KR20110129519A - A cadmium sulfide quantum dots-tungsten oxide nanohybrid photo-catalyst and preparation method thereof - Google Patents

A cadmium sulfide quantum dots-tungsten oxide nanohybrid photo-catalyst and preparation method thereof Download PDF

Info

Publication number
KR20110129519A
KR20110129519A KR1020100048918A KR20100048918A KR20110129519A KR 20110129519 A KR20110129519 A KR 20110129519A KR 1020100048918 A KR1020100048918 A KR 1020100048918A KR 20100048918 A KR20100048918 A KR 20100048918A KR 20110129519 A KR20110129519 A KR 20110129519A
Authority
KR
South Korea
Prior art keywords
cds
cadmium sulfide
tungsten oxide
quantum dots
sulfide quantum
Prior art date
Application number
KR1020100048918A
Other languages
Korean (ko)
Other versions
KR101112672B1 (en
Inventor
황성주
김효나
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to KR1020100048918A priority Critical patent/KR101112672B1/en
Publication of KR20110129519A publication Critical patent/KR20110129519A/en
Application granted granted Critical
Publication of KR101112672B1 publication Critical patent/KR101112672B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A cadmium sulfide quantum dots-tungsten oxide nanohybrid-based photo catalyst and a method for manufacturing the same are provided to improve the activity and the stability of the catalyst. CONSTITUTION: A method for manufacturing a cadmium sulfide quantum dots-tungsten oxide nanohybrid-based photo catalyst includes the following: A cadmium precursor and a sulfur precursor are reacted to synthesize cadmium sulfide quantum dots. The cadmium sulfide quantum dots are dispersed in a solvent using a dispersing agent. The dispersed cadmium sulfide quantum dots and a tungsten precursor are reacted in an acid solution in order to obtain CdS-WO_x nanohybrid. The CdS-WO_x nanohybrid is thermally treated. The dispersing agent is composed of an amine compounds. The thermal treating process is implemented in a range between 300 and 800 degrees Celsius.

Description

황화카드뮴 양자점-산화텅스텐 나노혼성체 광촉매 및 그 제조방법{A CADMIUM SULFIDE QUANTUM DOTS-TUNGSTEN OXIDE NANOHYBRID PHOTO-CATALYST AND PREPARATION METHOD THEREOF}Cadmium sulfide quantum dot-tungsten oxide nanocomposite photocatalyst and its manufacturing method {A CADMIUM SULFIDE QUANTUM DOTS-TUNGSTEN OXIDE NANOHYBRID PHOTO-CATALYST AND PREPARATION METHOD THEREOF}

본 발명은 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매 및 그 제조방법에 관한 것으로, 보다 상세하게는 광반응에 의해 물을 분해하여 산소 및 수소를 발생시키며, 황화카드뮴 양자점과 산화텅스텐이 나노크기로 결합한 형태의 혼성체인 CdS QDs-WOx(0 < x ≤ 3)의 나노혼성체를 포함한 것을 특징으로 하는 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매 및 그 제조방법에 관한 것이다.The present invention relates to a cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x ) nanocomposite photocatalyst and a method for manufacturing the same, and more specifically, to decompose water by photoreaction to generate oxygen and hydrogen, Cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x ) nanocomposite, comprising a nanocomposite of CdS QDs-WO x (0 <x ≤ 3), a hybrid of tungsten oxide bonded to nanoscale It relates to a photocatalyst and a manufacturing method thereof.

수소에너지는 가용 매장량이 한정적인 기존의 화석연료를 대체할 재생 가능한 차세대 에너지원으로 주목받고 있다. 특히, 20세기 중반부터 가속화된 연료전지 실용화에 관한 연구 성과 및 시장 확대로 지속적으로 그 중요성을 인정받고 있다. 여러 가지 종류의 연료전지 중에서도 상대적으로 저온에서 작동이 가능하고 출력 밀도가 매우 크며 소형화가 가능한 고분자전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC)는 대규모 공장, 각종 운송 수단 및 가정용 발전기(Residential Power Generator: RPG) 등 다양한 방면으로의 적용을 목표로 활발히 연구되어 현재 실용화 단계에 접어들고 있다. 그러나 고분자전해질 연료전지의 상용화를 위해서는 원료인 고순도 및 고품질의 수소가스를 안정적이고 효율적으로 생산 및 공급하는 촉매 공정을 개발하는 것이 선결되어야 한다.Hydrogen energy is drawing attention as a next-generation renewable energy source that will replace existing fossil fuels with limited reserves. In particular, its importance has been continuously recognized through research results and market expansion on fuel cell commercialization accelerated from the mid-20th century. Polymer Electrolyte Membrane Fuel Cells (PEMFCs), which can operate at relatively low temperatures, have a very high power density, and can be miniaturized, are used in large-scale factories, transportation vehicles, and residential power generators. It has been actively researched for application to various aspects such as: RPG) and is currently entering the commercialization stage. However, in order to commercialize the polymer electrolyte fuel cell, it is necessary to develop a catalytic process for stably and efficiently producing high purity and high quality hydrogen gas as a raw material.

한편, 황화카드뮴(Cadmium Sulfide, CdS)는 물을 분해하여 수소를 발생시키는 데에 이상적인 밴드갭 구조를 가지고 있어서 수소 발생용 광촉매의 소재로 각광 받고 있다. 그러나, CdS는 광안정성이 좋지 않아 장시간 빛을 받으면 구조가 무너지는 단점이 있다. 종래에 다양한 문헌에 CdS 양자점(quantum dots, QDs)과 층상 화합물과의 결합물인 혼성체 물질의 개발이 이루어졌다. 그러나, 종래 개발 방법에서 매우 유독한 H2S의 기체상 반응으로 인체에 해로운 합성법이 널리 알려져 있었다. 또한, 용액상 반응에서는 층상 화합물과 양자점과의 반응에서 대부분 이온교환법을 사용하고 있는데 이는 층간공간까지 양자점의 확산에 대한 문제를 안고 있어 층상 화합물의 층상 사이에 다량의 양자점을 삽입하는데 한계를 가지고 있다. 이러한 문제를 해결하기 위하여, 본 발명자는 이미 표면음전하를 갖는 2차원 시트상 구조의 티탄산화물과 양전하를 갖는 CdS 양자점을 반응시켜 상기 티탄산화물 사이에 CdS 양자점이 삽입되어 형성되며, 상기 2차원 시트상 구조의 티탄산화물이 모여 층상구조 또는 카드집 형태의 3차원적 구조를 가지며 상기 층상구조 또는 카드집 형태의 3차원적 구조 내부 공간에 평균 0.1 내지 1,000 nm 범위의 기공이 형성된 것을 특징으로 하는 나노혼성체에 관한 특허를 출원한 바 있다(대한민국 특허출원 제2009-88682호 참조). On the other hand, cadmium sulfide (Cadmium Sulfide, CdS) has a bandgap structure that is ideal for generating hydrogen by decomposition of water is attracting attention as a material of the photocatalyst for hydrogen generation. However, CdS has a disadvantage in that its light stability is poor and the structure collapses when subjected to light for a long time. In the past, various literatures have developed hybrid materials that are combinations of CdS quantum dots (QDs) and layered compounds. However, synthetic methods that are harmful to the human body due to the gaseous reaction of H 2 S, which is very toxic in the conventional development method, have been widely known. In addition, most of the solution-phase reactions use the ion exchange method in the reaction between the layered compound and the quantum dot, which has a problem of diffusion of the quantum dot into the interlayer space and has a limitation in inserting a large amount of quantum dots between the layered layers of the layered compound. . In order to solve this problem, the present inventors react with a titanium oxide having a two-dimensional sheet structure having a surface negative charge and a CdS quantum dot having a positive charge to form a CdS quantum dot inserted between the titanium oxide, and the two-dimensional sheet form Titanium oxide of the structure is gathered to have a three-dimensional structure in the form of a layer structure or a card house, and the nano-hybrid, characterized in that the pores in the range of 0.1 to 1,000 nm is formed in the inner space of the layer or card house three-dimensional structure The patent has been filed for patents (see Korean Patent Application No. 2009-88682).

그러나, 상기 문헌에 개시된 나노혼성체의 경우에도 CdS 양자점이 결합하는 티탄산화물의 크기가 양자점에 비해 매우 크다고 할 것이어서, 이를 보완하기 위해 CdS와 금속산화물을 나노 크기의 상태에서 혼성화한 나노혼성체의 개발이 요구된다. However, the size of the titanium oxide to which the CdS quantum dots bind is very large compared to that of the quantum dots in the case of the nano hybrids disclosed in the above literature, and to compensate for this, the nano hybrids obtained by hybridizing CdS and metal oxides in a nano-sized state Development is required.

따라서, 본 발명이 이루고자 하는 기술적 과제는 각각 수소 및 산소 발생에 적합한 광촉매인 황화카드뮴 양자점 촉매와 산화텅스텐 촉매 성분을 나노크기 상태에서 결합한 나노혼성체의 형태로 제조할 수 있으면서도 촉매활성과 안정성이 우수한 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매를 제공하는 데 있다.Therefore, the technical problem to be achieved by the present invention is to produce a cadmium sulfide quantum dot catalyst and a tungsten oxide catalyst component, which is a photocatalyst suitable for generating hydrogen and oxygen, respectively, in the form of a nano hybrid in which nanoparticles are bonded in a nano-sized state. Cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x ) nanocomposite photocatalyst.

상기 기술적 과제를 달성하기 위하여, 본 발명은 광반응에 의해 물을 분해하여 산소 및 수소를 발생시키며, 황화카드뮴 양자점과 산화텅스텐이 나노크기로 결합한 형태의 혼성체인 CdS QDs-WOx(0 < x ≤ 3)의 나노혼성체를 포함한 것을 특징으로 하는 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매를 제공한다.In order to achieve the above technical problem, the present invention generates oxygen and hydrogen by decomposing water by a photoreaction, CdS QDs-WO x (0 <x It provides a cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x ) nano hybrid photocatalyst comprising a nano hybrid of ≤ 3).

또한, 본 발명은 ⅰ)카드뮴 전구체와 황 전구체를 반응시켜 황화카드뮴(CdS) 양자점을 합성하는 단계,; ⅱ)분산제를 이용하여 상기 CdS 양자점을 용매에 분산시키는 단계,; ⅲ)상기 분산된 CdS 양자점과 텅스텐 전구체를 산 용액에서 반응시켜 CdS-WOx (0 < x ≤ 3)나노혼성체를 제조하는 단계 및; ⅳ)상기 CdS-WOx 나노혼성체를 열처리하는 단계를 포함하는 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매 제조방법을 제공한다.In addition, the present invention comprises the steps of synthesizing cadmium sulfide (CdS) quantum dots by reacting a cadmium precursor and a sulfur precursor; Ii) dispersing the CdS quantum dots in a solvent using a dispersant; Iii) reacting the dispersed CdS quantum dots with a tungsten precursor in an acid solution to produce CdS-WO x (0 <x ≤ 3) nano hybrids; Iii) cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x ) nanocomposite photocatalyst manufacturing method comprising the step of heat-treating the CdS-WO x nano hybrids.

또한, 본 발명은 상기 분산제가 아민화합물인 것을 특징으로 하는 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매 제조방법을 제공한다.The present invention also provides a method for preparing a cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x ) nanocomposite photocatalyst, wherein the dispersant is an amine compound.

또한, 본 발명은 상기 열처리가 300 내지 800 ℃ 범위에서 수행되는 것을 특징으로 하는 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매 제조방법을 제공한다.In addition, the present invention provides a method for producing a cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x ) nanocomposite photocatalyst, characterized in that the heat treatment is performed in the range of 300 to 800 ℃.

본 발명의 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매는 물의 광분해에 의한 수소 및 산소 발생에 적합한 광촉매인 황화카드뮴 양자점 촉매와 산화텅스텐 촉매 성분을 나노크기 상태에서 결합한 나노혼성체의 형태로 제조할 수 있으면서도 촉매활성과 안정성이 우수하다. The cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x ) nanocomposite photocatalyst of the present invention is a nano hybrid in which a cadmium sulfide quantum dot catalyst and a tungsten oxide catalyst component, which is a photocatalyst suitable for hydrogen and oxygen generation by photolysis of water, are combined in a nano-sized state. It can be produced in the form of a sieve, but also has excellent catalytic activity and stability.

도 1은 NH4 +-CdS 양자점(QDs)의 UV-vis 스펙트럼
도 2는 NH4 +-CdS 양자점의 TEM 이미지 및 ED 패턴
도 3은 NH4 +-CdS 양자점의 제타전위(Zeta potantial) 측정결과
도 4는 CdS 양자점과 CdS-WOx 나노혼성체(nanohybrid) 및 열처리 물질들의 XRD 패턴
도 5는 CdS QDs와 CdS-WOx 나노혼성체(nanohybrid) 및 열처리 물질들의 SEM 이미지
도 6은 CdS QDs와 CdS-WOx 나노혼성체(nanohybrid) 600℃ 열처리 물질들의 TEM, FTT 이미지 및 ED 패턴
도 7은 CdS-WOx 나노혼성체(nanohybrid)의 electron mapping 이미지
도 8은 CdS-WOx 나노혼성체(nanohybrid)의 열 중력 분석도
도 9는 CdS QDs와 CdS-WOx 나노혼성체(nanohybrid), 열처리 물질 및 reference 물질들의 고체 UV-vis spectra(○NH4 +-CdS QDs) (-CdS-WOx) (---- CdS-WOx-330) (□Bulk CdS)) (◇ Ammonium metatungstate) (△ WO3)
도 10은 CdS-WOx 나노혼성체(nanohybrid)의 포토크로미즘(photochromism) 현상을 나타낸 사진
도 11은 CdS-WOx 나노혼성체(nanohybrid)의 밴드 구조: type Ⅱ band-edge alignment
도 12는 CdS QDs와 CdS-WOx 나노혼성체(nanohybrid)의 광안정성 비교 결과
1 is a UV-vis spectrum of NH 4 + -CdS quantum dots (QDs)
2 is a TEM image and ED pattern of NH 4 + -CdS quantum dots
3 is a zeta potantial measurement result of NH 4 + -CdS quantum dots
4 is an XRD pattern of CdS quantum dots and CdS-WO x nano hybrids and heat treatment materials.
FIG. 5 is an SEM image of CdS QDs and CdS-WO x nanohybrids and heat treatment materials
FIG. 6 shows TEM, FTT image and ED pattern of CdS QDs and CdS-WO x nanohybrid 600 ° C. heat treated materials
7 is electron mapping image of CdS-WO x nanohybrids (nanohybrid)
8 is a thermal gravity analysis of CdS-WO x nanohybrids (nanohybrid)
9 shows solid UV-vis spectra (○ NH 4 + -CdS QDs) (-CdS-WO x ) (---- CdS of CdS QDs and CdS-WO x nanohybrids, heat-treated materials and reference materials -WO x -330) (□ Bulk CdS)) (◇ Ammonium metatungstate) (△ WO 3 )
10 is a photograph showing photochromism of CdS-WO x nanohybrids (nanohybrid)
11 shows a band structure of CdS-WO x nanohybrids: type II band-edge alignment
FIG. 12 shows the results of comparing photostability of CdS QDs and CdS-WO x nanohybrids (nanohybrid)

이하에서 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매는 광반응에 의해 물을 분해하여 산소 및 수소를 발생시키며, 황화카드뮴 양자점과 산화텅스텐이 나노크기로 결합한 형태의 혼성체인 CdS QDs-WOx의 나노혼성체를 포함한 것을 특징으로 한다. 본 명세서에서 'CdS QD' 또는 'CdS QDs'의 용어는 황화카드뮴 양자점을 의미하고, CdS QDs-WOx의 용어는 황화카드뮴 양자점과 산화텅스텐이 상호 결합된 상태를 의미한다. '나노크기'의 용어는 CdS QDs의 경우 1 ~ 10 nm, CdS QDs-WOx 나노혼성체의 경우 10 ~ 100 nm 범위의 크기를 의미한다. 또한, '나노혼성체'라는 용어는 나노크기의 황화카드뮴 양자점과 산화텅스텐이 결합하여 생성된 나노크기의 물질로, 결합 전 각각의 전구체 물질들의 밴드갭 에너지와는 다른 새로운 밴드갭 에너지를 갖는 혼성체를 의미한다. The cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x ) nanocomposite photocatalyst of the present invention decomposes water by photoreaction to generate oxygen and hydrogen, and a hybrid form of cadmium sulfide quantum dot and tungsten oxide combined with a nano-sized It is characterized by including a nano hybrid of the chain CdS QDs-WO x . As used herein, the term 'CdS QD' or 'CdS QDs' refers to cadmium sulfide quantum dots, and the term CdS QDs-WO x refers to a state in which cadmium sulfide quantum dots and tungsten oxide are bonded to each other. The term 'nano size' means a size in the range of 1 to 10 nm for CdS QDs and 10 to 100 nm for CdS QDs-WO x nanocomposites. In addition, the term 'nano hybrid' is a nano-sized material formed by combining nano-sized cadmium sulfide quantum dots and tungsten oxide, and has a new band gap energy different from the band gap energy of each precursor material before bonding. Means sieve.

여러 금속산화물 중 산화텅스텐(tungsten oxide, WOx)은 물을 분해하여 산소를 발생시키는 데에 이상적인 밴드갭 구조를 가지고 있다. 이러한 산화텅스텐과 CdS를 혼성화한다면 하나의 물질에서 수소와 산소가 모두 발생하는 광촉매로 사용할 수 있으므로 CdS-산화텅스텐(CdS-WOx) 나노혼성체(nanohybrid)를 합성하였다. Among various metal oxides, tungsten oxide (WO x ) has a bandgap structure that is ideal for generating oxygen by decomposing water. If tungsten oxide and CdS are hybridized, CdS-tungsten oxide (CdS-WO x ) nano hybrids (nanohybrid) were synthesized because they can be used as photocatalysts that generate both hydrogen and oxygen in one material.

산화텅스텐은 +6가일 때는 흰색이고 +5가일 때는 파란색을 띄는 성질을 가지고 있어 산화-환원이 됨에 따라 색이 변하는 포토크로미즘 현상이 일어난다. CdS-WOx 나노혼성체에서 산화텅스텐의 전구체로 사용한 암모늄메타텅스테이트는 W+6이므로 흰 색을 띄고, 열처리를 하기 전 나노혼성체는 CdS 양자점과 같은 노란색이므로 텅스텐 부분은 흰색을 띄고 있음을 알 수 있다. 즉, 노란색의 CdS-WOx 나노혼성체에서 텅스텐은 W+6의 상태이다. 그러나 빛을 받으면 수 초 내에 포토크로미즘 현상이 일어나 노란색에서 초록색으로 변하게 되고, 이는 텅스텐 +6가가 환원되어 +5가로 변해 파란색을 띄면서 CdS 양자점의 노란색과 섞여 나노혼성체의 최종색이 초록색으로 보이는 것이다.(도10 참조) 이러한 과정을 통해 CdS-WOx 나노혼성체에서 텅스텐은 +5 ~ +6가의 상태가 가능함을 알 수 있고, 그러므로 상기 산화텅스텐(WOx)의 화학식 중 x는 0 초과 3 이하의 범위인 것이 바람직하고, 더욱 바람직하게는 x는 2.5 내지 3 범위인 것이 바람직하다. Tungsten oxide is white at +6 and blue at +5, which leads to oxidation-reduction photochromism. The ammonium metatungstate used as a precursor of tungsten oxide in the CdS-WO x nanocomposite is W +6, so it is white.The tungsten part is white because the nanocomposite is yellow like CdS quantum dots before heat treatment. Able to know. That is, tungsten is in a state of W + 6 in the yellow CdS-WO x nanomixture. However, when light is received, photochromism occurs within a few seconds, which is changed from yellow to green, which is reduced to tungsten +6 valence to +5 valence, becoming blue, mixed with yellow of CdS quantum dots, and the final color of the nanocomposite becomes green. Through this process, it can be seen that tungsten in the CdS-WO x nanocomposite can be in the range of +5 to +6 valence, and therefore x in the chemical formula of tungsten oxide (WO x ) is 0. It is preferable that it is more than 3 or less range, More preferably, x is in the range of 2.5-3.

또한, CdS-WOx는 촉매로 사용되기 때문에 입자의 크기가 작을수록 비표면적이 넓어져서 촉매 활성이 더 좋을 것 이라고 예상하였다. 그래서 CdS를 quantum dot의 형태로 합성하였다.In addition, since CdS-WO x is used as a catalyst, it is expected that the smaller the particle size, the wider the specific surface area and the better the catalytic activity. Therefore, CdS was synthesized in the form of quantum dot.

본 발명의 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매는 ⅰ)카드뮴 전구체와 황 전구체를 반응시켜 황화카드뮴(CdS) 양자점을 합성하는 단계,; ⅱ)분산제를 이용하여 상기 CdS 양자점을 용매에 분산시키는 단계,; ⅲ)상기 분산된 CdS 양자점과 텅스텐 전구체를 산 용액에서 반응시켜 CdS-WOx 나노혼성체를 제조하는 단계 및; ⅳ)상기 CdS-WOx 나노혼성체를 열처리하는 단계를 포함하는 방법으로 제조될 수 있다. The cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x ) nanocomposite photocatalyst of the present invention comprises the steps of synthesizing a cadmium sulfide (CdS) quantum dot by reacting a cadmium precursor with a sulfur precursor; Ii) dispersing the CdS quantum dots in a solvent using a dispersant; Iii) reacting the dispersed CdS quantum dots with a tungsten precursor in an acid solution to produce a CdS-WO x nano hybrid; Iii) it may be prepared by a method comprising the step of heat-treating the CdS-WO x nanocomposite.

카드뮴 전구체와 황 전구체를 반응시켜 황화카드뮴 양자점(CdS QD)을 합성하기 위해 종래에는 250℃이상의 고온 사용, 진공 또는 비활성 기체 분위기, 독성 용매의 사용, 합성시 여러 합성 단계의 필요성, 낮은 수득율 등의 단점들이 있었다. 이러한 단점들을 보안하기 위하여 본 발명에서는 40~60℃의 낮은 온도, 대기 분위기, 용매로 무독성인 물을 사용, QD합성과 표면 개질 단계를 한꺼번에 수행하여 합성 단계의 단축, 보다 높은 수득율 등의 장점들이 있다. In order to synthesize cadmium sulfide quantum dots (CdS QD) by reacting a cadmium precursor with a sulfur precursor, conventionally, a high temperature of 250 ° C. or higher, a vacuum or inert gas atmosphere, the use of a toxic solvent, the necessity of various synthesis steps in the synthesis, a low yield, etc. There were disadvantages. In order to secure these shortcomings, in the present invention, the low temperature of 40 ~ 60 ℃, the atmosphere, using non-toxic water as a solvent, QD synthesis and surface modification step performed all at once to shorten the synthesis step, higher yields have.

또한, 황화카드뮴 양자점과 산화텅스텐을 혼성화하기 위해서는 표면이 개질된 CdS QD의 합성이 필요하다. 따라서, 본 발명에서는 CdS 양자점을 분산제를 이용하여 나노크기 상태로 분산을 하는 동시에 표면을 양이온성으로 개질을 하는 것이 바람직하다. 두 물질을 혼성화 하기 위해 먼저 각각을 잘 분산시켜야 하는데 이때 분산매로는 안전하고 쉽게 구할 수 있는 물을 사용한다. 물은 상온의 대기 중에서 공기 중에 녹아있는 이산화탄소의 영향으로 pH가 7보다 약간 낮고, 아민화합물(분산제)로 양자점 표면을 개질시킨다면 pH가 7보다는 높은 물질인 아민화합물이 물속의 수소 이온을 양자점쪽으로 끌어와 최종적으로 양자점 표면을 NH4 +로 만들어 양이온을 띄게 한다. 즉, 아민화합물을 분산제로 이용한다면 양자점의 분산과 양이온성 개질을 동시에 이룰 수 있으므로 아민화합물로 양자점 표면을 개질시키는 것이 바람직하다. 상기 아민화합물은 특별히 제한되는 것은 아니며, 질소에 연결된 치환기가 C6 이하의 짧은 사슬길이를 갖는 것이 바람직한데, 그 이유는 양자점 표면과 아민기를 연결하고 있는 탄소 사슬(유기 체인)이 다른 물질들에 비해 가장 짧아서 유기물에 의해 양자점이 함몰되지 않고 활성이 최대화 될 수 있도록 하기 때문이다. 본 발명의 바람직한 태양인 실시예에서는 아민화합물로서 2-메르캅토에틸아민 하이드로틀로라이드(2-mercaptoethylamine hydrochloride)를 사용하였다. In addition, in order to hybridize cadmium sulfide quantum dots and tungsten oxide, synthesis of surface-modified CdS QD is required. Therefore, in the present invention, it is preferable to disperse the CdS quantum dots in a nano size state using a dispersant and to modify the surface cationicly. In order to hybridize the two materials, each must first be well dispersed, using water that is safe and readily available. Water is slightly lower than 7 due to the influence of carbon dioxide dissolved in air in the air at room temperature, and if the surface of the quantum dot is modified with an amine compound (dispersant), the amine compound with a pH higher than 7 attracts hydrogen ions in the water toward the quantum dot. Finally, the quantum dot surface is NH 4 + to give a cation. That is, when the amine compound is used as a dispersant, it is preferable to modify the surface of the quantum dot with the amine compound because the quantum dot can be dispersed and the cationic modification can be simultaneously performed. The amine compound is not particularly limited, and it is preferable that the substituents connected to nitrogen have a short chain length of C6 or less, because the carbon chain (organic chain) connecting the amine dot surface and the amine group is compared with other materials. This is because it is the shortest so that the quantum dots are not submerged by the organic material and the activity can be maximized. In a preferred embodiment of the present invention, 2-mercaptoethylamine hydrochloride was used as the amine compound.

또한, 본 발명에 있어서 상기 분산된 CdS 양자점과 텅스텐 전구체를 반응시켜 CdS-WOx 나노혼성체를 제조하는 단계에서는 산 용액에서 반응시키는 것이 바람직한데, 그 이유는 pH 3~4 부근에서 텅스텐 폴리아니온(tungsten polyanion)의 종이 가장 단일종(W12O39 -6)으로 존재하기 때문이다. 또한, 그 단일종(W12O39 -6)은 tungsten polyanion의 또다른 종들인 WO4 2-나 W6O20(OH)5-보다 강한 음전하를 가지고 있기 때문에 양전하를 띄는 CdS 양자점과 정전기적 인력으로 결합하는 데에 더 유리하다.In the present invention, the dispersed CdS quantum dots and tungsten precursors are reacted to give CdS-WO x In the step of preparing the nano hybrids, it is preferable to react in an acid solution since the species of tungsten polyanion is present as the single species (W 12 O 39 -6 ) near pH 3-4. to be. In addition, the single species (W 12 O 39 -6 ) have a negative charge stronger than that of other species of tungsten polyanion, WO 4 2- or W 6 O 20 (OH) 5- , and thus have a positively charged CdS quantum dot and an electrostatic charge. It is more advantageous to combine by attraction.

상기 열처리는 300 내지 800 ℃ 범위에서 수행되는 것이 바람직한데, 열처리 온도가 300℃ 미만에서 수행되는 경우에는 CdS 양자점과 산화텅스텐의 결합이 약해지는 반면, 800℃를 초과하게 되면 나노혼성체의 분리가 일어날 수 있기 때문이다.Preferably, the heat treatment is performed in the range of 300 to 800 ° C., when the heat treatment temperature is lower than 300 ° C., the bond between the CdS quantum dots and tungsten oxide is weakened, whereas when the heat treatment temperature is higher than 800 ° C., the separation of the nanocomposite is performed. Because it can happen.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석해서는 안된다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only intended to illustrate the invention and should not be construed as limiting the scope of the invention by these examples.

(제조)실시예 1(Manufacture) Example 1

1단계. 표면이 아민으로 개질된 CdS 양자점(Quantum Dots(QDs))의 합성 (NHStage 1. Synthesis of CdS Quantum Dots (QDs) with Surface Modified by Amine (NH 44 ++ -CdS QDs의 합성)-Synthesis of CdS QDs)

Cd 전구체로서 무수아세트산 카드뮴(cadmium acetate dehydrate) 5 (mmol)을, 황 전구체로서 티오아세트아미드(thioacetamide) 6.25 (mmol) 그리고 양자점 표면이 양전하가 띄도록 아민 개질을 시키는 2-mercaptoethylamine hydrocholide 12.5(mmol)을 증류수 250ml에 넣었다. 이 용액을 40℃에서 5시간 동안 환류시키고 60℃에서 5시간 더 환류시킨 후, 상온에서 식혔다. 식힌 용액을 감압 여과하여 불순물을 거르고, 거른 용액을 약 10ml로 농축시켰다. 2-propanol 20ml를 첨가하여 용액이 뿌옇게 변하면 원심분리기로 고체만 거르고, 이 고체를 증류수 5ml에 다시 분산시켜 2-propanol 10ml를 첨가하여 침전 시켰다. 이 과정을 2번 이상 반복한 후, 얻은 고체 수득물을 45℃ 진공하에서 하룻밤 동안 건조시켰다. 도 1은 NH4 +-CdS QDs의 UV-vis spectrum이고, 도 2는 NH4 +-CdS QDs의 TEM 이미지 및 ED 패턴이다. 도 1의 결과 및 CdS QDs 공식(Chem. Mater 2003, 15, 2854 참조)을 통하여 1단계에서 합성한 NH4 +-CdS QDs의 크기가 약 2.5 nm임을 알 수 있었다. 이는 도 2의 TEM 이미지 결과와 일치한다. 또한, 도 3은 NH4 +-CdS QDs의 제타전위 측정 결과로서, 표면 전하가 약 52.3 mV이므로 QDs의 표면이 아민으로 잘 개질 되었음을 알 수 있다.
Cadmium acetate dehydrate 5 (mmol) as a Cd precursor, thioacetamide 6.25 (mmol) as a sulfur precursor, and 2-mercaptoethylamine hydrocholide 12.5 (mmol) to amine the surface of the quantum dots with a positive charge Was added to 250 ml of distilled water. The solution was refluxed at 40 ° C. for 5 hours and further refluxed at 60 ° C. for 5 hours, and then cooled at room temperature. The cooled solution was filtered under reduced pressure to filter out impurities, and the filtered solution was concentrated to about 10 ml. 20 ml of 2-propanol was added and the solution turned cloudy. Only the solid was filtered through a centrifuge, and the solid was dispersed in 5 ml of distilled water, and 10 ml of 2-propanol was added to precipitate. After this procedure was repeated two more times, the solid obtained was dried overnight under vacuum at 45 ° C. 1 is a NH 4 + -CdS UV-vis spectrum of QDs, Figure 2 is a TEM image and the ED pattern of NH 4 + -CdS QDs. The results of FIG. 1 and the CdS QDs formula (see Chem. Mater 2003, 15, 2854) showed that the size of NH 4 + -CdS QDs synthesized in step 1 was about 2.5 nm. This is consistent with the TEM image results in FIG. In addition, Figure 3 is a result of the zeta potential measurement of NH 4 + -CdS QDs, because the surface charge is about 52.3 mV it can be seen that the surface of the QDs modified well with amine.

2단계. CdS QDs과 산화텅스텐(tungsten oxide) 나노혼성체(nanohybrid))의 합성 (CdS-WOStep 2. Synthesis of CdS QDs with Tungsten Oxide Nanoohybrid (CdS-WO) xx 의 합성)Synthesis)

상기 1단계에서 합성한 NH4 +-CdS QDs 0.2424g와 암모늄 메타텅스테이트(ammonium metatungstate) 0.087g을 증류수 30ml에 각각 분산시켰다. 두 용액에 HCl을 첨가하여 pH 4로 맞춘 후, NH4 +-CdS QDs 용액에 암모늄 메타텅스테이트(ammonium metatungstate) 용액을 조금씩 떨어뜨렸다. 암모늄 메타텅스테이트 용액이 NH4 +-CdS QDs 용액에 모두 들어간 후, 약 2시간 동안 상온에서 교반을 계속 해주었다. 원심분리기로 침전시켜 고체만 얻고, 얻은 고체를 증류수에서 분산시켰다가 다시 침전시키는 과정을 3번 이상 반복한 후, 최종 수득물을 45℃ 진공하에서 하룻밤 동안 건조시켰다. 이러한 CdS QDs을 이용하여 만든 CdS-WOx를 N2 분위기에서 각각 330, 600 및 800℃의 온도에서 열처리를 하였다. 0.2424 g of NH 4 + -CdS QDs synthesized in step 1 and 0.087 g of ammonium metatungstate were dispersed in 30 ml of distilled water, respectively. After adding HCl to both solutions to pH 4, ammonium metatungstate solution was added dropwise to the NH 4 + -CdS QDs solution. After the ammonium metatungstate solution entered the NH 4 + -CdS QDs solution, stirring was continued at room temperature for about 2 hours. Precipitating by centrifugation gave only solids, the obtained solid was dispersed in distilled water and precipitated again three more times, and then the final product was dried under vacuum at 45 ° C. overnight. CdS-WO x made using these CdS QDs was heat-treated at temperatures of 330, 600 and 800 ° C. in an N 2 atmosphere, respectively.

도 4는 CdS QDs와 CdS-WOx, CdS-WOx의 열처리 물질들의 XRD 결과이다. 330℃ 열처리 물질까지는 XRD peak들이 매우 넓게 나오지만, 600℃와 800℃ 열처리 물질들의 경우에는 나온 peak들이 CdS hexagonal과 WO3 헥사고날 피크(hexagonal peak)와 일치하므로, CdS-WOx의 결정 구조가 hexagonal임을 알 수 있다. 도 5의 SEM 이미지들을 보면, 상온에서 합성한 CdS-WOx로부터 열처리의 온도가 높은 시료로 갈수록 입자의 크기가 커지고, 입자 표면의 매끈함이 덜해지는 것을 알 수 있다. 특히, 800℃ 열처리 시료의 경우, 큰 덩어리 입자 부분과 나노바늘(nano-needle) 부분으로 분리가 되는데, EDS 분석 결과에 의하면 큰 덩어리 입자 부분은 cadmium과sulfur의 비율이, 나노바늘 부분은 텅스텐의 비율이 압도적으로 우세하게 나타났다. 이로써 800℃ 열처리 시료에서는CdS와 산화텅스텐간의 분리가 일어났음을 알 수 있다. 도 6의 TEM과 FFT 이미지에 의하면, 열처리하기 전의 CdS-WOx는 결정성을 갖는 CdS와 비결정질의 성질을 갖는 tungsten polyanion이 결합한 상태로 존재한다. 그러나 CdS-WOx를 열처리하면 CdS와 산화텅스텐의 결정성이 모두 존재하고, 산화텅스텐과 CdS가 잘 붙어있는 형태이다. 이는 균질하게 Cd, S, W이 존재하는 electron mapping의 결과(도 7)와도 잘 일치한다. ICP 분석 결과 cadmium과 tungsten의 비가 4.53:1 이고, EDS 분석 결과 황:카드뮴 비가 1.14:1 이다. CdS QDs은 cadmium과 sulfur가 1:1로 존재한다고 가정하므로, 남는 0.14의 sulfur는 CdS QDs의 표면을 아민으로 개질하는데 사용한 2-메르캅토에틸아민 하이드로클로라이드(2-mercaptoethylamine hydrocholide, SCN)가 QDs표면에 붙어있는 양이다. 또한 열분석(TG) 결과(도 8) 물의 질량 감소가 약 10% 이므로, CdS-WOx의 화학식은 4.53(CdS)(SCN)0.14(WOx)·zH2O(z= 질량 감소 약 10%)라고 유추된다.4 is an XRD result of CdS QDs and heat treatment materials of CdS-WO x and CdS-WO x . XRD peaks are very wide up to 330 ° C heat-treated material, but for 600 ° C and 800 ° C heat-treated materials, the resulting peaks coincide with CdS hexagonal and WO 3 hexagonal peaks, so the crystal structure of CdS-WO x is hexagonal. It can be seen that. 5, it can be seen from the CdS-WO x synthesized at room temperature that the larger the temperature of the heat treatment, the larger the particle size, the less smooth the surface of the particle. Particularly, in case of 800 ℃ heat-treated sample, large particles and nano-needle parts are separated. According to the EDS analysis, large particles are cadmium and sulfur ratio, and nano needles are made of tungsten. The proportion was overwhelmingly dominant. Thus, it can be seen that separation between CdS and tungsten oxide occurred in the 800 ° C. heat-treated sample. According to the TEM and FFT images of FIG. 6, CdS-WO x before heat treatment exists in a state in which CdS having crystallinity and tungsten polyanion having amorphous properties are combined. However, when CdS-WO x is heat-treated, both crystallinities of CdS and tungsten oxide exist, and tungsten oxide and CdS adhere well. This is in good agreement with the result of electron mapping in which homogeneously Cd, S, and W are present (FIG. 7). As a result of ICP analysis, the ratio of cadmium and tungsten was 4.53: 1, and the result of EDS analysis was sulfur: cadmium ratio of 1.14: 1. Since CdS QDs assume that cadmium and sulfur are present at 1: 1, the remaining 0.14 sulfur is the 2-mercaptoethylamine hydrocholide (SCN) used to modify the surface of CdS QDs to amines. The amount attached to. In addition, the result of thermal analysis (TG) (Fig. 8) shows that the mass loss of water is about 10%, so that the chemical formula of CdS-WO x is 4.53 (CdS) (SCN) 0.14 (WO x ) .zH 2 O (z = mass reduction of about 10 Inferred%).

도 9는 CdS-WOx의 고체 UV-vis spectroscopy 결과이고, 도 10은 CdS-WOx 나노혼성체(nanohybrid)의 포토크로미즘(photochromism) 현상을 나타낸 사진이며, 도 11은 CdS-WOx 나노혼성체(nanohybrid)의 밴드 구조: type Ⅱ band-edge alignment이다. Kubelka-Munk식에 의해 구한 밴드갭 에너지는 표 1과 같다. 각각의 밴드갭 에너지 차이로부터 CdS-WOx에서 밴드갭 에너지의 re-engeneering이 있음을 알 수 있다. 이것은 또한 포토크로미즘(photochromism) 현상(도 10)을 통해서도 알 수 있다. 도 10의 현상은 텅스텐 전구체로 사용한 암모늄 메타텅스테이트(ammonium metatungstate)와 CdS-WOx에 420 nm 이상 파장의 빛(450W Xe lamp 사용)을 조사하였을 때 발생한다. CdS-WOx는 빛을 조사하자마자 색 변화가 일어나지만 암모늄 메타텅스테이트는 1시간 가량 빛을 조사하여도 색 변화가 일어나지 않는다. 고체 UV-vis spectroscopy 결과와 포토크로미즘(photochromism) 현상을 통하여 CdS-WOx의 밴드 구조는 CdS의 conduction band와 valance band가 산화텅스텐(tungsten oxide)의 그것들 보다 높은 위치에 있는 type Ⅱ band-edge alignment (도 11)로 유추된다. 표면이 개질된 CdS QDs와 CdS-WOx의 광안정성을 평가해보니 (도 12) 후자의 광안정성이 현저히 증가하였다.9 is a solid-state UV-vis spectroscopy results of the CdS-WO x, 10 is a photo showing a picture chromism (photochromism) developing the CdS-WO x nano hybrid material (nanohybrid), 11 is a CdS-WO x nano Band structure of the hybrid (nanohybrid): type II band-edge alignment. The bandgap energy obtained by Kubelka-Munk equation is shown in Table 1. It can be seen from each bandgap energy difference that there is re-engeneering of the bandgap energy at CdS-WO x . This can also be seen through the photochromism phenomenon (Fig. 10). The phenomenon of FIG. 10 occurs when light having a wavelength of more than 420 nm (using 450 W Xe lamp) is irradiated to ammonium metatungstate used as a tungsten precursor and CdS-WO x . CdS-WO x changes color as soon as light is irradiated, while ammonium metatungstate does not change color after 1 hour of light irradiation. Through solid UV-vis spectroscopy and photochromism, the band structure of CdS-WO x is a type II band-edge where the conduction and valance bands of CdS are higher than those of tungsten oxide. Inferred by alignment (Figure 11). When the light stability of the surface-modified CdS QDs and CdS-WO x was evaluated (FIG. 12), the light stability of the latter was significantly increased.

하기 표1은 CdS QDs와 CdS-WOx 나노혼성체(nanohybrid), 열처리 물질 및 reference 물질들의 밴드갭 에너지(bandgap energy)를 나타낸 결과이다.Table 1 below shows the bandgap energy of CdS QDs and CdS-WO x nano hybrids (nanohybrid), heat treatment materials, and reference materials.

Sample NameSample Name Bandgap Energy (eV)Bandgap Energy (eV) NH4 +-CdS QDsNH 4 + -CdS QDs 2.832.83 CdS-WOx CdS-WO x 2.732.73 CdS-WOx-330CdS-WO x -330 1.91.9 Ammonium metatungstate (ref.)Ammonium metatungstate (ref.) 33 WO3 (ref.)WO 3 (ref.) 2.62.6 Bulk CdSBulk CdS 2.32.3

(사용)실시예 2(CdS QDs-산화텅스텐 나노혼성체(nanohybrid)의 수소 발생 실험)Example 2 Hydrogen Generation Experiments of CdS QDs-Tungsten Oxide Nanohybrids

2단계의 최종 수득물을 곱게 갈은 후, 0.1 M짜리 Na2S와 0.02 M짜리 Na2SO3 용액 100ml 당 0.05g의 나노혼성체(nanohybrid)를 넣어 잘 분산시켰다. 광촉매반응 용기에 30분간 아르곤 가스를 흘려주어 비활성 분위기로 만든 후, 450 W 광원에서 420 nm 이상의 빛을 쪼여주고 매시간 기체를 수집하여 기체 크로마토그래피로 성분을 분석하였다. CdS-WOx를 가시광 영역에서 물을 분해하여 수소를 발생시키는 광촉매로 활용하였다. 수소의 발생 속도는 13.24(micromol/h)이었고, 백금을 co-catalyst로 하여 약 8% Pt-loading한 경우에는 23.14 (micromol/h)이었다. 두 경우 모두 가시광을 조사한지 30시간이 지나도 이와 유사한 속도로 계속 수소가 발생하였고 이로써 CdS-WOx의 광분해가 일어나지 않고 촉매 활성이 지속되고 있음을 알 수 있다. After finely grinding the final step of two steps, 0.05g of nano hybrids (nanohybrid) per 100ml of 0.1M Na 2 S and 0.02M Na 2 SO 3 solution was added well dispersed. After argon gas was flowed into the photocatalyst vessel for 30 minutes to make it in an inert atmosphere, light was emitted at a wavelength of 420 nm or more from a 450 W light source, and gas was collected every hour to analyze the components by gas chromatography. CdS-WO x was used as a photocatalyst to generate hydrogen by decomposing water in the visible region. The generation rate of hydrogen was 13.24 (micromol / h), and 23.14 (micromol / h) when Pt-loaded with platinum as co-catalyst. In both cases, even after 30 hours of irradiation with visible light, hydrogen continued to be generated at a similar rate, indicating that the catalytic activity was continued without photolysis of CdS-WO x .

앞에서 설명된 본 발명의 일실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.The embodiments of the present invention described above should not be construed as limiting the technical idea of the present invention. The scope of protection of the present invention is limited only by the matters described in the claims, and those skilled in the art will be able to modify the technical idea of the present invention in various forms. Therefore, such improvements and modifications will fall within the protection scope of the present invention, as will be apparent to those skilled in the art.

Claims (4)

광반응에 의해 물을 분해하여 산소 및 수소를 발생시키며,
황화카드뮴 양자점과 산화텅스텐이 나노크기로 결합한 형태의 혼성체인 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx, 0 < x ≤ 3)의 나노혼성체를 포함한 것을 특징으로 하는 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매.
It decomposes water by photoreaction to generate oxygen and hydrogen,
Cadmium sulfide quantum dot-tungsten oxide characterized in that it comprises a nano hybrid of cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x , 0 <x ≤ 3), a hybrid of cadmium sulfide quantum dots and tungsten oxide (CdS QDs-WO x ) Nanohybrid Photocatalysts.
ⅰ)카드뮴 전구체와 황 전구체를 반응시켜 황화카드뮴(CdS) 양자점을 합성하는 단계,;
ⅱ)분산제를 이용하여 상기 CdS 양자점을 용매에 분산시키는 단계,;
ⅲ)상기 분산된 CdS 양자점과 텅스텐 전구체를 산 용액에서 반응시켜 CdS-WOx 나노혼성체를 제조하는 단계 및;
ⅳ)상기 CdS-WOx 나노혼성체를 열처리하는 단계를 포함하는 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매 제조방법(0< x ≤3).
Iii) reacting the cadmium precursor with the sulfur precursor to synthesize cadmium sulfide (CdS) quantum dots;
Ii) dispersing the CdS quantum dots in a solvent using a dispersant;
Iii) reacting the dispersed CdS quantum dots with a tungsten precursor in an acid solution to produce a CdS-WO x nano hybrid;
Iii) Cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x ) nanocomposite photocatalyst manufacturing method comprising the step of heat-treating the CdS-WO x nanocomposite (0 <x ≤ 3).
제2항에 있어서,
상기 분산제는 아민화합물인 것을 특징으로 하는 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매 제조방법.
The method of claim 2,
Cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x ) nano hybrid photocatalyst manufacturing method, characterized in that the dispersing agent is an amine compound.
제2항에 있어서,
상기 열처리는 300 내지 800 ℃ 범위에서 수행되는 것을 특징으로 하는 황화카드뮴 양자점-산화텅스텐(CdS QDs-WOx) 나노혼성체 광촉매 제조방법.
The method of claim 2,
Cadmium sulfide quantum dot-tungsten oxide (CdS QDs-WO x ) nano hybrid photocatalyst manufacturing method, characterized in that the heat treatment is performed in the range of 300 to 800 ℃.
KR1020100048918A 2010-05-26 2010-05-26 A cadmium sulfide quantum dots-tungsten oxide nanohybrid photo-catalyst and preparation method thereof KR101112672B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100048918A KR101112672B1 (en) 2010-05-26 2010-05-26 A cadmium sulfide quantum dots-tungsten oxide nanohybrid photo-catalyst and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100048918A KR101112672B1 (en) 2010-05-26 2010-05-26 A cadmium sulfide quantum dots-tungsten oxide nanohybrid photo-catalyst and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20110129519A true KR20110129519A (en) 2011-12-02
KR101112672B1 KR101112672B1 (en) 2012-03-13

Family

ID=45498618

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100048918A KR101112672B1 (en) 2010-05-26 2010-05-26 A cadmium sulfide quantum dots-tungsten oxide nanohybrid photo-catalyst and preparation method thereof

Country Status (1)

Country Link
KR (1) KR101112672B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316693A (en) * 2013-07-03 2013-09-25 西北师范大学 Photocatalyst Cd/CdS containing catalyst promoter Cd as well as preparation method and application of photocatalyst Cd/CdS in photocatalysis hydrogen production reaction
KR20210024701A (en) * 2019-08-26 2021-03-08 중앙대학교 산학협력단 Tungsten oxide doped with quantum dots and preparation method thereof
CN116393147A (en) * 2023-04-12 2023-07-07 南通大学 Synthesis method of triangular flaky cadmium sulfide coated tungsten oxide composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112028115A (en) * 2020-09-18 2020-12-04 东北林业大学 Cadmium sulfide quantum dot and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518956B1 (en) * 2001-04-25 2005-10-05 (주) 나노팩 Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
US7569508B2 (en) * 2004-11-17 2009-08-04 Headwaters Technology Innovation, Llc Reforming nanocatalysts and method of making and using such catalysts
KR100529372B1 (en) * 2003-08-01 2005-11-17 이태규 An Apparatus For Removing Heavy Metals Using Photocatalyst And Method Using Thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316693A (en) * 2013-07-03 2013-09-25 西北师范大学 Photocatalyst Cd/CdS containing catalyst promoter Cd as well as preparation method and application of photocatalyst Cd/CdS in photocatalysis hydrogen production reaction
KR20210024701A (en) * 2019-08-26 2021-03-08 중앙대학교 산학협력단 Tungsten oxide doped with quantum dots and preparation method thereof
CN116393147A (en) * 2023-04-12 2023-07-07 南通大学 Synthesis method of triangular flaky cadmium sulfide coated tungsten oxide composite material
CN116393147B (en) * 2023-04-12 2023-11-28 南通大学 Synthesis method of triangular flaky cadmium sulfide coated tungsten oxide composite material

Also Published As

Publication number Publication date
KR101112672B1 (en) 2012-03-13

Similar Documents

Publication Publication Date Title
Lu et al. Metal–organic framework-derived heterojunctions as nanocatalysts for photocatalytic hydrogen production
Kong et al. Harnessing Vis–NIR broad spectrum for photocatalytic CO 2 reduction over carbon quantum dots-decorated ultrathin Bi 2 WO 6 nanosheets
US10105687B1 (en) Heterostructured Bi2S3—ZnS photocatalysts and methods thereof
Xu et al. Enhanced photocatalytic activity by the construction of a TiO 2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly
Zou et al. One-pot cation exchange synthesis of 1D porous CdS/ZnO heterostructures for visible-light-driven H 2 evolution
Wang et al. Bidentate-complex-derived TiO 2/carbon dot photocatalysts: in situ synthesis, versatile heterostructures, and enhanced H 2 evolution
Ding et al. Synthesis and characterization of single-crystalline Bi 2 O 2 SiO 3 nanosheets with exposed {001} facets
Xing et al. Self-assembly fabrication of 3D porous quasi-flower-like ZnO nanostrip clusters for photodegradation of an organic dye with high performance
CN108246331B (en) ZnS micron composite material modified by graphene nitrogen carbide quantum dots and preparation method and application thereof
CN113181945B (en) Preparation method of composite photocatalyst capable of efficiently producing hydrogen peroxide
Zhang et al. g‐C3N4 Nanosheet Nanoarchitectonics: H2 Generation and CO2 Reduction
Hermawan et al. Enhanced visible-light-induced photocatalytic NOx degradation over (Ti, C)-BiOBr/Ti3C2Tx MXene nanocomposites: role of Ti and C doping
Wu et al. Polyoxometalate-based yolk@ shell dual Z-scheme superstructure tandem heterojunction nanoreactors: encapsulation and confinement effects
KR101112672B1 (en) A cadmium sulfide quantum dots-tungsten oxide nanohybrid photo-catalyst and preparation method thereof
Wang et al. Titanocene dichloride (Cp 2 TiCl 2) as a precursor for template-free fabrication of hollow TiO 2 nanostructures with enhanced photocatalytic hydrogen production
KR101447480B1 (en) Nanohybrid, photocatalyst including the same, and preparing method of the nanohybrid
Zhai et al. Abundant hydroxyl groups decorated on nitrogen vacancy-embedded gC 3 N 4 with efficient photocatalytic hydrogen evolution performance
Xu et al. A general and rapid approach to crystalline metal sulfide nanoparticle synthesis for photocatalytic H 2 generation
US20130315787A1 (en) Nanocrystals and methods and uses thereof
Wang et al. Highly efficient photocatalytic H2O2 production by tubular g-C3N4/ZnIn2S4 nanosheet heterojunctions via improved charge separation
Jiang et al. A direct route for the synthesis of nanometer-sized Bi 2 WO 6 particles loaded on a spherical MCM-48 mesoporous molecular sieve
Wang et al. Z-scheme LaCoO 3/C 3 N 5 for efficient full-spectrum light-simulated solar photocatalytic hydrogen generation
WO2017068350A1 (en) Methods of making metal oxide catalysts
Cruz-González et al. Study of the Effect of TiO2 Layer on the Adsorption and Photocatalytic Activity of TiO2‐MoS2 Heterostructures under Visible‐Infrared Light
KR101246811B1 (en) Porous graphene-layered titanium oxide nanohybrids and production method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150114

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee