper by dipping the airbag bubble paper in which the silicone rubber is dissolved in 1,2-propanediol; And drying and melting and extruding the airbag bubble paper from which the silicone rubber is separated to produce pelletized nylon 66.

본 발명에 따른 폐 에어백 기포지의 재활용 방법에 의하면 실리콘 고무로 표면 처리된 에어백 기포지의 코팅을 간단하고 효과적인 방법으로 제거하여 물성저하 없는 고부가가치의 나일론66 펠릿을 제조할 수 있으며, 제조된 나일론66 펠릿은 다시 에어백 기포지는 물론 의류, 로프, 타이어코드 등으로 유용하게 적용할 수 있다.
According to the recycling method of the waste airbag bubble paper according to the present invention, by removing the coating of the airbag bubble paper surface-treated with silicone rubber in a simple and effective manner, it is possible to produce a high value-added nylon 66 pellets without deterioration of physical properties, and manufactured nylon The 66 pellets can again be usefully applied to clothing, ropes and tire cords as well as airbag foam.

도 1은 실리콘 고무로 표면 처리한 기포지(우)와 무처리한 기포지(좌)를 확대 도시한 이미지이다.
도 2는 실리콘 고무로 표면 처리된 폐 에어백 기포지의 재활용 과정을 도식화 것이다.
1 is an enlarged image of a bubble paper (right) surface-treated with silicone rubber and an untreated bubble paper (left).
2 is a schematic of the recycling process of waste airbag bubble paper surface treated with silicone rubber.

이하에서는 본 발명을 더욱 자세하게 설명하겠다.Hereinafter, the present invention will be described in more detail.

본 발명은 실리콘 고무로 표면 처리된 폐 에어백 기포지를 붕불산 수용액에 침지시켜 실리콘 고무를 팽윤시킨 후, 에어백 기포지를 1,2-프로판디올에 침지시켜 에어백 기포지에서 실리콘 고무를 분리시키고, 이후 에어백 기포지를 용융 및 압출성형하여 펠릿화된 나일론66을 제조하는 하는, 에어백 기포지의 재활용 방법에 관한 것이다.The present invention is to swell the silicone rubber by immersing the waste air bag bubble paper surface-treated with silicone rubber in an aqueous solution of boric acid, and then immersed the air bag bubble in 1,2-propanediol to separate the silicone rubber from the air bag bubble paper, and then the air bag The present invention relates to a method for recycling an airbag bubble paper, wherein the bubble paper is melted and extruded to produce pelletized nylon 66.

상기 실리콘 고무로 코팅된 에어백 기포지를 붕불산 수용액에 침지시켜 실리콘 고무를 팽윤시키는 단계를 설명하겠다. 일반적으로 실리콘 고무는 강산 또는 강염기하에서 분해되는 경향이 있지만, 붕불산의 경우 실리콘 고무와 유사한 분자구조를 가지기 때문에 실리콘 고무의 특성을 최대한 보존하면서 실리콘 고무를 분해시킬 수 있는 장점이 있다. 이때 실리콘 고무는 붕불산의 영향으로 팽윤된다. 붕불산 수용액은 붕불산과 물의 혼합 비율이 10 : 90 ~ 30 : 70 의 중량비인 것이 바람직하다. 붕불산의 함량이 너무 적으면 실리콘 고무를 충분히 팽윤시키기 어려우며, 반대로 너무 많이 사용하면 재활용된 나일론66 펠릿에서 심한 냄새가 발생하는 문제가 있을 수 있다.The air bag bubble paper coated with the silicone rubber is immersed in an aqueous boric acid solution to swell the silicone rubber. In general, the silicone rubber tends to decompose under a strong acid or strong base, but boric acid has a molecular structure similar to that of the silicone rubber, and thus has the advantage of decomposing the silicone rubber while preserving the properties of the silicone rubber to the maximum. At this time, the silicone rubber is swollen under the influence of boric acid. In the aqueous boric acid solution, the mixing ratio of boric acid and water is preferably in a weight ratio of 10:90 to 30:70. If the content of boric acid is too small, it is difficult to swell the silicone rubber sufficiently, on the contrary, too much use may cause a problem of severe odor in recycled nylon 66 pellets.

붕불산 수용액에 의해 에어백 기포지에서 실리콘 고무를 팽윤시킨 다음, 에어백 기포지를 1,2-프로판디올에 침지시켜 에어백 기포지에서 실리콘 고무를 분리시키는 단계를 수행한다. 1,2-프로판디올은 화장품의 습윤제, 가습제로서 사용되는 물질로 실리콘 고무와 나일론 고분자간에 가장 우수한 계면활성 작용을 하는 용제이다. 따라서 팽윤된 실리콘 고무와 나일론 기재간의 계면 장력을 현저히 감소시키게 되는데, 이때 실리콘 고무는 때가 벗겨진 것처럼 피막이 떨어지게 되어 나일론 기재로부터 분리되게 된다. 필요에 따라서는 1,2-프로판디올에 침지시키기 전에 붕불산 수용액에 침지된 에어백 기포지를 물로 세척하는 과정을 거칠 수 있다.The silicone rubber is swelled in the airbag bubble paper by an aqueous solution of boric acid, and then the airbag 에어 bubble paper is immersed in # 1,2-propanediol to separate the silicone rubber from the airbag bubble paper. 1,2-propanediol is a material that is used as a wetting agent and a humidifier in cosmetics and is a solvent that has the best surfactant activity between silicone rubber and nylon polymer. Therefore, the interfacial tension between the swollen silicone rubber and the nylon substrate is significantly reduced, wherein the silicone rubber is separated from the nylon substrate by peeling off the coating as if it was peeled off. If necessary, the airbag bubble paper immersed in an aqueous solution of boric acid may be washed with water before being immersed in 1,2-propanediol.

1,2-프로판디올에 의해 에어백 기포지에서 실리콘 고무가 분리되면 건조 후 용융 및 압출성형하여 펠릿화된 나일론66을 제조하게 된다. 필요에 따라서 건조하기 전에 1,2-프로판디올에 침지된 에어백 기포지를 물로 세척하는 과정을 거칠 수 있다. 건조된 에어백 기포지는 이축압출기에 투입하여 280 ~ 300℃로 용융시키고 스크류 회전속도 250 ~ 300 rpm으로 압출성형함으로써 펠릿화된 나일론66 소재를 제조한다. 이때, 용융온도가 280℃ 미만이면 나일론66의 용융점도가 낮아 압출성형시 전단력에 의한 마찰열 발생으로 수지 조성물의 분해가 발생할 수 있으며, 300℃를 초과할 경우에는 나일론66의 열분해가 발생하여 기계적 물성을 비롯한 제반 물성이 떨어지는 문제가 있을 수 있다. 또한 스크류 회전속도가 너무 낮으면 압출기 배출구에서 스트랜드(strand)가 형성되지 않는 문제가 있을 수 있으며, 너무 크면 나일론 분자가 파괴되어 분자량이 저하되는 문제가 있을 수 있다.When the silicone rubber is separated from the air bag bubble by 1,2-propanediol, it is dried, melted and extruded to produce pelletized nylon 66. If necessary, the airbag bubble paper immersed in 1,2-propanediol may be washed with water before drying. The dried airbag bubble paper is introduced into a twin screw extruder to melt at 280 to 300 ° C. and extruded at a screw rotational speed of 250 to 300 rpm to produce pelletized nylon 66 material. At this time, if the melting temperature is less than 280 ℃, the melt viscosity of the nylon 66 is low, it may cause the decomposition of the resin composition by the frictional heat generated by the shear force during extrusion molding, and if it exceeds 300 ℃ thermal decomposition of nylon 66 occurs to mechanical properties There may be problems such as falling physical properties. In addition, if the screw rotation speed is too low there may be a problem that the strand (strand) is not formed in the extruder outlet, if too large may have a problem that the molecular weight is lowered by the nylon molecules are destroyed.

본 발명의 폐 에어백 기포지 재활용 방법에 의하면, 에어백 기포지에 코팅된 실리콘 고무를 간단하면서도 효과적인 방법으로 제거할 수 있으며, 실리콘 고무가 제거된 에어백 기포지로부터 펠릿화된 나일론66으로 제조할 수 있어 폐 자원에서 고부가가치의 소재를 회수할 수 효과를 거둘 수 있다.
According to the waste airbag bubble paper recycling method of the present invention, the silicone rubber coated on the airbag bubble paper can be removed in a simple and effective manner, and can be manufactured from pelletized nylon 66 from the airbag bubble paper from which the silicone rubber has been removed. Can recover high value-added material from resources.

이하 본 발명을 실시예에 의거하여 더욱 상세히 설명하겠는바, 본 발명이 다음 실시에에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples.

[실시예][Example]

실시예 1 ~ 3Examples 1 to 3

실리콘 고무로 표면 처리된 에어백 기포지를 각각 농도가 10 중량%(실시예 1), 20 중량%(실시예 2), 30 중량%(실시예 3)인 붕불산 수용액에 침지시켰다. 이후 에어백 기포지를 1,2-프로판디올에 침지시켜 에어백 기포지에서 실리콘 고무를 분리시킨 후, 실리콘 고무가 분리된 에어백 기포지를 길이와 직경의 비(L/D)가 40, 직경이 60 mm인 이축압출기의 1차 투입구에 투입하고, 280℃로 용융시킨 후, 스크류 회전속도 250 rpm으로 압출하여 펠릿화된 재활용 나일론66 소재를 회수하였다.
The airbag bubble paper surface-treated with silicone rubber was immersed in an aqueous solution of boric acid having a concentration of 10% by weight (Example 1), 20% by weight (Example 2) and 30% by weight (Example 3), respectively. Thereafter, the air bag bubble paper was immersed in 1,2-propanediol to separate the silicone rubber from the air bag bubble paper, and the air bag bubble paper from which the silicon rubber was separated has a ratio of length and diameter (L / D) of 40 and a diameter of 60 mm. Into the primary inlet of the twin-screw extruder, melted at 280 ℃, extruded at a screw rotation speed of 250 rpm to recover the pelletized recycled nylon 66 material.

비교예 1 ~ 2Comparative Examples 1 and 2

실시예 1 ~ 3 에서 얻어진 재활용 나일론66와의 물성 비교를 위하여 실리콘 코팅으로 표면 처리된 에어백 기포지(비교예 1)와 실리콘 코팅으로 표면 처리되지 않은 에어백 기포지(비교예 2)를 붕불산 수용액 및 1,2-프로판디올에 침지시키지 않고 곧바로 이축압출기의 1차 투입구에 투입하고, 용융온도 280℃, 스크류 회전속도 250 rpm으로 압출하여 펠릿화된 재활용 나일론66 소재를 회수하였다.
To compare the physical properties with the recycled nylon 66 obtained in Examples 1 to 3, the air bag bubble paper (Comparative Example 1) surface-treated with a silicone coating and the air bag bubble paper (Comparative Example 2) not surface-treated with a silicone coating were treated with an aqueous solution of boric acid. Without being immersed in 1,2-propanediol, it was immediately put into the first inlet of the twin screw extruder, and the pelletized recycled nylon 66 material was recovered by extrusion at a melting temperature of 280 ° C. and a screw rotation speed of 250 rpm.

실험예 : 물성측정실험 Experimental Example : Property Measurement Experiment

실시예 1 ~ 3 및 비교예 1 ~ 2에서 제조한 펠럿화된 재활용 나일론66 소재를 실린더 온도 280℃, 금형 온도 80℃로 고정한 후, 시편을 사출성형하였고, 성형된 시편 각각의 물성을 아래와 같은 방법으로 측정하였으며, 그 결과는 하기 표 2에 나타내었다.After fixing the pelletized recycled nylon 66 material prepared in Examples 1 to 3 and Comparative Examples 1 to 2 at a cylinder temperature of 280 ° C and a mold temperature of 80 ° C, the specimens were injection molded, and the properties of each of the molded specimens were as follows. Measured by the method, the results are shown in Table 2 below.

- 비중: ASTM D792 (상온)Specific gravity: ASTM D792 (room temperature)

- 열변형온도: ASTM D648 (하중: 4.6 kgf/㎠)Heat Deflection Temperature: ASTM D648 (Load: 4.6 kgf / ㎠)

- 인장강도 및 신율: ASTM D638 (cross head: 50mm/min)Tensile strength and elongation: ASTM D638 (cross head: 50mm / min)

- 굴곡강도 및 탄성율: ASTM D790 (cross head: 50mm/min)Flexural Strength and Elastic Modulus: ASTM D790 (cross head: 50mm / min)

- 충격강도: ASTM D256 [1/8인치, 노치 아이조드 (상온)]Impact Strength: ASTM D256 [1/8 inch, Notched Izod (room temperature)]

구분division 비중importance 열변형온도
(℃)
Heat deflection temperature
(℃)
인장강도
(kgf/cm2)
The tensile strength
(kg f / cm 2 )
인장신율
(%)
Tensile elongation
(%)
굴곡강도
(kgf/cm2)
Flexural strength
(kg f / cm 2 )
굴곡
탄성율 (kgf/cm2)
curve
Modulus of elasticity (kg f / cm 2 )
충격강도
(상온)
(kgf·cm/cm)
Impact strength
(Room temperature)
(kg f · cm / cm)


room
city
Yes
1One 1.081.08 215215 706706 1818 901901 27,64127,641 5.85.8
22 1.081.08 222222 806806 2020 966966 29,53429,534 6.06.0 33 1.081.08 223223 813813 2222 987987 29,71029,710 6.06.0

ratio
School
Yes
1One 1.021.02 203203 520520 1010 671671 19,41119,411 4.34.3
22 1.081.08 220220 857857 1818 1,0901,090 30,02230,022 6.16.1

상기 표 2에서 보이듯이, 본 발명의 폐 에어백 기포지 재활용 방법에 의해 실시예 1 ~ 3에서 제조된 나일론66 소재로 성형된 시편은 인장강도, 굴곡강도, 굴곡탄성율, 충격강도 등의 기계적 물성이 비교예 2의 실리콘 고무로 코팅하지 않은 에어백 기포지로 성형한 시편과 동등한 수준을 보임을 알 수 있다. 이는 폐 에어백 기포지로부터 실리콘 고무를 효과적으로 제거하였음을 나타내는 결과이다. 실리콘 고무로 코팅된 에어백 기포지로 제조한 비교예 1의 나일론66 소재는 압출성형시 수지가 절단되어 연속적인 압출이 되지 아니하였으며, 사출성형시 시편의 기계적 물성이 좋지 못하였으며 또한 시편의 표면도 매끄럽지 않았다.As shown in Table 2, the specimens formed of nylon 66 material prepared in Examples 1 to 3 by the waste airbag bubble paper recycling method of the present invention has mechanical properties such as tensile strength, flexural strength, flexural modulus, impact strength, and the like. It can be seen that the level is equivalent to the specimen molded from airbag bubble paper not coated with the silicone rubber of Comparative Example 2. This is a result indicating that the silicone rubber was effectively removed from the waste airbag bubble paper. The nylon 66 material of Comparative Example 1 prepared by air bag bubble paper coated with silicone rubber was not extruded continuously because the resin was cut during extrusion molding, and the mechanical properties of the specimen during injection molding were not good and the surface of the specimen was also smooth. Did.

결국, 본 발명의 폐 에어백 기포지로부터 실리콘 고무를 제거함으로써 기포지를 재활용 하는 방법에 의하면, 실리콘 고무를 간편한 공정만으로도 효과적으로 제거할 수 있으므로, 소각 또는 매립되던 폐 에어백 기포지로부터 고부가가치의 나일론66 소재를 회수함과 동시에 환경오염 문제에도 대처할 수 있음을 확인할 수 있었다.As a result, according to the method of recycling the bubble paper by removing the silicone rubber from the waste air bag bubble paper of the present invention, since the silicone rubber can be effectively removed by a simple process, the high value-added nylon 66 material from the waste air bag bubble paper that has been incinerated or embedded At the same time, it was found that they can cope with environmental pollution.

Claims (3)

실리콘 고무로 코팅된 에어백 기포지를 붕불산 수용액에 침지시켜 실리콘 고무를 팽윤시키는 단계;
상기 실리콘 고무를 팽윤시킨 에어백 기포지를 1,2-프로판디올에 침지시켜 에어백 기포지에서 실리콘 고무를 분리시키는 단계; 및
상기 실리콘 고무가 분리된 에어백 기포지를 건조 후 용융 및 압출성형하여 펠릿화된 나일론66을 제조하는 단계;
를 포함하는 폐 에어백 기포지의 재활용 방법.
Swelling the silicone rubber by immersing the airbag bubbler coated with silicone rubber in an aqueous solution of boric acid;
Dipping the silicon rubber from the airbag bubble paper by dipping the airbag bubble paper swelling the silicone rubber in 1,2-propanediol; And
Manufacturing the pelletized nylon 66 by drying and melting and extruding the airbag bubble paper in which the silicone rubber is separated;
Recycling method of waste airbag bubble paper comprising a.
제 1 항에 있어서, 상기 붕불산 수용액은 붕불산과 물의 혼합 비율이 10 : 90 ~ 30 : 70 의 중량비인 것을 특징으로 하는 에어백 기포지의 재활용 방법.
The method of claim 1, wherein the aqueous solution of boric acid has a mixing ratio of boric acid and water in a weight ratio of 10:90 to 30:70.
제 1 항에 있어서, 상기 용융 및 압출성형은 에어백 기포지를 280 ~ 300℃로 용융시켜 수행하는 것을 특징으로 하는 에어백 기포지의 재활용 방법.The method of claim 1, wherein the melting and extrusion molding is carried out by melting the airbag bubble paper at 280 ~ 300 ℃.
KR20100065902A 2010-07-08 2010-07-08 Recycling method of Wasted air bag fabrics KR101144035B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20100065902A KR101144035B1 (en) 2010-07-08 2010-07-08 Recycling method of Wasted air bag fabrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100065902A KR101144035B1 (en) 2010-07-08 2010-07-08 Recycling method of Wasted air bag fabrics

Publications (2)

Publication Number Publication Date
KR20120005255A true KR20120005255A (en) 2012-01-16
KR101144035B1 KR101144035B1 (en) 2012-05-23

Family

ID=45611479

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20100065902A KR101144035B1 (en) 2010-07-08 2010-07-08 Recycling method of Wasted air bag fabrics

Country Status (1)

Country Link
KR (1) KR101144035B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102611580B1 (en) 2022-10-13 2023-12-07 한국화학연구원 A recycling method of used airbag fabric

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255809A (en) * 1996-03-25 1997-09-30 Canon Inc Decomposition liquid for silicone rubber and reclamation of metallic core of silicone rubber part
JP3879348B2 (en) 1999-12-24 2007-02-14 タカタ株式会社 Method for removing silicon from airbag scrap fabric
JP5264279B2 (en) 2008-05-08 2013-08-14 ユニチカ株式会社 Method for removing silicone from airbag base fabric
KR20090130948A (en) * 2008-06-17 2009-12-28 현대자동차주식회사 A recycling method of air bag fabrics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102611580B1 (en) 2022-10-13 2023-12-07 한국화학연구원 A recycling method of used airbag fabric

Also Published As

Publication number Publication date
KR101144035B1 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
MXPA06008244A (en) A composition having improved adherence with an addition-curable material and composite article incorporating the composition.
EP3211025A1 (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP5510092B2 (en) Method for producing modified cellulose fiber dispersion and method for producing cellulose composite material
US3972973A (en) Method of making rubber and polyester structures
JPS63295675A (en) Abrasion resistant coating material
JP2010143992A (en) Fiber composite material and method for producing the same
CN113652029A (en) Micro-foaming polypropylene composition and preparation method and application thereof
CN107474522B (en) Preparation method of thermoplastic polyurethane elastomer film
Tungjitpornkull et al. Mechanical characterization of E-chopped strand glass fiber reinforced wood/PVC composites
JP2932567B2 (en) Blow blow molding
KR101144035B1 (en) Recycling method of Wasted air bag fabrics
JP2001131331A (en) Reclaiming process for crosslinked polyethylene resin
KR20210154432A (en) Air bag fabric recycling
JP2011038193A (en) Cellulose fiber and fiber composite material
JP2011148939A (en) Fiber composite material
JP3042008B2 (en) Blow blow molding
Dahham et al. Sawdust Short Fiber Reinforced Epoxidized Natural Rubber: Insight on Its Mechanical, Physical, and Thermal Aspects
KR101602814B1 (en) Polyamide 66 resin composition reinforced with glass fiber for high tensile strength and manufacturing method thereof
WO2023140043A1 (en) Polyamide resin composition, molded article obtained by molding same, and methods for producing those
EP0788875B1 (en) Composite member and process for producing the same
EP3562874B1 (en) Method of recycling rubber
US20020171162A1 (en) Strong durable low cost composite materials
EP3775023B1 (en) A polyamide composition, manufacturing method, an application and article thereof
JP2007119609A (en) Polyalkylene carbonate resin composition and molded form thereof
KR101511877B1 (en) Recycling polyamide airbags

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180427

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 8