KR20110139011A - Single nucleotide polymorphism (snp) markers associated with intramuscular fat contents trait in pig and their methods for evaluation - Google Patents
Single nucleotide polymorphism (snp) markers associated with intramuscular fat contents trait in pig and their methods for evaluation Download PDFInfo
- Publication number
- KR20110139011A KR20110139011A KR1020100059238A KR20100059238A KR20110139011A KR 20110139011 A KR20110139011 A KR 20110139011A KR 1020100059238 A KR1020100059238 A KR 1020100059238A KR 20100059238 A KR20100059238 A KR 20100059238A KR 20110139011 A KR20110139011 A KR 20110139011A
- Authority
- KR
- South Korea
- Prior art keywords
- biomarker
- pig
- seq
- artificial
- dna
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
본 발명은 새로운 돼지 근내지방 함량 진단용 바이오마커 (biomarker) 및 이의 선별방법에 관한 것이다.
The present invention relates to a new biomarker for diagnosing intramuscular fat content of pigs and a method of selecting the same.
가축 육종은 능력이 우수한 개체를 선발하고 선발된 가축을 이용하여 후대를 생산하고, 다시 이들 후대의 능력을 검정하여 우수한 가축을 선발하는 일련의 과정을 반복하여 수행하고 있다. 따라서 관련된 연속적 과정을 수행함에 있어 다양한 육종기술이 정해진 전략(breeding scheme)에 따라 투입되며 진행되는데 기존의 경우 통계적 방법에 따라 가축이 사육과정에서 발현되는 표현형 정보를 바탕으로 육종가치를 추정하고 이를 근거로 선발하는 것을 기본으로 설정되어 왔다. 따라서, 사람들에게 보다 효용성이 높은 가축을 얻기 위해서는 다음 세대의 가축을 생산하는데 쓰일 우수한 종축(breeding stock)을 잘 선발(selection)하여야 한다. 선발을 통한 개량 대상으로 하는 가축의 형질(산유량, 체중 등)은 대부분 많은 수의 유전자에 의해 영향을 받는 양적 형질(quantitative trait)이다. 양적 형질은 일반적으로 많은 수의 유전자에 의하여 영향을 받을 뿐만 아니라 여러 가지 환경요인에 의해서도 상당히 영향을 받는다. 따라서 양적 형질에 있어서는 이에 영향하는 개별적인 유전자 작용이나 특성과 같은 것을 구명하는 것이 질적 형질(qualitative trait)보다 극히 곤란하다. 때문에, 양적 형질의 유전을 연구하는데 통계적 방법이 강력한 수단으로 사용되고 있으며 양적 형질에 영향하는 유전적 요인을 여러 환경 요인으로부터 분리하여 효과적으로 추정하고자 하는 연구가 여러 학자들에 의해 수행되어 왔다. 가축 개량을 위한 분자 유전학적 기법의 이용은 DNA 수준에서의 개체의 유전적 소질에 대한 연구를 가능토록 할 수 있을 것이며, 개량 대상형질에 관련된 유전자, 즉 주유전자(major gene) 혹은 양적 형질 유전자좌위(QTL: Quantitative Trait Loci)에 대한 직접적인 선발 혹은 양적 형질 유전자좌위(QTL)에 연관되어 있는 유전적 표지(genetic marker)에 대한 선발을 통해 유전적 소질을 실현시킬 수 있는 도구를 제공할 수 있다. 표현형 정보에만 의존하는 것이 아니라 분자 유전학적인 정보의 추가적인 이용을 통해 유전적 개량을 보다 가속화할 수 있을 것이다.Livestock breeding has repeatedly performed a series of processes for selecting high-quality individuals and producing later generations using selected livestocks, and then testing these later generations for high-quality livestock selection. Therefore, in carrying out the related continuous process, various breeding techniques are put in place according to a predetermined strategy (breeding scheme). In the past, statistical methods are used to estimate breeding value based on phenotypic information expressed in the breeding process. The selection has been set as the default. Thus, in order to obtain more useful livestock for people, it is necessary to select good breeding stocks for the production of the next generation of livestock. Animal traits (eg, milk yield, weight, etc.) for improvement through selection are quantitative traits that are mostly affected by a large number of genes. Quantitative traits are generally not only affected by a large number of genes, but also by a number of environmental factors. Therefore, in quantitative traits, it is much more difficult than the qualitative trait to follow up the individual gene action or characteristics that influence it. Therefore, statistical methods are used as a powerful means to study the traits of quantitative traits, and studies have been conducted by various scholars to effectively estimate the genetic factors affecting quantitative traits from various environmental factors. The use of molecular genetic techniques to improve livestock could enable the study of the genetic predisposition of individuals at the DNA level, and the genes involved in the target trait, namely major genes or quantitative trait loci. Direct selection of QTL (Quanttitative Trait Loci) or selection of genetic markers associated with quantitative trait loci (QTL) can provide a tool to realize genetic predisposition. Rather than relying solely on phenotypic information, additional use of molecular genetic information could further accelerate genetic improvement.
DNA 수준에서의 정보는 생산자뿐만 아니라 육종가들에게도 특정한 주요 변이체를 선발하는데 중요한 정보를 제공해준다. 이러한 DNA 정보는 표지인자 도움 선발 (marker-assisted selection; MAS)이라고 하는 양적 형질 (quantitative trait)의 선발에 활용될 수 있다. 또한, 분자표지인자는 종축 등의 선발 정확도를 높이고 성별에 제한적인 형질의 선별할 수 있게 하며, 육질과 같은 도체 형질에 대해서 매우 유용하게 활용될 수 있다. 현재까지 몇몇 유전자 또는 표지인자가 실제로 양돈 산업에 활용되고 있다.
Information at the DNA level provides important information not only for producers, but also for breeders, in selecting specific key variants. This DNA information can be used for selection of quantitative traits called marker-assisted selection (MAS). In addition, the molecular markers enhance the selection accuracy of breeders and allow selection of gender-restricted traits, and can be very useful for conductor traits such as meat quality. To date, several genes or markers are actually used in the pig industry.
(Uppsala, INRA, Kiel)Non-exclusive use
(Uppsala, INRA, Kiel)
지금까지는 종축을 선발하기 위한 기존 방법으로서 단지 표현형 값에 근거하는 선발 지수식을 사용하였다. 그러나, 최근 분자 표지인자를 활용한 변이체의 선발 또는 도태가 단일 유전자에 의하여 조절되는 형질뿐만 아니라 양적 유전좌위 (quantitative trait loci, QTL)에 의해 조절되는 형질에서도 표지인자 도움 선발 (MAS)이 효과적으로 활용될 수 있다는 것이 시뮬레이션을 통해 확인되어 보고되고 있다. 또한 최근에는 게놈 프로젝트가 끝난 소와 닭에서 종축 선발 시 검정 성적에 유전체 정보를 포함하여 지수를 산출하여 이용하고 있다. 이와 같은 세계적인 추세에 따라 2009년부터는 미국과 캐나다에서 젖소의 육종가를 발표할 때 유전체 유전평가 (GBLUP)를 공식 기록으로 채택하는 등 종축 선발 시 검정 성적에 유전체 정보를 포함하여 지수를 산출하여 이용하고 있다.Until now, a selection index based on phenotypic values has been used as a conventional method for selecting longitudinal axes. However, in recent years, marker help selection (MAS) is effectively used not only for traits controlled by single genes but also for traits controlled by quantitative trait loci (QTL). It can be confirmed and reported through simulation. Recently, the genome project has been used to calculate the index including genomic information in the test results when selecting breeders in cattle and chickens. In line with this global trend, from 2009 onwards, when the United States and Canada announce cow breeders, the genome genetic evaluation (GBLUP) is adopted as an official record. have.
구체적으로, 2010년에는 돼지 유전체 해독이 완료되어 고밀도 유전체 정보가 공개되었다. 이외에도 소와 돼지 등 주요 가축에 대한 고밀도 SNP 칩 (chip)이 제작된 바 있으며, 전체 게놈 관련 연구도 경쟁적으로 수행되고 있다. 실제로 다양한 종돈 회사들에서 HAL, ESR, PRLR, KIT, RBP4, MCIR, MC4R, RN, AFABP, HFABP 및 IGF2 등과 같은 유전자들의 단일염기 다형성 (single nucleotide polymorphism; SNPs)이 개발되어 상업화된 분자표지인자로서 종돈을 개량하는 데 활용되고 있다.Specifically, in 2010, swine genome detoxification was completed and high density genomic information was disclosed. In addition, high-density SNP chips have been produced for major livestock such as cattle and pigs. Indeed, various sow companies have developed single nucleotide polymorphisms (SNPs) of genes such as HAL, ESR, PRLR, KIT, RBP4, MCIR, MC4R, RN, AFABP, HFABP and IGF2. It is used to improve sows.
이에 본 발명자들은 돼지 종돈 선발 시 표지인자 도움 선발 (marker-assisted selection, MAS)에 활용할 수 있는 돼지 근내지방 함량 진단용 바이오마커를 개발하기 위하여 노력을 계속한 결과, 돼지 60K SNP chip을 이용하여 돼지 근내지방 함량과 연관된 단일염기 다형성 (SNPs)을 결정하여 양적 형질 유전좌위 (QTL)와의 연관성을 검정한 다음 이 결과를 기초로 하여 돼지 근내지방 함량의 형질을 분석하는 과정으로 두께를 판정할 수 있는 단일염기 다형성 (SNP) 바이오마커들을 선발하여 제공함으로써 본 발명을 성공적으로 완성하였다.
Accordingly, the present inventors have made efforts to develop a biomarker for diagnosing pig intramuscular fat content that can be used for marker-assisted selection (MAS) when selecting pig breeding pigs. Single base polymorphisms (SNPs) associated with fat content were determined to test their association with quantitative trait loci (QTL), and based on these results, a single quantitative thickness could be determined by analyzing traits of intramuscular fat content in pigs. The present invention has been successfully completed by selecting and providing base polymorphic (SNP) biomarkers.
본 발명의 목적은 돼지 근내지방 함량 진단용 바이오마커 (biomarker)를 제공하기 위한 것이다.It is an object of the present invention to provide a biomarker for diagnosing pig intramuscular fat content.
본 발명의 다른 목적은 상기 바이오마커를 선별하는 방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for selecting the biomarker.
본 발명의 또 다른 목적은 상기 바이오마커를 이용하여 종돈을 선별하는 방법을 제공하기 위한 것이다.Still another object of the present invention is to provide a method for selecting sows using the biomarker.
본 발명의 또 다른 목적은 상기 바이오마커를 포함하는 돼지 근내지방 함량을 판정하기 위한 진단 키트를 제공하기 위한 것이다.
Another object of the present invention is to provide a diagnostic kit for determining the pig muscle fat content comprising the biomarker.
상기 목적을 달성하기 위하여, 본 발명에서는 서열번호 1 내지 서열번호 30의 염기 서열 중 하나 이상을 포함하는 돼지 근내지방 함량을 판정하기 위한 단일염기 다형성 바이오마커를 제공한다.In order to achieve the above object, the present invention provides a monobasic polymorphic biomarker for determining the pig muscle fat content comprising one or more of the nucleotide sequence of SEQ ID NO: 1 to SEQ ID NO: 30.
또한, 본 발명은 (1) 돼지 근내지방 함량과 연관된 단일염기 다형성 (SNPs)을 결정하는 단계; (2) 양적 형질 유전좌위 (QTL)와의 연관성을 검정하는 단계; 및 (3) 이 결과를 기초로 하여 돼지 근내지방 함량 형질을 분석하는 단계를 포함하는 상기 바이오마커의 선발 방법을 제공한다.In addition, the present invention comprises the steps of (1) determining the monobasic polymorphisms (SNPs) associated with the pig muscle fat content; (2) assaying for association with quantitative trait locus (QTL); And (3) analyzing the pig intramuscular fat content trait based on the results.
또한, 본 발명은 상기 단일염기 다형성 바이오마커를 사용하여 종돈을 선발하는 방법을 제공한다. The present invention also provides a method for selecting sows using the single base polymorphic biomarker.
또한, 본 발명은 상기 단일염기 다형성 바이오마커를 포함하는 종돈을 판정하는 진단 키트를 제공한다.
In another aspect, the present invention provides a diagnostic kit for determining the sows comprising the single base polymorphic biomarker.
본 발명에 따른 단일형질 다형성 바이오마커를 이용할 경우 표현형평가에 의한 선발효과보다 25 내지 35% 더 정확한 유전능력 측정이 가능하여 종돈의 유전능력 개량량을 획기적으로 늘릴 수 있으며, 근내지방 함량은 현재 육질을 평가하는 중요한 요인 중의 하나이므로 우수 종돈의 국내 육성에 크게 기여할 수 있다. 따라서, 종축 개량에 있어서 세계적인 추세에 따라 본 연구에서 발견된 근내지방 함량 관련 단일염기다형성 유전자형은 앞으로 돼지 선발에 유전적 DNA 마커로서 매우 효과적일 것이다.In the case of using the monomorphic polymorphic biomarker according to the present invention, it is possible to measure the genetic ability 25 to 35% more accurately than the selection effect by phenotypic evaluation, thereby dramatically increasing the genetic capacity improvement of the sows, and the content of muscle fat in the current meat quality This is one of the important factors in evaluating the quality of livestock, which can greatly contribute to the domestic development of good sows. Thus, according to the global trend in breeder improvement, the monobasic polymorphism genotype associated with intramuscular fat content found in this study will be very effective as a genetic DNA marker for pig selection in the future.
도 1은 돼지 근내지방 함량에 대한 QTL plot(chromosome-wise)를 나타낸 것이다.
도 2는 돼지 염색체 상의 근내지방 함량와 연관성이 있는 SNP의 위치를 나타낸 것이다.Figure 1 shows a QTL plot (chromosome-wise) for the pig muscle fat content.
Figure 2 shows the location of SNPs associated with intramuscular fat content on porcine chromosomes.
이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.
본 발명은 양적형질 유전좌위 (quantitative trait loci; QTL)에 해당하는 다수의 단일염기 다형성 (single nucleotide polymorphism; SNPs)들을 이용하는 돼지의 경제 형질을 판정할 수 있는 바이오마커를 제공한다. The present invention provides a biomarker capable of determining the economic trait of a pig using a plurality of single nucleotide polymorphisms (SNPs) corresponding to quantitative trait loci (QTL).
본 발명은 종래의 방법에서 단순히 단일염기 다형성을 찾아내어 형질을 분석하는 것과는 달리, 전체 게놈 상에 존재하는 대량의 단일염기 다형성을 대상으로 하여 경제 형질과의 연관성을 분석하는 것이다. The present invention is to analyze the association with economic traits for a large number of single nucleotide polymorphisms present in the entire genome, in contrast to simply finding single nucleotide polymorphisms in conventional methods and analyzing traits.
구체적으로, 본 발명은 서열번호 1의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ALGA0002965, 서열번호 2의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ASGA0003596, 서열번호 3의 염기 서열을 포함하는 단일염기 다형성 바이오마커 MARC0105148, 서열번호 4의 염기 서열을 포함하는 단일염기 다형성 바이오마커 MARC0029668, 서열번호 5의 염기 서열을 포함하는 단일염기 다형성 바이오마커 INRA0003847, 서열번호 6의 염기 서열을 포함하는 단일염기 다형성 바이오마커 MARC0081058, 서열번호 7의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ALGA0005765, 서열번호 8의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ALGA0005768, 서열번호 9의 염기 서열을 포함하는 단일염기 다형성 바이오마커 H3GA0003071, 서열번호 10의 염기 서열을 포함하는 단일염기 다형성 바이오마커 MARC0013086, 서열번호 11의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ALGA0035721, 서열번호 12의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ALGA0066693, 서열번호 13의 염기 서열을 포함하는 단일염기 다형성 바이오마커 M1GA0017062, 서열번호 14의 염기 서열을 포함하는 단일염기 다형성 바이오마커 DIAS0000860, 서열번호 15의 염기 서열을 포함하는 단일염기 다형성 바이오마커 DIAS0000861, 서열번호 16의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ASGA0055250, 서열번호 17의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ASGA0101283, 서열번호 18의 염기 서열을 포함하는 단일염기 다형성 바이오마커 H3GA0052996, 서열번호 19의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ASGA0056733, 서열번호 20의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ASGA0056791, 서열번호 21의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ALGA0069052, 서열번호 22의 염기 서열을 포함하는 단일염기 다형성 바이오마커 H3GA0035918, 서열번호 23의 염기 서열을 포함하는 단일염기 다형성 바이오마커 MARC0084121, 서열번호 24의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ALGA0069045, 서열번호 25의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ALGA0069061, 서열번호 26의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ALGA0069141, 서열번호 27의 염기 서열을 포함하는 단일염기 다형성 바이오마커 H3GA0035984, 서열번호 28의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ISU10000889, 서열번호 29의 염기 서열을 포함하는 단일염기 다형성 바이오마커 ALGA0069995 또는 서열번호 30의 염기 서열을 포함하는 단일염기 다형성 바이오마커 MARC0029973를 제공한다. 본 발명의 단일염기 다형성 바이오마커는 서열번호 1 내지 서열번호 30의 염기 서열들 중 하나 이상을 포함하는 조합으로 사용하는 것이 바람직하다.Specifically, the present invention is a monobasic polymorphic biomarker ALGA0002965 comprising a nucleotide sequence of SEQ ID NO: 1, a monobasic polymorphic biomarker ASGA0003596 comprising a nucleotide sequence of SEQ ID NO: 2, a monobasic polymorphism comprising a nucleotide sequence of SEQ ID NO: 3 Biomarker MARC0105148, single nucleotide polymorphism biomarker comprising nucleotide sequence of SEQ ID NO: 4 Single nucleotide polymorphic biomarker INRA0003847 comprising nucleotide sequence of SEQ ID NO: 5, single nucleotide polymorphic biomarker comprising nucleotide sequence of SEQ ID NO: 6 MARC0081058, a monobasic polymorphic biomarker ALGA0005765 comprising the nucleotide sequence of SEQ ID NO: 7, a monobasic polymorphic biomarker ALGA0005768 comprising the nucleotide sequence of SEQ ID NO: 8, a monobasic polymorphic biomarker H3GA0003071, comprising the nucleotide sequence of SEQ ID NO: 9, Monobasic polymorphism comprising the nucleotide sequence of SEQ ID NO: 10 Biomarker MARC0013086, monobasic polymorphic biomarker comprising the nucleotide sequence of SEQ ID NO: 11 Monobasic polymorphic biomarker ALGA0035721, comprising the nucleotide sequence of SEQ ID NO: 12 Monobasic polymorphic biomarker comprising the nucleotide sequence of SEQ ID NO: 13 M1GA0017062, monobasic polymorphic biomarker DIAS0000860 comprising the nucleotide sequence of SEQ ID NO: 14, monobasic polymorphic biomarker DIAS0000861 comprising the nucleotide sequence of SEQ ID NO: 15, monobasic polymorphic biomarker ASGA0055250, comprising the nucleotide sequence of SEQ ID NO: 16, Single base polymorphic biomarker ASGA0101283 comprising the nucleotide sequence of SEQ ID NO: 17, Single base polymorphic biomarker H3GA0052996 comprising the nucleotide sequence of SEQ ID NO: 18, single base polymorphic biomarker ASGA0056733, SEQ ID NO: Single salt comprising 20 nucleotide sequences Polymorphic biomarker ASGA0056791, a monobasic polymorphic biomarker comprising the nucleotide sequence of SEQ ID NO: 21 polymorphic biomarker ALGA0069052, a monobasic polymorphic biomarker comprising the nucleotide sequence of SEQ ID NO: 22, H3GA0035918 Single base polymorphic biomarker ALGA0069045 comprising the nucleotide sequence of marker MARC0084121, SEQ ID NO: 24 Single base polymorphic biomarker ALGA0069061 comprising the nucleotide sequence of SEQ ID NO: 25 Single base polymorphic biomarker ALGA0069141 comprising the nucleotide sequence of SEQ ID NO: 26 , Polynucleotide biomarker H3GA0035984 comprising the nucleotide sequence of SEQ ID NO: 27 mononucleotide polymorphic biomarker ISU10000889, comprising the nucleotide sequence of SEQ ID NO: 28, mononucleotide polymorphic biomarker ALGA0069995 or the sequence Contains the nucleotide sequence of number 30 Provides a single nucleotide polymorphism biomarker MARC0029973. The monobasic polymorphic biomarker of the present invention is preferably used in combination comprising one or more of the nucleotide sequences of SEQ ID NO: 1 to SEQ ID NO: 30.
또한, 본 발명은 (1) 돼지 근내지방 함량과 연관된 단일염기 다형성 (SNPs)을 결정하는 단계; (2) 양적 형질 유전좌위 (QTL)와의 연관성을 검정하는 단계; 및 (3) 이 결과를 기초로 하여 돼지 근내지방 함량 형질을 분석하는 단계를 포함하는 상기 바이오마커의 선발 방법을 제공한다.In addition, the present invention comprises the steps of (1) determining the monobasic polymorphisms (SNPs) associated with the pig muscle fat content; (2) assaying for association with quantitative trait locus (QTL); And (3) analyzing the pig intramuscular fat content trait based on the results.
또한, 본 발명은 서열번호 1 내지 서열번호 30의 염기 서열 중 하나 이상의 단일염기 다형성 바이오마커를 사용하여 종돈을 선발하는 방법을 제공한다. In addition, the present invention provides a method for selecting the sows using at least one monobasic polymorphic biomarker of the base sequence of SEQ ID NO: 1 to SEQ ID NO: 30.
또한, 본 발명은 서열번호 1 내지 서열번호 30의 염기 서열 중 하나 이상의 단일염기 다형성 바이오마커를 포함하는 종돈 판별을 위한 진단 키트를 제공하며, 이는 돼지 근내지방 함량을 판정함으로써 종돈을 판별하는 것을 특징으로 한다.In addition, the present invention provides a diagnostic kit for the determination of sows comprising at least one monobasic polymorphic biomarker of the nucleotide sequence of SEQ ID NO: 1 to SEQ ID NO: 30, characterized in that it is determined by determining the pig muscle fat content It is done.
본 발명에 따른 분자표지를 이용할 경우 표현형평가에 의한 선발효과보다 25 내지 35% 더 정확한 유전능력 측정이 가능하여 종돈의 유전능력 개량량을 획기적으로 늘릴 수 있으며, 근내지방 함량은 현재 육질을 평가하는 중요한 요인 중의 하나이므로 우수 종돈의 국내 육성에 크게 기여할 수 있다. 따라서, 종축 개량에 있어서 세계적인 추세에 따라 본 연구에서 발견된 근내지방 함량 관련 단일염기다형성 유전자형은 앞으로 돼지 선발에 유전적 DNA 마커로서 매우 효과적일 것이다.
When using the molecular label according to the present invention, it is possible to measure the genetic ability 25 to 35% more accurate than the selection effect by phenotypic evaluation, which can dramatically increase the genetic capacity improvement of the sows, and the content of muscle fat in the present is to evaluate the meat quality. Since it is one of the important factors, it can greatly contribute to domestic fostering of excellent sows. Thus, according to the global trend in breeder improvement, the monobasic polymorphism genotype associated with intramuscular fat content found in this study will be very effective as a genetic DNA marker for pig selection in the future.
이하, 실시예에 의하여 본 발명을 더욱 상세히 설명하고자 한다. 단, 하기 실시예는 본 발명을 보다 상세하게 설명하기 위한 것일 뿐 본 발명의 범위가 이에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only for illustrating the present invention in more detail, but the scope of the present invention is not limited thereto.
실시예Example : 단일염기 다형성 분석: Single Base Polymorphism Analysis
본 발명에서는 돼지 근내지방 함량과 연관된 바이오마커를 선발하기 위하여 양적형질 유전좌위 (QTL)를 조절하는 유전자 및 그의 변이를 분석하고 하기와 같이 단일염기 다형성 (SNPs)을 조사하였다. In the present invention, genes that regulate quantitative trait loci (QTL) and their variants were analyzed to select biomarkers associated with pig intramuscular fat content and single nucleotide polymorphisms (SNPs) were investigated as follows.
먼저, 삼겹살 함량 등 생산 형질의 자료를 가지고 있는 돼지 551두의 혈액으로부터 위저드 게놈 DNA 정제 키트 (Wizard Genomic DNA Purification Kit; Promega, Madison, WI, USA)를 이용하여 DNA를 추출하였으며, 전체 62,163개의 SNPs 정보로 구성되어 있는 어레이 칩 (iSelect Infinium Porcine ArrayChips; Illumina, San Diego, CA, USA)를 이용하여 SNP 유전자형 분석을 실시하였다.First, DNA was extracted from the blood of 551 pigs containing pork belly content using Wizard Genomic DNA Purification Kit (Promega, Madison, Wis., USA), and a total of 62,163 SNPs. SNP genotyping was performed using an array chip consisting of information (iSelect Infinium Porcine ArrayChips; Illumina, San Diego, CA, USA).
유전자형 분석 후 얻어진 모든 SNP 자료들은 하디-바인베르그 평형(HWE)과 소수 대립유전자 (minor allele)의 빈도(MAF)에 대하여 R/SNPassoc 패키지의 chi-square 검정을 실시하여, 일정 조건에 맞지 않는 결과는 배제하였다 (HWE; P < 0.05, MAF; < 10%). 또한 QTL 및 SNP 사이의 연관성을 검정하는데 단일 마커 회귀 (single marker regression) 분석을 이용하였으며 마커들에 대한 부가 효과 (additive effect)를 평가하였다. 또한, ASReml 패키지를 이용하여 하기 혼합 선형 LD 회귀 모델식 하기 수학식 1을 이용하여 분석하였다.
All SNP data obtained after genotyping were subjected to chi-square test of the R / SNPassoc package for the frequency of Hardy-Weinberg equilibrium (HWE) and minor alleles (MAF). Were excluded (HWE; P <0.05, MAF; <10%). In addition, single marker regression analysis was used to test the association between QTL and SNP, and the additive effect on the markers was evaluated. In addition, the mixed linear LD regression model using the ASReml package was analyzed using the following equation (1).
수학식 1Equation 1
y = Xb + Za + ey = Xb + Za + e
여기서 y는 도체 시 성별과 연령이 포함된 고정 효과에 대한 표현형 벡터, X는 디자인 매트릭스 (design matirx), b는 단일 SNP 유전자형에 대한 회귀계수 벡터, Z는 동물 효과에 대한 빈도 매트릭스 (incidence matrix), 그리고 e는 잔차에 대한 벡터를 의미한다.Where y is the phenotype vector for fixed effects with gender and age in the carcase, X is the design matirx, b is the regression vector for the single SNP genotype, and Z is the frequency matrix for the animal effect , And e mean the vector for the residual.
그 다음 통계적 추론을 위하여 복합 가설 검정에 대해 벤자민 및 호크버그 (Benjamin and Hochberg, 1995)가 제시한 오류 발생율 (false discovery rate; FDR)을 계산에 이용하였으며 모든 유의적 가치 (value)는 5% 염색체 (chromosome-wise) FDR 수준에서 계산되었다.Then, for statistical inference, the false discovery rate (FDR) suggested by Benjamin and Hochberg (1995) for the complex hypothesis test was used in the calculation and all significant values were 5% chromosome. Calculated at the (chromosome-wise) FDR level.
그 결과 하기 도 2, 표 2 및 표 3에서 보는 바와 같이, 총 돼지 유전체상에 존재하는 62,163개의 SNPs 중 돼지 근내지방 함량에 유의성을 가지는 SNPs를 1, 6, 12, 13번 염색체에서 각각 9, 2, 7, 12개씩 총 30개를 발굴하였으며(chromosome-wise P<0.05) 이러한 유전자형은 근내지방 함량의 많고 적음의 비율을 예측하는데 활용이 가능하여 근내지방 함량 형질에 대한 선발을 위한 DNA 마커로서 효과가 있을 것으로 판단된다.As a result, as shown in FIG. 2, Table 2 and Table 3, SNPs having significant significance in the pig muscle fat content of 62,163 SNPs present in the total porcine genome were 9, A total of 30 samples were identified (2, 7, 12) (chromosome-wise P <0.05). These genotypes can be used to predict the proportion of high and low levels of intramuscular fat. It seems to be effective.
본 발명의 실시예에서는 단일염기 다형성 바이오마커로 서열번호 1 내지 서열번호 30의 염기 서열들 중 하나 이상을 포함하는 진단키트를 만들어 사용할 때 선별효과를 높일 수 있음이 확인되었다.
In the embodiment of the present invention, it was confirmed that the selection effect can be enhanced when a diagnostic kit including one or more of the nucleotide sequences of SEQ ID NO: 1 to SEQ ID NO: 30 is used as a single base polymorphic biomarker.
1) F-값: F-통계량1) F-value: F-statistic
2) P-값: F-통계량에 따른 유의성 수치2) P-value: Significance value according to F-statistic
3) 예상값: 근내지방 함량 형질에대한 각 SNP의 추정값 (예, ALGA0002965는 근내지방 함량 4.835% 증가 효과를 기대할 수 있음)3) Estimated value: Estimated value of each SNP for intramuscular fat traits (e.g., ALGA0002965 can expect 4.835% increase in intramuscular fat content)
4) R2: 모델의 적합도(예, 0.12641은 해당 SNP가 근내지방 함량 표현형의 12% 가량을 설명함)
4) R2: The goodness of fit of the model (e.g., 0.12641 describes about 12% of the phenotype of the intramuscular fat content of the SNP).
본 발명에 따른 단일형질 다형성 바이오마커를 이용할 경우 표현형평가에 의한 선발효과보다 25 내지 35% 더 정확한 유전능력 측정이 가능하여 종돈의 유전능력 개량량을 획기적으로 늘릴 수 있으며, 근내지방 함량은 현재 육질을 평가하는 중요한 요인 중의 하나이므로 우수 종돈의 국내 육성에 크게 기여할 수 있다. 따라서, 종축 개량에 있어서 세계적인 추세에 따라 본 연구에서 발견된 근내지방 함량 관련 단일염기다형성 유전자형은 앞으로 돼지 선발에 유전적 DNA 마커로서 효과가 크다.In the case of using the monomorphic polymorphic biomarker according to the present invention, it is possible to measure the genetic ability 25 to 35% more accurately than the selection effect by phenotypic evaluation, thereby dramatically increasing the genetic capacity improvement of the sows, and the content of muscle fat in the current meat quality This is one of the important factors in evaluating the quality of livestock, which can greatly contribute to the domestic development of good sows. Therefore, according to the global trend in breeder improvement, the monobasic polymorphism genotype associated with intramuscular fat content found in this study is highly effective as a genetic DNA marker for pig selection in the future.
<110> REPUBLIC OF KOREA(MANAGEMENT : RURAL DEVELOPMENT ADMINISTRATION) <120> Single nucleotide polymorphism (SNP) markers associated with intramuscular fat contents trait in pig and their methods for evaluation <130> pa100021 <160> 30 <170> KopatentIn 1.71 <210> 1 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 1 ctttaaagag ataaagtgta tggtatgtga attatagctc aataaagccg ccactaaaaa 60 raaaggaagt aaaagaaggg aggaaggaat aaaacggaaa aggaaaaagg ataaagagaa 120 g 121 <210> 2 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 2 acaatgggaa cttcaagatg tgaagcatta tattgaggta aaagcttgtc ctagtggaag 60 mtttaaaaaa atgtctaatc acaaaatact agggatgtag tgtttccatt aagagaatgg 120 a 121 <210> 3 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 3 tgtgttcttc atgtacagag ctcacnaamr tttctataga aggcagaatt ttcaggatgg 60 rgggaaaaga gactgagttc ttactgacag gaagcacctc aatgattcag ctggaaagat 120 t 121 <210> 4 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 4 aaggcaaaag aaacttctga gaagagggga gaaaataatc ttctcaggtg aaataatcca 60 rtttgttcct cttcaatgct cacattccca aggtggatca tttgctaaat cataaaggag 120 g 121 <210> 5 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 5 gattattgtg ttcaagggat aaaatcaaac ttgacgattt tagcagggaa ctgcaaacta 60 yagaaaagtg acttaacaga tgtgcctatg tgtggagggg gaaaaatcca gaagtgaaaa 120 t 121 <210> 6 <211> 82 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 6 cctcaccacc cccctgggtc cycagccacg tgcccctcac tcaggctcca cctggacatc 60 agtggaaaaa gctgggaact tt 82 <210> 7 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 7 cgggatgacc aaggaaggcc ttactgagaa gctgaaaatc aaggaagtta gaaaccacca 60 yacattcata tgcaggaagg aacatccagg aagatgagaa aaggcccaaa ggcccagaga 120 a 121 <210> 8 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 8 gtctcctaac ctgcctatag ggtgcctcct ctttgagagc tgtccagagt acaacagaat 60 yccgggcagt agattctggc aaaagcatac ccaccctgtg gagaatgctg ttggaagcca 120 g 121 <210> 9 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 9 tatggaagga ttcgcacttt tctctgcggg gtgtcaaagg atatacagag atgggaggca 60 mgtaatctga tgtgtcattt aagaggcccc tgacagctga agtatcgaca gtgtgtggcc 120 g 121 <210> 10 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 10 tgatatatat aatctcctta ttctctgagt tttcttgcct ttacttagtg actacgttgc 60 mgacacttag tatacttcct ctcttttcat tctcacaaca gttcaagwga aggggactta 120 t 121 <210> 11 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 11 tctcgtactg acacaactgg atttgggcgg cataactgag tgatagaaaa gctggctgck 60 ygacagtgac agagtgacac cgagaggtca gtgggcccgc agatgtgaat taatttgtcc 120 c 121 <210> 12 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 12 ctctctggga cagtttcctc actggtaaag caggggtagc atttcccacc ttgcctgaca 60 rttgtcacag gcaccatagt tagggcaccc agcttgtaca cactgggtgc tcctttgctg 120 t 121 <210> 13 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 13 ggggtccctg gctcagctgg aacacaggga tattgactag gaagccggtt aacaggaaac 60 ytgccactcc ctgggagacg tcagccactt tccaaccacc tccctccagc cttccccctt 120 g 121 <210> 14 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 14 tttctcctcc agctccttcc ggcgagcctc ggatctggcc agttcttcct tggttctctc 60 raagtcctcc ttcatggtgg ccatctcttt ctccgcctcc gcgctcttga gcaggggctt 120 a 121 <210> 15 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 15 cagcaggttc ctccccagga gccacacctc ccgcagcacc accgccccnc acctggtgcc 60 rggggaccac gtacccggct ggaggtgaag tctcgggtct ttgcgcgaag cttattgacc 120 t 121 <210> 16 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 16 aacgaagagg aggaagagcc tcataggtga aggaaagagt cagtacagtt tgagaagctc 60 rggaggctgg atgctgaggg aagtgcatat gctgggtgtg gagtggtgtc caggggcgga 120 a 121 <210> 17 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 17 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnc tggtggctca gagattcgct ctgcaaacac 60 yatcatgaaa gacatctacg gaatagagag ggtggccagc gcccaggcag tgcctgggca 120 g 121 <210> 18 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 18 nnnnnnnnnn nnnnnnnnnc tctcagaccc gcgtggcctc tagcgccgag agcgctgggc 60 kttctcagag gtggatgtta agtcaggaaa tcaaggtctg gtcacgtggg ggaggagcat 120 g 121 <210> 19 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 19 cctcttcatt aacacctctc agttcagttc catcagggcc actttcagtg aaagggacca 60 yaatcaagac cttaaaaatg cccgtctttg gagcttggga aatgtgttaa tgtaattgca 120 a 121 <210> 20 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 20 cagggccctt tttttaaaaa tggtattaaa agtttcaaga tgacaataga agagcattga 60 rccaagtata gggcccttct aactgcagag ctctatgacc acatggattg catgcccata 120 a 121 <210> 21 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 21 tcaccttctg ctgcaaaggt atatgatggg agctggacgg ctaaaatcaa tcaaaatgga 60 rccaggaact aaactaaatt catgcagttc atctcgcaga cagggatcat tcaaaccatg 120 g 121 <210> 22 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 22 gtgggtcagc agtaacaaac ccgactaata tccgtgagag tgcagcagta acaaacctca 60 yatccctggc cttgctcagt gggttaagga tctggtgatg ccgagagcta tggtgtaggt 120 c 121 <210> 23 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 23 ctccaaaccg aatgcagtct cttggtcaac gagttcagca atagctatat aaaacagctc 60 rggtttggta acgttgcact wgtacgttgr gctctctgtc ctgatgttcc aagcttttga 120 t 121 <210> 24 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 24 caggaaagga aggctccaga atgtccgcga tgcccatggt cagctgagca aagatgggga 60 rcaggctgtc gacaccatca gacctgagtt cagagtcttg ggtgctaaag gtgcaaactc 120 a 121 <210> 25 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 25 ggaccagtgg gtgactgatg catattttct cctgaatgtt aacccaccag cttggagctg 60 rgtggtagga gaaggaaaag gaaggactga aaatctagga tgctggcctc gagaccacct 120 c 121 <210> 26 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 26 cggtggctta aagaatccag tgtttgctgc agctgcactg taggttttgg atctgatctc 60 yagccctgat tcctggcctc ggaacttcat atgccagtgg ggcagccaaa aaagaaaaag 120 a 121 <210> 27 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 27 acagtgcctg tttatcactg agcttgggcc accctccagg cactgcatta agtacattac 60 rygaatgatc ttgcacgcag aaattacaca aggtcagtgt tccccagaga cagacctcaa 120 g 121 <210> 28 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 28 acgggatttt tcttggcctt ggaaatttct agtaatgccc tgtgcctctg tttccatcca 60 rtgctgagtg ttgtaggacc agggatgggg tcactgctgg ggttggggac atgtggcaga 120 g 121 <210> 29 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 29 tcaggaatct tcatcatcaa ccttctggtt ccaaccaatc tgagctctat gtgctgtaat 60 ytgcatgtag tcaccatcca ccacctgggt aggtggagtt cttagtttct acagaacaac 120 t 121 <210> 30 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 30 cctctatttt tarcacattg cctaaatgag cctgtgtaat agtccatatc tttcttaggg 60 gactccctgc tct 73 <110> REPUBLIC OF KOREA (MANAGEMENT: RURAL DEVELOPMENT ADMINISTRATION) <120> Single nucleotide polymorphism (SNP) markers associated with intramuscular fat contents trait in pig and their methods for evaluation <130> pa100021 <160> 30 <170> KopatentIn 1.71 <210> 1 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 1 ctttaaagag ataaagtgta tggtatgtga attatagctc aataaagccg ccactaaaaa 60 raaaggaagt aaaagaaggg aggaaggaat aaaacggaaa aggaaaaagg ataaagagaa 120 g 121 <210> 2 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 2 acaatgggaa cttcaagatg tgaagcatta tattgaggta aaagcttgtc ctagtggaag 60 mtttaaaaaa atgtctaatc acaaaatact agggatgtag tgtttccatt aagagaatgg 120 a 121 <210> 3 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 3 tgtgttcttc atgtacagag ctcacnaamr tttctataga aggcagaatt ttcaggatgg 60 rgggaaaaga gactgagttc ttactgacag gaagcacctc aatgattcag ctggaaagat 120 t 121 <210> 4 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 4 aaggcaaaag aaacttctga gaagagggga gaaaataatc ttctcaggtg aaataatcca 60 rtttgttcct cttcaatgct cacattccca aggtggatca tttgctaaat cataaaggag 120 g 121 <210> 5 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 5 gattattgtg ttcaagggat aaaatcaaac ttgacgattt tagcagggaa ctgcaaacta 60 yagaaaagtg acttaacaga tgtgcctatg tgtggagggg gaaaaatcca gaagtgaaaa 120 t 121 <210> 6 <211> 82 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 6 cctcaccacc cccctgggtc cycagccacg tgcccctcac tcaggctcca cctggacatc 60 agtggaaaaa gctgggaact tt 82 <210> 7 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 7 cgggatgacc aaggaaggcc ttactgagaa gctgaaaatc aaggaagtta gaaaccacca 60 yacattcata tgcaggaagg aacatccagg aagatgagaa aaggcccaaa ggcccagaga 120 a 121 <210> 8 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 8 gtctcctaac ctgcctatag ggtgcctcct ctttgagagc tgtccagagt acaacagaat 60 yccgggcagt agattctggc aaaagcatac ccaccctgtg gagaatgctg ttggaagcca 120 g 121 <210> 9 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 9 tatggaagga ttcgcacttt tctctgcggg gtgtcaaagg atatacagag atgggaggca 60 mgtaatctga tgtgtcattt aagaggcccc tgacagctga agtatcgaca gtgtgtggcc 120 g 121 <210> 10 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 10 tgatatatat aatctcctta ttctctgagt tttcttgcct ttacttagtg actacgttgc 60 mgacacttag tatacttcct ctcttttcat tctcacaaca gttcaagwga aggggactta 120 t 121 <210> 11 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 11 tctcgtactg acacaactgg atttgggcgg cataactgag tgatagaaaa gctggctgck 60 ygacagtgac agagtgacac cgagaggtca gtgggcccgc agatgtgaat taatttgtcc 120 c 121 <210> 12 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 12 ctctctggga cagtttcctc actggtaaag caggggtagc atttcccacc ttgcctgaca 60 rttgtcacag gcaccatagt tagggcaccc agcttgtaca cactgggtgc tcctttgctg 120 t 121 <210> 13 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 13 ggggtccctg gctcagctgg aacacaggga tattgactag gaagccggtt aacaggaaac 60 ytgccactcc ctgggagacg tcagccactt tccaaccacc tccctccagc cttccccctt 120 g 121 <210> 14 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 14 tttctcctcc agctccttcc ggcgagcctc ggatctggcc agttcttcct tggttctctc 60 raagtcctcc ttcatggtgg ccatctcttt ctccgcctcc gcgctcttga gcaggggctt 120 a 121 <210> 15 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 15 cagcaggttc ctccccagga gccacacctc ccgcagcacc accgccccnc acctggtgcc 60 rggggaccac gtacccggct ggaggtgaag tctcgggtct ttgcgcgaag cttattgacc 120 t 121 <210> 16 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 16 aacgaagagg aggaagagcc tcataggtga aggaaagagt cagtacagtt tgagaagctc 60 rggaggctgg atgctgaggg aagtgcatat gctgggtgtg gagtggtgtc caggggcgga 120 a 121 <210> 17 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 17 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnc tggtggctca gagattcgct ctgcaaacac 60 yatcatgaaa gacatctacg gaatagagag ggtggccagc gcccaggcag tgcctgggca 120 g 121 <210> 18 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 18 nnnnnnnnnn nnnnnnnnnc tctcagaccc gcgtggcctc tagcgccgag agcgctgggc 60 kttctcagag gtggatgtta agtcaggaaa tcaaggtctg gtcacgtggg ggaggagcat 120 g 121 <210> 19 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 19 cctcttcatt aacacctctc agttcagttc catcagggcc actttcagtg aaagggacca 60 yaatcaagac cttaaaaatg cccgtctttg gagcttggga aatgtgttaa tgtaattgca 120 a 121 <210> 20 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 20 cagggccctt tttttaaaaa tggtattaaa agtttcaaga tgacaataga agagcattga 60 rccaagtata gggcccttct aactgcagag ctctatgacc acatggattg catgcccata 120 a 121 <210> 21 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 21 tcaccttctg ctgcaaaggt atatgatggg agctggacgg ctaaaatcaa tcaaaatgga 60 rccaggaact aaactaaatt catgcagttc atctcgcaga cagggatcat tcaaaccatg 120 g 121 <210> 22 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 22 gtgggtcagc agtaacaaac ccgactaata tccgtgagag tgcagcagta acaaacctca 60 yatccctggc cttgctcagt gggttaagga tctggtgatg ccgagagcta tggtgtaggt 120 c 121 <210> 23 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 23 ctccaaaccg aatgcagtct cttggtcaac gagttcagca atagctatat aaaacagctc 60 rggtttggta acgttgcact wgtacgttgr gctctctgtc ctgatgttcc aagcttttga 120 t 121 <210> 24 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 24 caggaaagga aggctccaga atgtccgcga tgcccatggt cagctgagca aagatgggga 60 rcaggctgtc gacaccatca gacctgagtt cagagtcttg ggtgctaaag gtgcaaactc 120 a 121 <210> 25 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 25 ggaccagtgg gtgactgatg catattttct cctgaatgtt aacccaccag cttggagctg 60 rgtggtagga gaaggaaaag gaaggactga aaatctagga tgctggcctc gagaccacct 120 c 121 <210> 26 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 26 cggtggctta aagaatccag tgtttgctgc agctgcactg taggttttgg atctgatctc 60 yagccctgat tcctggcctc ggaacttcat atgccagtgg ggcagccaaa aaagaaaaag 120 a 121 <210> 27 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 27 acagtgcctg tttatcactg agcttgggcc accctccagg cactgcatta agtacattac 60 rygaatgatc ttgcacgcag aaattacaca aggtcagtgt tccccagaga cagacctcaa 120 g 121 <210> 28 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 28 acgggatttt tcttggcctt ggaaatttct agtaatgccc tgtgcctctg tttccatcca 60 rtgctgagtg ttgtaggacc agggatgggg tcactgctgg ggttggggac atgtggcaga 120 g 121 <210> 29 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 29 tcaggaatct tcatcatcaa ccttctggtt ccaaccaatc tgagctctat gtgctgtaat 60 ytgcatgtag tcaccatcca ccacctgggt aggtggagtt cttagtttct acagaacaac 120 t 121 <210> 30 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Artificial <400> 30 cctctatttt tarcacattg cctaaatgag cctgtgtaat agtccatatc tttcttaggg 60 gactccctgc tct 73
Claims (5)
A monobasic polymorphic biomarker for determining pig intramuscular fat content comprising at least one of the nucleotide sequences of SEQ ID NO: 1 to SEQ ID NO: 30.
(1) determining monobasic polymorphisms (SNPs) associated with pig intramuscular fat content; (2) assaying for association with quantitative trait locus (QTL); And (3) analyzing the pig intramuscular fat content trait based on these results.
A method of selecting sows using the monobasic polymorphic biomarker of claim 1.
A diagnostic kit for determining a sow comprising the monobasic polymorphic biomarker of claim 1.
돼지 근내지방 함량을 판정함으로써 종돈을 판별하는 것을 특징으로 하는 진단 키트.
The method of claim 4, wherein
A diagnostic kit, characterized in that it is determined by determining the pig muscle fat content.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100059238A KR101248068B1 (en) | 2010-06-22 | 2010-06-22 | Method for selection of breeding stock using single nucleotide polymorphism (SNP) markers associated with intramuscular fat contents trait in pig |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100059238A KR101248068B1 (en) | 2010-06-22 | 2010-06-22 | Method for selection of breeding stock using single nucleotide polymorphism (SNP) markers associated with intramuscular fat contents trait in pig |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110139011A true KR20110139011A (en) | 2011-12-28 |
KR101248068B1 KR101248068B1 (en) | 2013-03-27 |
Family
ID=45504729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100059238A KR101248068B1 (en) | 2010-06-22 | 2010-06-22 | Method for selection of breeding stock using single nucleotide polymorphism (SNP) markers associated with intramuscular fat contents trait in pig |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101248068B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101295288B1 (en) * | 2011-05-26 | 2013-08-12 | 박화춘 | Markers for porcine meat quality |
CN110408708A (en) * | 2019-08-06 | 2019-11-05 | 山东省农业科学院畜牧兽医研究所 | A kind of method of multiple labeling assisted Selection pig intramuscular fat character |
CN110734983A (en) * | 2019-10-08 | 2020-01-31 | 南京农业大学 | SNP markers related to intramuscular fat traits of Suhuai pigs, and detection method and application thereof |
CN111733263A (en) * | 2020-08-17 | 2020-10-02 | 云南农业大学 | Gene marker related to porcine lipid metabolism capability and detection kit |
CN113866286A (en) * | 2020-09-30 | 2021-12-31 | 华中农业大学 | Biomarker for evaluating intramuscular fat content of pork and application thereof |
CN116083598A (en) * | 2022-12-05 | 2023-05-09 | 湖北省农业科学院畜牧兽医研究所 | SNP molecular marker related to intramuscular fat traits of pigs and application thereof |
CN116676400A (en) * | 2023-07-17 | 2023-09-01 | 湖北省农业科学院畜牧兽医研究所 | Molecular marker, primer, kit, method and application related to intramuscular fat traits of pigs |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100615803B1 (en) | 2004-08-13 | 2006-08-25 | 전진태 | ACADM DNA DNA Detection of DNA mutation in the porcine ACADM promoter region and their application as DNA markers for the early selection of pigs having high intramuscular fat content |
-
2010
- 2010-06-22 KR KR1020100059238A patent/KR101248068B1/en active IP Right Grant
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101295288B1 (en) * | 2011-05-26 | 2013-08-12 | 박화춘 | Markers for porcine meat quality |
CN110408708A (en) * | 2019-08-06 | 2019-11-05 | 山东省农业科学院畜牧兽医研究所 | A kind of method of multiple labeling assisted Selection pig intramuscular fat character |
CN110408708B (en) * | 2019-08-06 | 2022-06-10 | 山东省农业科学院畜牧兽医研究所 | Method for multi-marker assisted selection of intramuscular fat character of pig |
CN110734983A (en) * | 2019-10-08 | 2020-01-31 | 南京农业大学 | SNP markers related to intramuscular fat traits of Suhuai pigs, and detection method and application thereof |
CN110734983B (en) * | 2019-10-08 | 2022-05-20 | 南京农业大学 | SNP marker related to intramuscular fat character of Suhuai pig, detection method and application |
CN111733263A (en) * | 2020-08-17 | 2020-10-02 | 云南农业大学 | Gene marker related to porcine lipid metabolism capability and detection kit |
CN113866286A (en) * | 2020-09-30 | 2021-12-31 | 华中农业大学 | Biomarker for evaluating intramuscular fat content of pork and application thereof |
CN116083598A (en) * | 2022-12-05 | 2023-05-09 | 湖北省农业科学院畜牧兽医研究所 | SNP molecular marker related to intramuscular fat traits of pigs and application thereof |
CN116083598B (en) * | 2022-12-05 | 2024-01-16 | 湖北省农业科学院畜牧兽医研究所 | SNP molecular marker related to intramuscular fat traits of pigs and application thereof |
CN116676400A (en) * | 2023-07-17 | 2023-09-01 | 湖北省农业科学院畜牧兽医研究所 | Molecular marker, primer, kit, method and application related to intramuscular fat traits of pigs |
CN116676400B (en) * | 2023-07-17 | 2024-02-09 | 湖北省农业科学院畜牧兽医研究所 | Molecular marker, primer, kit, method and application related to intramuscular fat traits of pigs |
Also Published As
Publication number | Publication date |
---|---|
KR101248068B1 (en) | 2013-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101248068B1 (en) | Method for selection of breeding stock using single nucleotide polymorphism (SNP) markers associated with intramuscular fat contents trait in pig | |
Sanchez et al. | A genome-wide association study of production traits in a commercial population of Large White pigs: evidence of haplotypes affecting meat quality | |
Lee et al. | Genome-wide association study identifies major loci for carcass weight on BTA14 in Hanwoo (Korean cattle) | |
KR101236298B1 (en) | Single nucleotide polymorphism (SNP) markers associated with backfat thickness trait in pig and their methods for evaluation | |
Boman et al. | A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian White Sheep (Ovis aries) | |
KR101224007B1 (en) | Method of diagnosing meat quality of pig with biomarker and kit therof | |
Saxena et al. | Selection methods in poultry breeding: from genetics to genomics | |
Gutiérrez-Gil et al. | High-resolution analysis of selection sweeps identified between fine-wool Merino and coarse-wool Churra sheep breeds | |
CN114736975B (en) | SNP molecular marker related to sow litter size traits and application thereof | |
Schmidtmann et al. | Genetic analysis of production traits and body size measurements and their relationships with metabolic diseases in German Holstein cattle | |
Júnior et al. | Current applications and perspectives of genomic selection in Bos indicus (Nellore) cattle | |
KR101295288B1 (en) | Markers for porcine meat quality | |
KR100804310B1 (en) | 4 DNA marker of adipocyte-fatty acid binding protein gene related the intramuscular fat content in beef cattle | |
US20240043912A1 (en) | Genomic selection (gs) breeding chip of huaxi cattle and use thereof | |
Flórez et al. | Genome-wide association study using the Bayes C method for important traits in dairy yield in Colombian Holstein Cattle | |
Anton et al. | Effect of single-nucleotide polymorphisms on the breeding value of fertility and breeding value of beef in Hungarian Simmental cattle | |
Moravčíková et al. | Autozygosity island resulting from artificial selection in Slovak Spotted cattle. | |
Saha et al. | Effect of composition and size of the reference population in genotype imputation efficiency of INDUSCHIP in HF Crossbred cattle | |
Mukhopadhyay et al. | Cattle genomics: Genome projects, current status, and future applications | |
KR101567020B1 (en) | Novel biomarker and method for predicting back fat traits in pigs | |
Wu et al. | Genomic prediction and genome‐wide association studies for additive and dominance effects for body composition traits using 50 K and imputed high‐density SNP genotypes in Yunong‐black pigs | |
Iqbal et al. | Comparison of genomic predictions for carcass and reproduction traits in Berkshire, Duroc and Yorkshire populations in Korea | |
De León et al. | Selection of genomic regions and genes associated with adaptation and fertility traits in two Colombian creole cattle breeds | |
Wilkinson et al. | Population genomics of animal domestication and breed development | |
Rajawat et al. | Genomic patterns of selection in morphometric traits across diverse Indian cattle breeds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |