KR20110130022A - Metal oxide catalyst for preparing longer chain secondary dialkylamines - Google Patents

Metal oxide catalyst for preparing longer chain secondary dialkylamines Download PDF

Info

Publication number
KR20110130022A
KR20110130022A KR1020100049429A KR20100049429A KR20110130022A KR 20110130022 A KR20110130022 A KR 20110130022A KR 1020100049429 A KR1020100049429 A KR 1020100049429A KR 20100049429 A KR20100049429 A KR 20100049429A KR 20110130022 A KR20110130022 A KR 20110130022A
Authority
KR
South Korea
Prior art keywords
weight
catalyst
long
metal oxide
reaction
Prior art date
Application number
KR1020100049429A
Other languages
Korean (ko)
Other versions
KR101175924B1 (en
Inventor
한인선
유원우
Original Assignee
주식회사 케이씨아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이씨아이 filed Critical 주식회사 케이씨아이
Priority to KR1020100049429A priority Critical patent/KR101175924B1/en
Publication of KR20110130022A publication Critical patent/KR20110130022A/en
Application granted granted Critical
Publication of KR101175924B1 publication Critical patent/KR101175924B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • C07C209/16Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines
    • C07C211/07Monoamines containing one, two or three alkyl groups, each having the same number of carbon atoms in excess of three

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A metal oxide catalyst for manufacturing long-chain secondary dialkyl amine is provided to improve the yield of a reaction and to simplify manufacturing processes. CONSTITUTION: A metal oxide catalyst for manufacturing long-chain secondary dialkyl amine includes the following: A metal oxide catalyst is used for manufacturing the long-chain secondary dialkyl amine by reacting C8 to C13 long-chain alcohol and ammonia. The metal oxide catalyst is represented by chemical formula 1. In chemical formula 1, a, b, c, and d represent respective materials with respect to the total weight of the catalyst. The a is 40-80 weight%, the b is 1-15 weight%, the c is 0.5-10 weight%, and the d is 20-40 weight%. M is an oxide of at least one metal element selected from a group including molybdenum, tungsten, manganese, and tin.

Description

장쇄 2급 디알킬아민 제조용 금속 산화물 촉매{Metal Oxide Catalyst for Preparing Longer Chain Secondary Dialkylamines}Metal Oxide Catalyst for Preparing Longer Chain Secondary Dialkylamines

본 발명은 8 내지 13의 탄소수를 가지는 장쇄 2급 디알킬아민 제조용 금속 산화물 촉매에 관한 것으로, 보다 상세하게는 반응수율이 높고, 공정이 단순하며, 순도 및 품질이 우수한 최종 생성물을 얻을 수 있는 장쇄 2급 디알킬아민 제조용 4성분계 금속 산화물 촉매에 관한 것이다.The present invention relates to a metal oxide catalyst for preparing long-chain secondary dialkylamine having 8 to 13 carbon atoms, and more particularly, to a long chain which can obtain a final product having a high reaction yield, a simple process, and excellent purity and quality. A four-component metal oxide catalyst for preparing secondary dialkylamines.

8 내지 13의 탄소수를 가지는 장쇄 2급 디알킬아민은 엔진오일과 그리스 첨가제로 사용되는 몰리브덴계 윤활유 첨가제의 원료로서, 기존의 엔진오일 및 그리스 첨가제에 비해 내마모성이 매우 뛰어나 자동차 연비개선과 엔진 수명개선에 탁월한 고성능 첨가제이다. 그러나, 장쇄 2급 디알킬아민의 제조기술은 미국, 일본, 독일 등 선진국에서 독점하고 있기 때문에 고급 윤활유 첨가제를 전량 수입에 의존하고 있는 상태이다.Long chain secondary dialkylamine having 8 to 13 carbon atoms is a raw material of molybdenum-based lubricating oil additive used as engine oil and grease additive, and it has much better wear resistance than engine oil and grease additives, improving automobile fuel economy and improving engine life. It is an excellent high performance additive. However, since the manufacturing technology of the long-chain secondary dialkylamine is monopolized in developed countries such as the United States, Japan, and Germany, the state relies on the import of high-grade lubricant additives in its entirety.

아민 화합물은 의약중간체, 농약중간체, 염료중간체, 고무약품, 계면활성제, 수처리제, 우레탄원료, 에폭시 경화제, 유화제 및 용매 등으로 사용되는 유용한 화합물이다. 그 중에서 2급 아민유도체 화합물, 특히 탄소사슬 길이가 8~13까지의 장쇄 2급 아민 화합물의 상업적 적용범위는 일반적인 1급과 3급 알킬아민 유도체 화합물의 부식방지제, 유화제, 우레탄 원료, 농약과 염료 중간체와는 구별되는 독특한 영역에 속한다. 8~13 탄소체인을 가지는 2급 디알킬 아민의 주된 용도로는 몰리브덴계 엔진오일과 그리스 첨가제로서 항산화제, 내마모제, 극압첨가제, 마찰조절제의 역할을 하는 화합물로 기존의 1급 알킬아민을 사용하는 몰리브덴계에 비해 소량의 첨가제의 사용으로 우수한 성능을 나타내는 것으로 알려져 있다. 특히, 장쇄 2급 아민을 원료로 하여 합성된 몰리브덴계 엔진오일 첨가제는 국제 유가 급등과 함께 지구 온난화 가스의 주원인으로 주목되는 CO2 저감을 위한 자동차의 연비개선을 위한 방법으로 금속과 금속의 접촉에서 발생하는 마모를 감소하여 기계 효율을 향상시키고 연료 소비를 점감시킴으로 에너지를 줄일 수 있는 우수한 효과를 가진다고 알려져 전 세계적으로 수요가 급증하고 있는 추세이다.Amine compounds are useful compounds used as pharmaceutical intermediates, agrochemical intermediates, dye intermediates, rubber chemicals, surfactants, water treatment agents, urethane raw materials, epoxy curing agents, emulsifiers and solvents. Among them, commercial applications of secondary amine derivatives, especially long chain secondary amine compounds having carbon chain lengths of 8 to 13, include corrosion inhibitors, emulsifiers, urethane raw materials, pesticides and dyes of general primary and tertiary alkylamine derivative compounds. It belongs to a unique area that distinguishes it from intermediates. The primary uses of secondary dialkyl amines having 8 to 13 carbon chains include molybdenum-based engine oils and grease additives, which act as antioxidants, antiwear agents, extreme pressure additives, and friction modifiers. It is known to show excellent performance by using a small amount of additives compared to molybdenum type. Particularly, molybdenum-based engine oil additives synthesized from long-chain secondary amines are used to improve the fuel efficiency of automobiles for CO 2 reduction, which is noted as a major cause of global warming gas as well as international oil price hikes. It is known that it has an excellent effect of reducing energy by reducing mechanical wear and reducing fuel consumption by reducing abrasion generated, and demand is increasing rapidly around the world.

장쇄 2급 아민을 제조하는 방법으로는 지방산으로부터 지방니트릴을 합성하고, 지방니트릴을 수소화 반응시켜 1급 지방아민을 제조한 후 다시 알콜과 반응시켜 2급 디알킬 아민을 3단계로 제조하는 3단계 제조방법, 장쇄 알콜을 암모니아로 아민화 반응시켜 1단계로 1급 아민을 제조하고, 다시 알콜과 반응시켜 2급 알킬알콜을 제조하는 2단계 제조방법, 및 장쇄 알콜을 암모니아로 아민화 반응시켜 2급 알킬알콜을 제조하는 1단계 제조방법이 있다. 이중에서 기존의 공정들은 대부분 지방산으로부터 2 내지 3단계의 복잡한 공정을 거쳐 2급 알킬아민을 제조하고 있으나, 최근에는 아민화기술의 발달로 1단계 장쇄 알콜 아민화 촉매와 상기 촉매를 이용한 2급 알킬아민의 제조공정이 활발히 연구 개발되고 있다.As a method for preparing a long chain secondary amine, a three-step step of preparing a fatty dinitrile from a fatty acid, hydrogenating the fatty nitrile to produce a primary fatty amine, and then reacting with an alcohol to prepare a secondary dialkyl amine in three steps Preparation method, the first step to prepare a primary amine by amination of the long-chain alcohol with ammonia, and the second step to prepare a secondary alkyl alcohol by reacting with alcohol, and the amination reaction of the long-chain alcohol with ammonia 2 There is a one-step process for preparing a class alkyl alcohol. Among the existing processes, secondary alkylamines are mostly prepared from fatty acids through a complex process of two to three stages, but recently, due to the development of amination technology, one-step long-chain alcohol amination catalyst and secondary alkyl using the catalyst The production process of amines is being actively researched and developed.

최근 개발된 촉매를 이용한 알킬아민 제조 공정에 따르면, 미국 특허 제 5,530,127호에서 독일의 BASF사는 관형반응기에서 NiO-CuO-CoO-ZrO2계 촉매를 이용하여 180℃ 30기압에서 탄소수 4인 부틸알콜을 암모니아와 반응시켜 1급 아민 수율 51%, 2급 아민 수율 43%의 결과를 얻었다. 또한, 탄소수 13인 트리데카알콜을 NiO-CuO-MoO3-ZrO3 촉매를 사용하여 200℃, 200 기압 조건에서 암모니아와 반응시켰을 때 1급 아민 수율 74%, 2급 아민 수율 25%이었다. 또한, 미국 특허 제 4,415,755호에서 미국의 Texaco사는 옥틸알콜을 암모니아와 반응시 관형반응기에서 CuO-CrO 촉매를 사용하여 282℃, 상압의 조건에서 1급 아민 수율 80%, 2급 아민 수율 15% 이었고, 275℃, 5 기압의 조건에서 반응시 1급 아민 수율 58%, 2급 아민 수율 33% 이었다.According to a process for preparing alkylamines using a recently developed catalyst, in US Patent No. 5,530,127, BASF, Germany, uses a NiO—CuO—CoO—ZrO 2 based catalyst in a tubular reactor to produce butyl alcohol having 4 carbon atoms at 30 ° C. at 180 ° C. Reaction with ammonia yielded 51% primary amine yield and 43% secondary amine yield. In addition, when trideca alcohol having 13 carbon atoms was reacted with ammonia at 200 ° C. and 200 atm using a NiO—CuO—MoO 3 —ZrO 3 catalyst, the yield of primary amine was 74% and the yield of secondary amine 25%. In addition, U.S. Patent No. 4,415,755, Texaco of the United States used a CuO-CrO catalyst in a tubular reactor when reacting octyl alcohol with ammonia, yielding a primary amine yield of 80% and a secondary amine yield of 15% under conditions of normal pressure and atmospheric pressure. When the reaction was performed under the condition of, 275 ° C. and 5 atmospheres, the yield was 58% for the primary amine and 33% for the secondary amine.

그러나, 상기 BASF 사와 Texaco사의 제조에서는 관형반응기에서 아민화 반응을 진행할 경우, 고압의 가혹한 반응 조건에서 반응을 시켜야 하고, 2급 아민 수율이 50% 이하인 문제점이 있었다.However, in the manufacture of BASF and Texaco, when the amination reaction is carried out in a tubular reactor, the reaction must be performed under severe reaction conditions at high pressure, and the secondary amine yield is 50% or less.

또한, 미국특허 제 5,266,730호, 제 4,792,622 호, 일본특허 제 1990-202854호 및 제 1989-102045호에서 일본의 Kao 사는 라우릴알콜을 Cu-Zn-Pd/Zeolite와 Cu-Co-Pd/Zeolite 촉매를 사용하여 회분식 반응기에서 180℃, 촉매 0.25중량%, 반응시간 5hr, 암모니아 유속 30L/hr의 반응조건에서 반응시킨 결과 2급 아민 수율 94%를 얻었다. 또한, 1급 아민인 라우릴아민을 Cu-Pd/Zeolite와 Cu-Ni-Ru/Zeolite 촉매하에서 스테아릴 알콜과 180℃, 촉매 1%, 반응시간 5시간, 1급 아민 유속 25L/hr의 반응조건에서 반응하여 2급 아민을 수율 97%로 얻었다.In addition, U.S. Pat. The reaction was carried out in a batch reactor at 180 ° C., 0.25 wt% catalyst, reaction time 5 hr, and ammonia flow rate of 30 L / hr, yielding a secondary amine yield of 94%. In addition, the reaction of laurylamine, a primary amine, with stearyl alcohol under Cu-Pd / Zeolite and Cu-Ni-Ru / Zeolite catalyst at 180 ° C., 1% of catalyst, reaction time of 5 hours, and primary amine flow rate of 25 L / hr The reaction was carried out under the conditions to obtain a secondary amine in a yield of 97%.

그러나, 상기 결과는 고가의 귀금속촉매를 사용하는 것과 1급 아민과 다양한 알콜을 반응시키므로 보다 높은 수율로 다양한 2급 아민을 합성할 수 있으나, 2단계 반응으로 인하여 공정이 복잡하다는 문제점이 있었다.However, the result is that the use of expensive precious metal catalysts and the primary amine and various alcohols can be reacted to synthesize a variety of secondary amines in a higher yield, but there was a problem that the process is complicated by the two-step reaction.

이에 본 발명자들은 상기 종래기술의 문제점들을 해결하기 위하여 다양한 니켈계 금속산화물 촉매를 합성하고 반응시킨 결과, 반응수율이 높고, 공정이 단순하며, 순도 및 품질이 우수한 장쇄 2급아민을 얻을 수 있는 장쇄 2급 디알킬아민 제조용 4성분계 금속 산화물 촉매를 개발하기에 이르렀다.Accordingly, the present inventors synthesized and reacted various nickel-based metal oxide catalysts in order to solve the problems of the prior art, resulting in a long chain secondary amine having a high reaction yield, simple process, and excellent purity and quality. Four-component metal oxide catalysts for preparing secondary dialkylamines have been developed.

본 발명의 목적은 반응수율이 높은 장쇄 2급 디알킬아민 제조용 4성분계 금속 산화물 촉매를 제공하기 위한 것이다.An object of the present invention is to provide a four-component metal oxide catalyst for producing long chain secondary dialkylamine having high reaction yield.

본 발명의 다른 목적은 공정이 단순한 장쇄 2급 디알킬아민 제조용 4성분계 금속 산화물 촉매를 제공하기 위한 것이다.Another object of the present invention is to provide a four-component metal oxide catalyst for preparing long chain secondary dialkylamines having a simple process.

본 발명의 또 다른 목적은 순도 및 품질이 우수한 최종 생성물을 얻을 수 있는 장쇄 2급 디알킬아민 제조용 4성분계 금속 산화물 촉매를 제공하기 위한 것이다.It is another object of the present invention to provide a four-component metal oxide catalyst for preparing long-chain secondary dialkylamines capable of obtaining a final product having excellent purity and quality.

본 발명의 상기 및 기타 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.

본 발명의 장쇄 2급 디알킬아민 제조용 4성분계 금속 산화물 촉매는 8 내지 13의 탄소수를 가지는 장쇄 알콜에 암모니아를 반응시키는 1단계 반응으로 장쇄 2급 디알킬 아민의 제조를 위해 사용되고, 하기 화학식 1로 표시되는 것을 특징으로 한다.The four-component metal oxide catalyst for preparing long-chain secondary dialkylamines of the present invention is used for the preparation of long-chain secondary dialkyl amines in a one-step reaction in which ammonia is reacted with a long-chain alcohol having 8 to 13 carbon atoms. It is characterized by being displayed.

화학식 1Formula 1

NiO(a)·MgO(b)·M(c)·Al2O3(d)NiO (a) MgO (b) M (c) Al 2 O 3 (d)

상기 화학식 1에서, a, b, c 및 d는 촉매 총 중량에 대한 함량을 의미하며, a는 40 내지 80중량%이고, b는 1 내지 15중량%이고, c는 0.5 내지 10중량%이고, d는 20 내지 40중량%이고, M은 몰리브덴(Mo), 텅스텐(W), 망간(Mn) 및 안티몬(Sn) 중에서 선택된 적어도 1종 이상의 금속 원소의 산화물이다.In Formula 1, a, b, c and d means the content relative to the total weight of the catalyst, a is 40 to 80% by weight, b is 1 to 15% by weight, c is 0.5 to 10% by weight, d is 20 to 40% by weight, and M is an oxide of at least one metal element selected from molybdenum (Mo), tungsten (W), manganese (Mn) and antimony (Sn).

상기 화학식 1에서 a는 50 내지 75중량%이고, b는 5 내지 15중량%이고, c는 1 내지 7중량%이고, d는 15 내지 35중량%인 것을 특징으로 한다.In Formula 1, a is 50 to 75% by weight, b is 5 to 15% by weight, c is 1 to 7% by weight, and d is 15 to 35% by weight.

상기 화학식 1의 M이 몰리브덴(Mo) 산화물인 것을 특징으로 한다.M in Formula 1 is characterized in that the molybdenum (Mo) oxide.

상기 8 내지 13의 탄소수를 가지는 장쇄 알콜이 2-에틸헥사놀(2-Ethylhexanol), 노말옥타놀(n-Octanol), 또는 이소트리데카놀(Isotridecanol)인 것을 특징으로 한다.The long-chain alcohol having 8 to 13 carbon atoms is 2-ethylhexanol, 2-octanol, n-Octanol, or isotridecanol.

상기 4성분계 금속산화물 촉매를 이용한 장쇄 2급 디알킬아민 합성조건으로 촉매의 사용량은 반응물에 대해서 1 내지 20중량%, 반응온도는 110 내지 210℃, 반응압력은 0.2 내지 4기압에서 수행하는 것을 특징으로 한다.The use of the catalyst in the synthesis conditions of the long-chain secondary dialkylamine using the four-component metal oxide catalyst is 1 to 20% by weight based on the reactants, the reaction temperature is 110 to 210 ℃, the reaction pressure is carried out at 0.2 to 4 atm It is done.

본 발명은 반응수율이 높고, 공정이 단순하며, 순도 및 품질이 우수한 최종 생성물을 얻을 수 있는 장쇄 2급 디알킬아민 제조용 4성분계 금속 산화물 촉매를 제공하는 발명의 효과를 가진다.The present invention has the effect of providing a four-component metal oxide catalyst for producing a long chain secondary dialkylamine capable of obtaining a final product having a high reaction yield, a simple process, and having excellent purity and quality.

도 1은 본 발명의 일 실시에 따른 촉매를 XRD로 분석한 결과를 나타낸 것이다.Figure 1 shows the results of analyzing the catalyst according to an embodiment of the present invention by XRD.

본 발명은 8 내지 13의 탄소수를 가지는 장쇄 알콜에 암모니아를 반응시켜 1단계로 장쇄 2급 디알킬 아민을 제조하는 기술에 관한 것이다. The present invention relates to a technique for preparing a long chain secondary dialkyl amine in one step by reacting ammonia with a long chain alcohol having 8 to 13 carbon atoms.

하나의 구체적 예로서, 본 발명의 상기 장쇄 알콜에 해당하는 탄소수 13의 이소트리데카놀에 대한 반응식 1은 다음과 같다.As one specific example, Scheme 1 for isotridecanol having 13 carbon atoms corresponding to the long chain alcohol of the present invention is as follows.

반응식 1Scheme 1

Figure pat00001
Figure pat00001

상기 반응식 1에 따라 8 내지 13의 탄소수를 가지는 장쇄 알콜을 출발 물질로 반응기에 투입한 후 상기 반응기에 본 발명에 따른 촉매를 투입한다. 본 발명에 따른 촉매의 화학식은 다음과 같다.According to Scheme 1, a long chain alcohol having 8 to 13 carbon atoms is introduced into the reactor as a starting material, and then the catalyst according to the present invention is introduced into the reactor. The chemical formula of the catalyst according to the invention is as follows.

화학식 1Formula 1

NiO(a)·MgO(b)·M(c)·Al2O3(d)NiO (a) MgO (b) M (c) Al 2 O 3 (d)

상기 화학식 1에서, a, b, c 및 d는 촉매 총 중량에 대한 함량을 의미하며, a는 40 내지 80중량%이고, b는 1 내지 15중량%이고, c는 0.5 내지 10중량%이고, d는 20 내지 40중량%이고, M은 몰리브덴(Mo), 텅스텐(W), 망간(Mn) 및 주석(Sn) 중에서 선택된 적어도 1종 이상의 금속 원소의 산화물이다.In Formula 1, a, b, c and d means the content relative to the total weight of the catalyst, a is 40 to 80% by weight, b is 1 to 15% by weight, c is 0.5 to 10% by weight, d is 20 to 40% by weight, and M is an oxide of at least one metal element selected from molybdenum (Mo), tungsten (W), manganese (Mn) and tin (Sn).

상기 4성분계 금속산화물 촉매의 활성 성분으로서 니켈산화물(NiO)은 40 내지 80중량%이며, 마그네슘산화물(MgO)은 1 내지 15중량%이며, M산화물은 0.5내지 10중량%이며, 알루미늄산화물(Al2O3)은 20내지 40중량%가 되도록 사용하는 것이 바람직하다. 더욱 바람직하게는 니켈산화물은 50 내지 75중량%이고, 마그네슘산화물은 3 내지 12중량%이고, M산화물은 1 내지 7중량%이고, 알루미늄산화물은 22 내지 35중량%이다. 니켈산화물의 함량이 80중량%이상인 경우, 니켈결정의 크기가 증가하여 반응활성이 오히려 감소하고, 40중량% 이하인 경우에는 니켈결정의 크기는 작으나 아민화 활성이 낮아서 전환율이 감소된다. 마그네슘산화물의 함량이 1이하이거나, 알루미늄산화물의 함량이 20중량% 이하이면, 산화니켈(NiO) 결정의 고분산과 균일성이 감소되어 수소화반응 활성이 낮아서 전환율이 낮아지게 되고, 마그네슘산화물의 함량이 15중량% 이상이거나, 알루미늄산화물의 함량이 40중량% 이상이면, 촉매의 산성과 염기성이 크게 증가하게 되어 알돌축합과 과아민화 부반응이 증가하게 되어 2급아민의 선택성이 크게 감소하고, 3급아민 부산물이 증가하게 된다. M산화물의 함량이 0.5 중량% 이하이면 아민화 반응활성을 증가시키거나, 산화니켈(NiO) 결정의 소결을 억제하는 안정화에 의한 촉매반복사용에 의한 수명 증가효과가 없고, 10중량% 이상이면 오히려 산화니켈(NiO) 결정의 생성을 방해하여 촉매활성이 감소되고 전환율이 낮아진다.Nickel oxide (NiO) is 40 to 80% by weight, magnesium oxide (MgO) is 1 to 15% by weight, M oxide is 0.5 to 10% by weight, and aluminum oxide (Al) as an active ingredient of the four-component metal oxide catalyst. 2 O 3 ) is preferably used to 20 to 40% by weight. More preferably, the nickel oxide is 50 to 75% by weight, the magnesium oxide is 3 to 12% by weight, the M oxide is 1 to 7% by weight, and the aluminum oxide is 22 to 35% by weight. When the content of nickel oxide is more than 80% by weight, the size of the nickel crystals increases, the reaction activity is rather reduced, and when the content of the nickel oxide is 40% by weight or less, the nickel crystals are small but the amination activity is low and the conversion rate is reduced. When the content of magnesium oxide is 1 or less, or the content of aluminum oxide is 20% by weight or less, high dispersion and uniformity of nickel oxide (NiO) crystals are reduced, so that the conversion rate is low due to low hydrogenation activity, and the content of magnesium oxide is high. If the content is more than 15% by weight, or the content of aluminum oxide is more than 40% by weight, the acidity and basicity of the catalyst are greatly increased, and the aldol condensation and peraminelation side reactions are increased, thereby greatly reducing the selectivity of the secondary amine and tertiary amine. By-products will increase. If the content of M oxide is 0.5% by weight or less, there is no effect of increasing the amination reaction activity or increasing the service life by repeated use of the catalyst by stabilizing inhibiting sintering of nickel oxide (NiO) crystals. Interfering with the production of nickel oxide (NiO) crystals, the catalytic activity is reduced and the conversion rate is lowered.

상기 8 내지 13의 탄소수를 가지는 장쇄 알콜은 2-에틸헥사놀(2-Ethylhexanol), 노말옥타놀(n-Octanol), 또는 이소트리데카놀(Isotridecanol)이다.The long chain alcohol having 8 to 13 carbon atoms is 2-ethylhexanol, n-Octanol, or isotridecanol.

상기 4성분계 금속산화물 촉매를 이용한 장쇄 2급 디알킬아민 합성조건으로 촉매의 사용량은 반응물에 대해서 1 내지 20중량%, 바람직하게는 3 내지 15중량%, 반응온도는 110 내지 210℃, 바람직하게는 120 내지 190℃, 반응압력은 0.2 내지 4기압, 바람직하게는 0.3내지 3기압에서 수행한다. 촉매량이 20중량% 이상이거나, 반응온도가 210℃ 이상, 반응압력이 0.2기압 이하이면 촉매의 활성이 과도하게 증가되고, 아민화반응이 추가로 진행되어 2급아민이 3급아민으로 전환되므로 2급아민의 수율이 감소한다. 그리고 촉매량이 1중량% 이하이거나, 반응온도가 110℃ 이하, 반응압력이 4기압 이상이면, 전환율이 낮아져서 반응시간이 크게 증가되며, 다른 반응조건을 가혹하게 높여야 하므로 공정운전비용이 증가되고, 2급아민의 수율도 감소된다. The use amount of the catalyst is 1 to 20% by weight, preferably 3 to 15% by weight, and the reaction temperature is 110 to 210 ° C based on the synthesis conditions of the long-chain secondary dialkylamine using the 4-component metal oxide catalyst. 120 to 190 캜, the reaction pressure is carried out at 0.2 to 4 atm, preferably 0.3 to 3 atm. If the amount of the catalyst is 20% by weight or more, or the reaction temperature is 210 ° C or more and the reaction pressure is 0.2 atm or less, the activity of the catalyst is excessively increased, and the amination reaction is further progressed, so that the secondary amine is converted to tertiary amine. The yield of the tertiary amine is reduced. And if the amount of the catalyst is 1% by weight or less, or the reaction temperature is 110 ℃ or less, the reaction pressure is more than 4 atm, the conversion rate is lowered, the reaction time is greatly increased, and other reaction conditions must be severely increased, the process operating cost is increased, 2 The yield of the tertiary amine is also reduced.

이하 본 발명의 실시예를 구체적으로 설명한다. 본 발명은 하기 실시예에 의하여 보다 구체화될 것이고, 하기 실시예는 본 발명의 구체적인 예시에 불과하며 본 발명의 보호범위를 한정하거나 제한하고자 하는 것은 아니다.
Hereinafter, embodiments of the present invention will be described in detail. The present invention will be further illustrated by the following examples, which are merely illustrative of the present invention and are not intended to limit or limit the scope of the present invention.

실시예 1:Example 1:

(1-1) 아민화 촉매 NiO(63)·MgO(7)MoO 3 (5)·Al 2 O 3 (25)제조 (1-1) Amination Catalyst NiO (63), MgO (7) MoO 3 (5), Al 2 O 3 (25) Preparation

질산니켈[Ni(NO3)2·6H2O] 2,094g, 질산마그네슘[Mg(NO3)2·6H2O] 385g 및 질산알루미늄[Al(NO3)3·9H2O] 1,576g을 탈이온수에 녹여 7L 용액을 제조하였다(A 용액). 수산화나트륨[NaOH] 1,120g을 탈이온수에 녹여 7L 용액을 제조하였다(B 용액). 탄산나트륨[Na2CO3] 212g을 탈이온수에 녹여 2L용액을 제조하였다(C 용액). pH전극을 장착한 30L 반응기에 C 용액을 넣고 교반하였다. C 용액의 pH 9에서 A 용액과 B 용액을 같은 유속으로 5시간 동안 첨가하며, 분산물의 최종 pH가 pH 9가 되도록 B 용액으로 조정하였다. C 용액 슬러리에 Na2MoO4·2H2O 73g을 가하여 1시간동안 교반하였다. 그 후 80℃에서 12시간 교반하고 여과하였다. 다음으로 15L 탈이온수를 가하여 분산 교반하고 여과하는 것을 3회 반복하였다. 그 여과된 수산화물을 100℃에서 10시간 건조하였다. 건조된 수산화물을 분쇄기에서 10~60마이크로미터의 크기로 분쇄하고, 600℃에서 6시간 동안 공기 중에 소성하였다. 소성한 산화물 분말을 환원 소성로에서 500℃에서 5시간 동안 수소 흐름 하에서 환원하였다. 공기 중에서 소성된 촉매를 XRD로 분석한 결과, 산화니켈의 결정이 확인되었고, 산화마그네슘, 산화몰리브덴 및 산화알루미늄은 미세한 무정형이었다(도 1). 환원된 촉매 분말은 30℃에서 6시간 동안 이산화탄소가 5% 함유된 질소가스를 흘러 보내어 안정화시키고 촉매로 사용하였다.2,094 g of nickel nitrate [Ni (NO 3 ) 2 · 6H 2 O], 385 g of magnesium nitrate [Mg (NO 3 ) 2 · 6H 2 O] and 1,576 g of aluminum nitrate [Al (NO 3 ) 3 · 9H 2 O] It was dissolved in deionized water to prepare a 7L solution (A solution). 1,120 g of sodium hydroxide [NaOH] was dissolved in deionized water to prepare a 7 L solution (B solution). 212 g of sodium carbonate [Na 2 CO 3 ] was dissolved in deionized water to prepare a 2 L solution (C solution). C solution was added to a 30L reactor equipped with a pH electrode and stirred. A and B solutions were added for 5 hours at the same flow rate at pH 9 of the C solution, and the B solution was adjusted to bring the final pH of the dispersion to pH 9. 73 g of Na 2 MoO 4 .2H 2 O was added to the C solution slurry, and the mixture was stirred for 1 hour. Then, the mixture was stirred at 80 ° C. for 12 hours and filtered. Next, 15 L deionized water was added, the dispersion and stirring were repeated three times. The filtered hydroxide was dried at 100 ° C. for 10 hours. The dried hydroxide was ground to a size of 10 to 60 micrometers in a mill and calcined in air at 600 ° C. for 6 hours. The calcined oxide powder was reduced under hydrogen flow at 500 ° C. for 5 hours in a reduction kiln. As a result of analyzing the calcined catalyst in air by XRD, crystals of nickel oxide were confirmed, and magnesium oxide, molybdenum oxide and aluminum oxide were fine amorphous (FIG. 1). The reduced catalyst powder was stabilized by flowing nitrogen gas containing 5% of carbon dioxide at 30 ° C. for 6 hours and used as a catalyst.

(1-2) 수소화 반응 (1-2) hydrogenation reaction

200L 스테인레스 반응기에 이소트리데카놀 70㎏을 투입하고, NiO(63)·MgO(7)·MoO3(5)·Al2O3(25)촉매 6㎏을 투입하였다. 그 후 질소 가스를 반응기에 주입하고, 탈압을 반복하여 반응기를 질소 치환하였다. 상기 질소 치환 후, 90℃까지 승온하면서 암모니아 가스(NH3)를 1.0기압으로 충진한 후, 160℃까지 승온하여 10시간 동안 아민화 반응을 수행하였다. 반응 후, 60℃로 냉각한 후 탈압하고, 질소 치환한 후, 정치시켜 촉매층을 침전시켰고, 상층에 해당하는 아민층을 증류 단계로 보내어 증류하여 순도 96%의 장쇄 2급아민을 얻었다. 촉매를 분리한 후의 2급 아민과 증류 후의 아민시료는 GC(가스 크로마토그래피)로 분석하였다. 반응결과는 하기 표 1과 같다.
70 kg of isotridecanol was added to a 200 L stainless reactor, and 6 kg of NiO (63) .MgO (7) .MoO 3 (5) .Al 2 O 3 (25) catalyst was added. Thereafter, nitrogen gas was injected into the reactor, and the depressurization was repeated to replace the reactor with nitrogen. After nitrogen substitution, the ammonia gas (NH 3 ) was charged to 1.0 atm while raising the temperature to 90 ° C, and the temperature was raised to 160 ° C to perform the amination reaction for 10 hours. After the reaction, the mixture was cooled to 60 DEG C, depressurized, replaced with nitrogen, left to stand, and the catalyst layer was precipitated. The amine layer corresponding to the upper layer was sent to a distillation step to obtain a long chain secondary amine having a purity of 96%. The secondary amine after the catalyst was separated and the amine sample after distillation were analyzed by GC (gas chromatography). The reaction results are shown in Table 1 below.

실시예 2 ~ 3:Examples 2 to 3:

NiO(a)·MgO(b)·WO3(c)·Al2O3(d)촉매의 조성에서 a는 40 내지 80중량%, b는 1 내지 15중량%, c는 0.5 내지 10중량%, d는 20 내지 40중량%의 범위 내에서 표 1에서와 같이 변화시킨 것 외에는 실시예 (1-1)과 동일하게 촉매를 합성하였고, 반응은 실시예 (1-2)와 같았다. 반응결과는 표 1과 같다.
In the composition of the NiO (a), MgO (b), WO 3 (c), Al 2 O 3 (d) catalyst, a is 40 to 80% by weight, b is 1 to 15% by weight, and c is 0.5 to 10% by weight. and d were synthesized in the same manner as in Example (1-1) except that the values were changed as in Table 1 within the range of 20 to 40% by weight, and the reaction was the same as in Example (1-2). The reaction results are shown in Table 1.

비교 실시예 1 ~ 4:Comparative Examples 1 to 4:

NiO(a)·MgO(b)·WO3(c)·Al2O3(d)촉매의 조성에서 a는 40 내지 80중량%, b는 1 내지 15중량%, c는 0.5 내지 10중량%, d는 20 내지 40중량%의 범위 밖에서 표 1에서와 같이 변화시킨 것 외에는 실시예 (1-1)과 동일하게 촉매를 합성하였고, 반응은 실시예 (1-2)와 같았다. 또한 W.R. Grace사의 Raney 2800(니켈)촉매를 실시예 (1-2)와 같이 반응시켰다. 반응결과는 표 1과 같다.
In the composition of the NiO (a), MgO (b), WO 3 (c), Al 2 O 3 (d) catalyst, a is 40 to 80% by weight, b is 1 to 15% by weight, and c is 0.5 to 10% by weight. , d was synthesized in the same manner as in Example (1-1) except that it was changed as shown in Table 1 outside the range of 20 to 40% by weight, and the reaction was the same as in Example (1-2). In addition, Raney 2800 (nickel) catalyst of WR Grace was reacted as in Example (1-2). The reaction results are shown in Table 1.

실시예 4:Example 4:

NiO(63)·MgO(9)·WO3(3)·Al2O3(25)촉매를 실시예 (1-1)과 동일하게 합성하되 Na2MoO4 2H2O 대신에 Na2WoO4 2H2O를 사용하였고, 반응은 실시예 (1-2)와 같았다. 반응결과는 표 1과 같다.
NiO (63) · MgO (9 ) · WO 3 (3) · Al 2 O 3, but the 25 catalyst Example 1-1 in the same manner as Synthesis 2 MoO 4 2H 2 O instead of Na in Na 2 WoO 4 2H 2 O was used and the reaction was the same as in Example (1-2). The reaction results are shown in Table 1.

실시예 5:Example 5:

NiO(63)·MgO(9)·MnO(3)·Al2O3(25)촉매를 실시예 (1-1)과 동일하게 합성하되 Na2MoO4 2H2O 대신에 질산망간[Mn(NO3)2·6H2O]를 사용하였고, 반응은 실시예 (1-2)와 같았다. 반응결과는 표 1과 같다.
A catalyst of NiO (63), MgO (9), MnO (3), Al 2 O 3 (25) was synthesized in the same manner as in Example (1-1), except that Na 2 MoO 4 Manganese nitrate [Mn (NO 3 ) 2 .6H 2 O] was used instead of 2H 2 O, and the reaction was the same as in Example (1-2). The reaction results are shown in Table 1.

실시예 6:Example 6:

NiO(63)·MgO(9)·SnO2(3)·Al2O3(25)촉매를 실시예 (1-1)과 동일하게 합성하되 Na2MoO4 2H2O 대신에 염화주석[Sn(Cl)4·5H2O]를 사용하였고, 반응은 실시예 (1-2)와 같았다. 반응결과는 표 1과 같다.
A catalyst of NiO (63), MgO (9), SnO 2 (3), Al 2 O 3 (25) was synthesized in the same manner as in Example (1-1), except that tin chloride [Sn was used instead of Na 2 MoO 4 2H 2 O. (Cl) 4 .5H 2 O] was used and the reaction was the same as in Example (1-2). The reaction results are shown in Table 1.

실시예Example 촉매 조성(wt%)Catalyst composition (wt%) 알콜 전환율(%)% Alcohol conversion 1급아민
수율(%)
Primary amine
yield(%)
2급아민 수율(%)Secondary amine yield (%) 3급아민 수율(%)Tertiary amine yield (%)
실시예 1Example 1 NiO(63)·MgO(7)·MoO3(5)·Al2O3(25)NiO (63), MgO (7), MoO 3 (5), Al 2 O 3 (25) 9393 88 8383 33 실시예 2Example 2 NiO(73)·MgO(5)·MoO3(2)·Al2O3(20)NiO (73), MgO (5), MoO 3 (2), Al 2 O 3 (20) 9696 66 8585 55 실시예 3Example 3 NiO(53)·MgO(10)·MoO3(5)·Al2O3(32)NiO (53), MgO (10), MoO 3 (5), Al 2 O 3 (32) 9191 99 8080 22 비교 실시예 1Comparative Example 1 NiO(60)·MgO(7)·MoO3(11)·Al2O3(22)NiO (60), MgO (7), MoO 3 (11), Al 2 O 3 (22) 9898 55 5555 3838 비교 실시예 2Comparative Example 2 NiO(38)·MgO(7)·MoO3(5)·Al2O3(50)NiO (38) MgO (7) MoO 3 (5) Al 2 O 3 (50) 5454 1919 3333 22 비교 실시예 3Comparative Example 3 NiO(63)·MgO(1)·MoO3(0.4)·Al2O3(35.6)NiO (63) MgO (1) MoO 3 (0.4) Al 2 O 3 (35.6) 6565 2727 3737 1One 비교 실시예 4Comparative Example 4 Raney Ni(Ni 89%), W.R. Grace.#2800Raney Ni (Ni 89%), W. R. Grace. # 2800 8888 2828 5353 77 실시예 4Example 4 NiO(63)·MgO(9)·WO3(3)·Al2O3(25)NiO (63), MgO (9), WO 3 (3), Al 2 O 3 (25) 9494 99 8080 55 실시예 5Example 5 NiO(63)·MgO(9)·MnO(3)·Al2O3(25)NiO (63), MgO (9), MnO (3), Al 2 O 3 (25) 9292 1010 8080 22 실시예 6Example 6 NiO(63)·MgO(9)·SnO2(3)·Al2O3(25)NiO (63) MgO (9) SnO 2 (3) Al 2 O 3 (25) 9292 66 8181 55

상기 실시예 1 ~ 3에서와 같이 NiO(a)·MgO(b)·WO3(c)·Al2O3(d)촉매의 조성에서 a는 40 내지 80중량%, b는 1 내지 15중량%, c는 0.5 내지 10중량%, d는 20 내지 40중량%의 범위 내에서 전환율이 91% 이상, 1급아민의 수율이 9% 이하, 2급 장쇄아민의 수율이 80% 이상의 우수한 결과를 나타내었고, 증류시 순도 96% 이상의 고품질의 장쇄 2급아민을 었었다. 그러나, 비교실시예 1 ~ 4에서와 같이 촉매조성에서 a는 40 내지 80중량%, b는 1 내지 15중량%, c는 0.5 내지 10중량%, d는 20 내지 40중량%의 범위 밖의 촉매는 2급아민의 수율이 30%이거나, 3급 아민의 수율이 30% 이상으로 생산수율이 매우 낮았다. 또한 몰리브덴 이외에도 텅스텐, 망간 및 주석 산화물의 첨가에도 2급아민의 수율이 80% 이상으로 고수율의 우수한 촉매였다.
In the composition of the NiO (a), MgO (b), WO 3 (c) Al 2 O 3 (d) catalyst as in Examples 1 to 3, a is 40 to 80% by weight, b is 1 to 15% by weight %, c is in the range of 0.5 to 10% by weight, d is in the range of 20 to 40% by weight conversion of 91% or more, the yield of primary amines of 9% or less, the yield of secondary long-chain amines of 80% or more When the distillation was a high-quality long chain secondary amine of more than 96% purity. However, as in Comparative Examples 1 to 4, in the catalyst composition, a is 40 to 80% by weight, b is 1 to 15% by weight, c is 0.5 to 10% by weight, and d is 20 to 40% by weight of the catalyst. The yield of the secondary amine was 30%, or the yield of the tertiary amine was more than 30%, resulting in very low production yields. In addition to the addition of molybdenum, the addition of tungsten, manganese, and tin oxides yielded excellent yields of secondary amines of 80% or more.

실시예 7 ~ 11:Examples 7-11:

실시예 1-1의 NiO(63)·MgO(7)·MoO3(5)·Al2O3(25)촉매를 사용하되, 표 2에서와 같이 반응조건을 변화하되 반응은 실시예 (1-2)와 같았다. 반응결과는 표 2와 같다.NiO (63), MgO (7), MoO 3 (5), Al 2 O 3 (25) catalyst of Example 1-1 was used, but the reaction conditions were changed as shown in Table 2, but the reaction was performed in Example (1 Was the same as -2). The reaction results are shown in Table 2.

실시예Example 촉매량
(중량%)
Catalytic amount
(weight%)
반응온도 (℃)Reaction temperature (℃) 반응압력 (기압)Reaction pressure (atmospheric pressure) 반응시간 (시간)Response time (hours) 알콜 전환율(%)% Alcohol conversion 1급아민
선택도(%)
Primary amine
Selectivity (%)
2급아민 선택도(%)Secondary amine selectivity (%) 3급아민 선택도(%)Tertiary amine selectivity (%)
실시예 7Example 7 1212 160160 0.70.7 88 9595 66 8181 88 실시예 8Example 8 88 150150 0.80.8 1515 9393 99 8181 33 실시예 9Example 9 88 160160 2.02.0 1212 9898 2525 7070 33 실시예 10Example 10 88 180180 0.80.8 88 9898 44 8383 1111 실시예 11Example 11 55 160160 1.01.0 1010 9393 77 8282 44

실시예 7~11에서와 같이 반응조건으로 촉매의 사용량이 1 내지 20중량%, 반응온도는 110 내지 210℃, 반응압력은 0.2 내지 4기압에서 수행한 결과, 2급 장쇄아민의 수율이 81% 이상으로 고수율로 합성할 수 있었다.
As in Examples 7 to 11, the amount of the catalyst used was 1 to 20% by weight, the reaction temperature was 110 to 210 ° C, the reaction pressure was 0.2 to 4 atm, and the yield of the secondary long-chain amine was 81%. It was able to synthesize | combine with high yield above.

실시예 12 ~ 13Examples 12-13

실시예 (1-1)의 NiO(63)·MgO(7)·MoO3(5)·Al2O3(25)촉매를 사용하되, 표 3에서와 같이 반응물을 이소트리데카놀에서 노말옥타놀과 2-에틸헥사놀로 바꾸어 실시예 (1-2)와 같이 반응하였다. 반응결과는 표 3과 같다.NiO (63), MgO (7), MoO 3 (5), Al 2 O 3 (25) catalysts of Example (1-1) were used, but the reaction was carried out in isotridecanol to normal octane as shown in Table 3. It was reacted with Nol and 2-ethylhexanol as in Example (1-2). The reaction results are shown in Table 3.

실시예Example 반응 알콜Reaction alcohol 알콜 전환율
(%)
Alcohol conversion
(%)
1급아민수율
(%)
Primary amine yield
(%)
2급아민 수율
(%)
Secondary amine yield
(%)
3급아민 수율
(%)
Tertiary Amine Yield
(%)
실시예 12Example 12 노말옥타놀Normal Octanol 9898 77 8686 55 실시예 13Example 13 2-에틸헥사놀2-ethylhexanol 9494 1010 7878 66

실시예 12~13에서와 같이 탄소수가 8인 노말옥타놀과 2-에틸헥사놀을 사용하여 아민화 반응을 수행한 결과, 2급 장쇄아민의 수율이 80% 이상으로 고수율로 합성할 수 있었다.As a result of the amination reaction using normal octanol and 2-ethylhexanol having 8 carbon atoms as in Examples 12 to 13, the yield of secondary long-chain amine was 80% or more, which was synthesized in high yield. .

따라서, 본 발명에 따른 촉매를 이용하여 장쇄 알콜로부터 2급 디알킬아민을 제조하는 경우 공정이 단순하고, 반응수율, 순도 및 품질이 우수한 제품을 생산할 수 있으므로 우수한 품질을 가지는 엔진오일 첨가제와 그리스 첨가제로 사용될 수 있다는 이점이 있다.Therefore, when preparing the secondary dialkylamine from the long-chain alcohol using the catalyst according to the present invention, the engine oil additive and grease additive having excellent quality since the process is simple and can produce a product having excellent reaction yield, purity and quality. There is an advantage that can be used as.

Claims (6)

8 내지 13의 탄소수를 가지는 장쇄 알콜에 암모니아를 반응시키는 1단계 반응으로 장쇄 2급 디알킬 아민의 제조하는 데 사용되고, 하기 화학식 1로 표시되는 것을 특징으로 하는 장쇄 2급 디알킬아민 제조용 4성분계 금속 산화물 촉매:
화학식 1
NiO(a)·MgO(b)·M(c)·Al2O3(d)
상기 화학식 1에서, a, b, c 및 d는 촉매 총 중량에 대한 함량을 의미하며, a는 40 내지 80중량%이고, b는 1 내지 15중량%이고, c는 0.5 내지 10중량%이고, d는 20 내지 40중량%이고, M은 몰리브덴(Mo), 텅스텐(W), 망간(Mn) 및 주석(Sn) 중에서 선택된 적어도 1종 이상의 금속 원소의 산화물이다.
A four-component metal for producing long-chain secondary dialkylamines, which is used to prepare long-chain secondary dialkyl amines in a one-step reaction in which ammonia is reacted with a long-chain alcohol having 8 to 13 carbon atoms. Oxide catalyst:
Formula 1
NiO (a) MgO (b) M (c) Al 2 O 3 (d)
In Formula 1, a, b, c and d means the content relative to the total weight of the catalyst, a is 40 to 80% by weight, b is 1 to 15% by weight, c is 0.5 to 10% by weight, d is 20 to 40% by weight, and M is an oxide of at least one metal element selected from molybdenum (Mo), tungsten (W), manganese (Mn) and tin (Sn).
제 1 항에 있어서, 상기 화학식 1에서 a는 50 내지 75중량%이고, b는 3 내지 12중량%이고, c는 1 내지 7중량%이고, d는 22 내지 35중량%인 것을 특징으로 하는 장쇄 2급 디알킬아민 제조용 금속 산화물 촉매.The long chain according to claim 1, wherein in Formula 1, a is 50 to 75% by weight, b is 3 to 12% by weight, c is 1 to 7% by weight, and d is 22 to 35% by weight. Metal oxide catalyst for the preparation of secondary dialkylamines. 제1항에 있어서, 상기 화학식 1의 M이 몰리브덴(Mo) 산화물인 것을 특징으로 하는 장쇄 2급 디알킬아민 제조용 금속 산화물 촉매.The metal oxide catalyst of claim 1, wherein M in Formula 1 is a molybdenum (Mo) oxide. 제1항에 있어서, 상기 8 내지 13의 탄소수를 가지는 장쇄 알콜이 2-에틸헥사놀(2-Ethylhexanol), 노말옥타놀(n-Octanol), 또는 이소트리데카놀(Isotridecanol)인 것을 특징으로 하는 장쇄 2급 디알킬아민 제조용 금속 산화물 촉매.The long-chain alcohol having a carbon number of 8 to 13 is 2-ethylhexanol, n-octanol, or isotridecanol. Metal oxide catalyst for the production of long chain secondary dialkylamines. 제1항에 있어서, 장쇄 2급 디알킬아민 합성조건으로 촉매의 사용량은 반응물에 대해서 1 내지 20중량%, 반응온도는 110 내지 210℃, 반응압력은 0.2 내지 4기압인 것을 특징으로 하는 장쇄 2급 디알킬아민 제조용 금속 산화물 촉매.According to claim 1, Long chain secondary dialkylamine synthesis conditions using the catalyst is 1 to 20% by weight based on the reactants, the reaction temperature is 110 to 210 ℃, reaction pressure is 0.2 to 4 atm, characterized in that the long chain 2 Metal oxide catalyst for preparing dialkylamines. 제1항에 있어서, 장쇄 2급 디알킬아민 합성조건으로 촉매의 사용량은 반응물에 대해서 3 내지 15중량%, 반응온도는 120 내지 190℃, 반응압력은 0.3 내지 3기압인 것을 특징으로 하는 장쇄 2급 디알킬아민 제조용 금속 산화물 촉매.According to claim 1, Long chain secondary dialkylamine synthesis conditions using the catalyst is 3 to 15% by weight based on the reactants, the reaction temperature is 120 to 190 ℃, the reaction pressure is 0.3 to 3 atmospheres, characterized in that the long chain 2 Metal oxide catalyst for preparing dialkylamines.
KR1020100049429A 2010-05-27 2010-05-27 Metal Oxide Catalyst for Preparing Longer Chain Secondary Dialkylamines KR101175924B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100049429A KR101175924B1 (en) 2010-05-27 2010-05-27 Metal Oxide Catalyst for Preparing Longer Chain Secondary Dialkylamines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100049429A KR101175924B1 (en) 2010-05-27 2010-05-27 Metal Oxide Catalyst for Preparing Longer Chain Secondary Dialkylamines

Publications (2)

Publication Number Publication Date
KR20110130022A true KR20110130022A (en) 2011-12-05
KR101175924B1 KR101175924B1 (en) 2012-08-22

Family

ID=45498919

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100049429A KR101175924B1 (en) 2010-05-27 2010-05-27 Metal Oxide Catalyst for Preparing Longer Chain Secondary Dialkylamines

Country Status (1)

Country Link
KR (1) KR101175924B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19644107A1 (en) 1996-10-31 1998-05-07 Basf Ag Catalysts for the amination of alkylene oxides, alcohols, aldehydes and ketones
DE19742911A1 (en) 1997-09-29 1999-04-01 Basf Ag Process for the production of amines

Also Published As

Publication number Publication date
KR101175924B1 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
RU2480449C2 (en) Method of producing amines from glycerine
CN102933549B (en) Prepare the method for the tertiary methylamine of ring-type
US8933223B2 (en) Process for preparing a cyclic tertiary amine
US8637668B2 (en) Process for preparing a cyclic tertiary methylamine
KR100938300B1 (en) Method for the Production of Isophoronediamine IPDA, 3-aminomethyl-3,5,5-trimethylcyclohexylamine
JP6242878B2 (en) Process for producing mono-N-alkyl-piperazine
US8461391B2 (en) Method for producing N,N-substituted-1,3-propandiamines
US8981093B2 (en) Process for preparing piperazine
EP1454895B1 (en) Production method of xylylenediamine
EP1159252A1 (en) Method for the racemization of optically active amines
WO2014184039A1 (en) Method for preparing n-alkyl-piperazines
KR101175924B1 (en) Metal Oxide Catalyst for Preparing Longer Chain Secondary Dialkylamines
JP4424479B2 (en) Method for producing xylylenediamine
US9315479B2 (en) Process for preparing pyrrolidine
KR101754833B1 (en) Catalyst For Preparing Secondary Dialkylamines and Use Thereof
KR100738232B1 (en) Method of preparing mixed metal oxide catalyst and method of producing long chain aliphatic tertiary amine using the catalyst
WO2014184048A1 (en) Method for preparing n-alkyl-piperazines
WO2013182468A1 (en) Piperazine preparation method
CN103420843A (en) Synthetic method for diiso-tridecylamine
KR101208895B1 (en) Method of producing long chain aliphatic tertiary amine using catalyst with liquid phase
US8884015B2 (en) Process for the preparation of a mono-N-alkypiperazine
JP2015519349A (en) Process for producing mono-N-alkyl-piperazine
CN109912430B (en) Method for synthesizing chloro-p-phenylenediamine
CA3163479A1 (en) Process for preparing amines over a copper catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151008

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160812

Year of fee payment: 5

R401 Registration of restoration