KR20110119578A - 소형 기지국 및 그의 상향링크 전력제어 방법 - Google Patents
소형 기지국 및 그의 상향링크 전력제어 방법 Download PDFInfo
- Publication number
- KR20110119578A KR20110119578A KR1020110039147A KR20110039147A KR20110119578A KR 20110119578 A KR20110119578 A KR 20110119578A KR 1020110039147 A KR1020110039147 A KR 1020110039147A KR 20110039147 A KR20110039147 A KR 20110039147A KR 20110119578 A KR20110119578 A KR 20110119578A
- Authority
- KR
- South Korea
- Prior art keywords
- base station
- user terminal
- power control
- small base
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
- H04W52/244—Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/26—TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
- H04B17/27—Monitoring; Testing of receivers for locating or positioning the transmitter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/345—Interference values
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/32—Hierarchical cell structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/28—TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
- H04W52/283—Power depending on the position of the mobile
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/367—Power values between minimum and maximum limits, e.g. dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/045—Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
상향링크 송신 전력을 제어하는 소형 기지국 및 그의 전력제어 방법이 개시된다. 본 발명에 의하면, 상/하향링크를 통해 기지국 주변의 무선환경 정보를 측정하고, 무선환경 정보를 이용하여 전력제어 파라미터를 산출한다. 전력제어 파라미터는 사용자 단말로 전송되고, 사용자 단말은 전력제어 파라미터를 이용하여 상향링크 송신 전력을 설정한다. 여기서 무선환경 정보는, 상향링크 수신기를 이용하여 측정된 주변 사용자 단말의 간섭량 정보와, 하향링크 수신기를 이용하여 측정된 인접 기지국과의 경로 손실 정보 중 적어도 하나를 포함한다.
Description
본 발명은 이동통신 시스템 분야에 관한 것으로, 특정 기지국이 어느 위치에 설치될지 모르는 상황에서 기지국 주변의 무선 환경을 측정하여 상향링크 송신 전력을 제어할 수 있는 소형 기지국 및 그의 전력제어 방법에 관한 것이다.
3GPP(3rd generation partnership project) LTE(Long Term Evolution)의 상향링크(uplink)는 SC-FDMA(single carrier frequency division multiple access)에 기반한 무선 기술을 사용하여 통신한다. 상향링크에서는 전력제어(Power Control)가 필수적으로 이루어지는데, LTE에서는 분할 전력제어(FPC: Fractional Power Control) 방법을 이용한다. 분할 전력제어 방법은 저속의 채널 변화를 보상하는 개방형 전력제어(open loop power control) 방식과, 간섭의 변화 및 경로 손실 측정 에러 등을 보완하는 폐쇄형 전력제어(close loop power control) 방식 중 적어도 어느 하나를 포함할 수 있다.
고속의 데이터 전송률을 요구하는 이동통신 시스템은 매크로 기지국(Macro base station)과는 별도로, 댁내의 펨토 기지국(Femto base station) 등의 소형 기지국을 이용하여 양질의 서비스를 가입자에게 제공한다.
기지국의 가변적인 위치(소형 기지국은 서비스 제공자에 의해 지정된 최적의 위치에 설치되는 것이 아니라 사용자가 임의로 설치함)와 변화하는 무선 환경에 대한 최적의 조건을 찾기는 쉽지 않기 때문에 기지국과 네트워크가 자동적으로 설치되고 변화하는 무선환경 및 데이터 트래픽 환경에 적응하는 SON(Self-organizing Network)이 필요하게 되었다. SON을 구현하기 위해서는 무선 정보의 측정과 주변 네트워크 정보가 필요하며, 정확하고 풍부한 입력 정보로부터 효과적인 SON 알고리즘이 구현된다.
전술한 바와 같이 작은 셀 커버리지(coverage)를 요구하는 이동통신 시장의 흐름에 따라 동일한 지역에서 양질의 서비스를 하기 위해서는 더 많은 기지국이 필요하게 되었고, 다수의 기지국을 설치 및 유지하기 위해서는 네트워크 설치 및 유지 비용이 과도하게 소요된다. 더욱이 펨토 기지국과 같은 소형 기지국의 경우에는 더 많은 기지국이 설치될 것이 예상되고, 기지국의 On/Off가 자유로워지며 기지국의 이동성을 보장해야 한다. 이에 따라 기지국을 옥내 및 옥외에 설치할 때 기지국 스스로가 망에 접속/설정하고 주변 무선환경에 따라 적절히 셀 최적화 및 운영을 수행할 수 있는 기능을 갖춘 SON의 기능이 절실히 요구되었다. SON을 통해 네트워크 사업자는 수동적으로 제어되는 망을 자동적으로 운영할 수 있게 된다. SON 기능이라 함은, 기지국이 자신의 설정값 등을 자동으로 설정하고 최적화하는 기능이다.
SON은 기지국의 설치 및 최적화를 위해 모든 기지국에 필요한 기능이지만, 소형 기지국과 같이 사용자가 직접 설치해야 하는 경우에는 더욱 필요한 기능이다. 즉 소형 기지국의 경우에는 사용자가 구매하여 댁내에 설치하거나 이사 등의 이유로 인하여 다른 곳으로 옮겨야 하는 경우 편리하게 설치할 수 있도록 SON 기능의 강화가 필요하다.
소형 기지국이 처한 주변환경(예를 들어, 매크로 기지국과의 거리)은 소형 기지국마다 다르기 때문에 사용되는 전력제어 파라미터도 상이하게 설정되어야 한다. 그러나, 소형 기지국은 매크로 기지국에 비해 숫자가 많고 더욱이 서비스 제공자에 의해 지정된 최적의 위치에 설치되는 것이 아니라 사용자가 임의의 장소로 설치되기 때문에 각각의 소형 기지국에서 적합한 전력제어 파라미터를 설정하기가 어려운 문제점이 있다.
본 발명은 특정 기지국이 어느 위치에 설치될지 모르는 상황에서 기지국 주변의 무선 환경을 측정하여 상향링크 송신 전력을 제어할 수 있는 소형 기지국 및 그의 전력제어 방법을 제공한다.
상향링크 송신 전력을 제어할 수 있는 소형 기지국 및 그의 전력제어 방법이 개시된다. 본 발명에 의하면, 소형 기지국이 상/하향링크를 통해 기지국 주변의 무선환경 정보를 측정하고, 무선환경 정보를 이용하여 전력제어 파라미터를 산출한다. 전력제어 파라미터는 사용자 단말로 전송되고, 사용자 단말은 전력제어 파라미터를 이용하여 상향링크 송신 전력을 설정한다. 여기서 무선환경 정보는, 상향링크 수신기를 이용하여 측정된 주변 사용자 단말의 간섭량 정보와, 하향링크 수신기를 이용하여 측정된 인접 기지국과의 경로 손실 정보 중 적어도 하나를 포함한다.
본 발명에 따르면, 기지국이 설치되는 위치에 관계없이 효율적으로 기지국의 전력제어를 수행할 수 있다.
도 1 및 4는 본 발명의 실시예에 따른 이동통신 시스템의 구성을 보이는 예시도.
도 2는 본 발명의 실시예에 따른 이동통신 시스템을 보이는 예시도.
도 3은 본 발명의 실시예에 따른 펨토 기지국의 구성을 보이는 블록도.
도 5는 매크로셀의 처리용량과 셀 경계에서의 성능을 보이는 그래프.
도 6은 펨토셀의 처리용량과 셀 경계에서의 성능을 보이는 그래프.
도 2는 본 발명의 실시예에 따른 이동통신 시스템을 보이는 예시도.
도 3은 본 발명의 실시예에 따른 펨토 기지국의 구성을 보이는 블록도.
도 5는 매크로셀의 처리용량과 셀 경계에서의 성능을 보이는 그래프.
도 6은 펨토셀의 처리용량과 셀 경계에서의 성능을 보이는 그래프.
이하 첨부된 도면을 참조하여 본 발명의 실시예들에 대해 상세히 설명한다. 다만, 이하의 설명에서는 본 발명의 요지를 불필요하게 흐릴 우려가 있는 경우, 널리 알려진 기능이나 구성에 관한 구체적 설명은 생략하기로 한다.
이동통신 시스템에서 동일한 주파수 채널을 다수의 가입자 단말과 다수의 소형기지국이 동시에 사용한다. 따라서, 동일한 주파수 채널 사용은 동시 통화자 및 소형기지국간에 간섭을 야기하므로 시스템의 효율성과 통화 품질의 향상을 위해서 각 소형기지국은 송신출력을 적절하게 제어해야 한다. 본 발명에서 소형 기지국은 펨토(Femto) 기지국, 피코(Pico) 기지국, 마이크로(Micro) 기지국, 옥내용 기지국 및 셀 확장용으로 사용되는 릴레이(relay) 등을 포함할 수 있다. 본 발명의 도면에서는 매크로 기지국을 옥외용 기지국의 일례로, 펨토 기지국을 소형 기지국의 일례로 설명한다.
도 1은 본 발명의 실시예에 따른 이동통신 시스템의 구성을 보이는 블록도이다.
일실시예에 있어서, 이동통신 시스템은, 예컨대 GSM(Global System for Mobile communication), CDMA(code division multiple access)와 같은 2G 이동통신망, LTE(long term evolution)망, WiFi와 같은 무선인터넷, WiBro(Wireless Broadband Internet) 및 WiMax(World Interoperability for Microwave Access)와 같은 휴대인터넷 또는 패킷 전송을 지원하는 이동통신망(예컨대, WCDMA 또는 CDMA2000과 같은 3G 이동통신망, HSDPA(High Speed Downlink Packet Access) 또는 HSUPA(High Speed Uplink Packet Access)와 같은 3.5G 이동통신망, 또는 향후 개발될 4G 등) 및 기지국(eNB)(30), 펨토 기지국(21~25) 및 사용자 단말(UE: user equipment)(10)을 구성요소로 포함하는 임의의 기타 이동통신망을 포함할 수 있지만, 이에 제한되는 것은 아니다.
도 1에 도시된 바와 같이, 이동통신 시스템은 하나 이상의 네트워크 셀로 구성될 수 있고, 이동통신 시스템에 서로 다른 종류의 네트워크 셀이 혼재할 수도 있다. 이동통신 시스템은 좁은 범위의 네트워크 셀(펨토셀)을 관리하는 펨토 기지국(Home-eNB)(21~25), 넓은 범위의 셀(매크로셀)을 관리하는 기지국(eNB)(30), 사용자 단말(UE)(10), SON(Self Organizing & optimizing Networks) 서버(40) 및 MME(50)를 포함할 수 있다. 도 1에 도시된 각 구성요소의 개수는 예시적인 것으로, 본 발명이 실시될 수 있는 이동통신망의 각 구성요소의 개수가 도면에 도시된 개수에 제한되는 것은 아니다.
기지국(30)은, 예컨대 LTE망, WiFi망, WiBro망, WiMax망, WCDMA망, CDMA망, UMTS망, GSM망 등에서 사용될 수 있는, 예를 들어 1km 내외의 반경을 갖는 매크로셀 기지국의 특징을 포함할 수 있지만, 이에 제한되는 것은 아니다.
펨토 기지국(21~25)은 예컨대 LTE망, WiFi망, WiBro망, WiMax망, WCDMA망, CDMA망, UMTS망, GSM망 등에서 사용될 수 있는, 예를 들어 수십 m 내외의 반경을 갖는 펨토셀 기지국의 특징을 포함할 수 있지만, 이에 제한되는 것은 아니다.
펨토 기지국(21~25)은 셀 내의 음영 지역 해소를 목적으로 사용하며, 셀 경계 지역에 펨토 기지국(21~25)을 설치하여 효과적인 셀 커버리지 확장과 처리량(Throughput)을 향상시킬 수 있다. 기지국(30)과 사용자 단말(10) 간 통신 과정에 펨토 기지국(21~25)을 거쳐 통신을 수행하는데, 펨토 기지국(21~25)은 기지국(30)과의 백홀 링크(Backhaul Link)에 있어 유선이 아닌 무선 백홀을 이용한다.
이동통신 시스템을 구성하는 네트워크 셀은 매크로셀 및 펨토셀을 포함할 수 있다. 매크로셀은 기지국(30)에 의해 관리될 수 있고, 펨토셀은 펨토 기지국(21~25)에 의해 관리될 수 있다. 펨토 기지국(21~25)이나 기지국(30)은 각각 독자적으로 코어망의 접속성을 가질 수 있다.
사용자 단말(10)은 GSM망, CDMA망과 같은 2G 이동통신망, LTE망, WiFi망과 같은 무선인터넷망, WiBro망 및 WiMax망과 같은 휴대인터넷망 또는 패킷 전송을 지원하는 이동통신망에서 사용되는 무선 이동 단말기의 특징을 포함할 수 있지만, 이에 제한되는 것은 아니다. 일 실시예에 있어서, 사용자 단말(10)은 매크로셀 가입자 단말 또는/및 펨토셀 가입자 단말일 수 있다.
SON 서버(40)는 기지국/펨토 기지국 설치 및 최적화를 수행하고 각 기지국/펨토 기지국에 필요한 기본 파라미터 또는 데이터를 제공하는 기능을 하는 임의의 서버를 포함할 수 있다.
MME(50)는 사용자 단말(10)의 호 처리 등을 관리하기 위하여 사용되는 임의의 개체를 포함할 수 있다.
일 실시예에 있어서, 하나의 네트워크 관리 장치가 SON 서버(40)와 MME(50)의 기능을 모두 수행할 수 있고, SON 서버(40) 및 MME(50)는 하나 이상의 기지국(30)과 하나 이상의 펨토 기지국(21~25)을 관리할 수 있다.
상기 이동통신망에서 매크로셀 및 펨토셀이 혼재된 네트워크 셀을 가정하였지만, 네트워크 셀은 매크로셀 또는 펨토셀만으로도 구성 가능하다.
도 2는 본 발명의 실시예에 따른 이동통신 시스템을 보이는 예시도이다.
이동통신 시스템의 상향링크(uplink)에서는 전력제어(power control)가 필요한데, LTE(Long Term Evolution)는 분할 전력제어(FPC) 방법을 이용한다. 전술한 바와 같이 분할 전력제어 방법은 저속의 채널 변화를 보상하는 개방형 전력제어 방식과 간섭의 변화 및 경로 손실 측정 에러 등을 보완하는 폐쇄형 전력제어 방식 중 적어도 어느 하나를 포함할 수 있다.
분할 전력제어 방법에서 상향링크의 전력은 다음의 수학식 1을 이용하여 산출할 수 있다.
수학식 1에서 는 사용자 단말(UE; User Equipment)의 최대 전력을 나타내고, 는 하나의 RB(Resource Block)에 해당하는 전력값으로 -126dBm ~ +23dBm범위의 값을 갖는다. M(i)는 i번째 TTI(transmission time interval)에 할당된 RB의 개수, 는 {0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 중 어느 하나의 값을 갖고, PL은 사용자 단말(UE)에서 측정한 경로 손실, 는 전송 형태(Transport Format) 또는 MCS(modulation and coding scheme)에 해당하는 전력 오프셋(offset), 는 발신기 전력제어 명령(transmitter power control command)을 각각 나타낸다. , M(i) 및 αPL은 개방형 전력제어에 관련된 파라미터이고, 및 는 폐쇄형 전력제어(CLPC: closed loop power control)에 관련된 파라미터이다.
분할 전력제어 방법은 파라미터 설정을 통하여 개방형 전력제어 모드와 폐쇄형 전력제어 모드로 동작할 수 있게 된다. 이 중에서 본 발명은 특히 개방형 전력제어에 관련된 것으로서, 수학식 1에서 및 를 0으로 설정하고 TTI별로 할당되는 RB가 일정하다고 가정하면 LTE 상향링크의 전력은 수학식 2와 같이 단순화된 식을 이용하여 산출할 수 있다.
수학식 3에서 는 상위 계층에서 허용하는 최대 전력이고, 는 사용자 단말 전력 등급(UE Power class)마다 정해져 있는 최대 전력으로 사용자 단말(10)을 제조할 때 정해지는 최대 전력에 해당한다. 는 항상 보다 작게 스케줄링(scheduling) 된다. 즉, 일반적으로 는 대략 23dBm 정도의 값을 갖고 는 23dBm보다 작은 값으로 할당하여 단말기의 최대 전력을 제한한다.
기지국(eNode-B)이 설치되는 주변 환경(예를 들어, 주변 기지국과의 거리)을 알고 있다고 가정하면 수학식 2의 및 가 결정되고 기지국(eNode-B)에 저장된다. 만약 기지국(eNode-B)에 접속하려고 하는 사용자 단말(UE)이 있다면 저장된 전력제어 값은 방송 채널 및 전용 채널을 통하여 사용자 단말(UE)에 전송되고 사용자 단말(UE)의 환경에 따라 TTI에 할당된 RB의 개수 M을 조정하게 된다. 사용자 단말(UE)은 기지국(eNode-B)으로부터 전송받은 전력제어 값과 기지국(eNode-B)과의 경로손실(PL)을 측정하여 수학식 2를 이용하여 송신 전력을 결정하고 패킷을 전송한다.
고속의 데이터 전송률을 요구하는 이동통신 시장의 흐름에 따라 매크로 기지국(30)과는 별도로 댁내의 펨토 기지국(21~25)을 이용하여 양질의 서비스를 가입자에게 제공한다. 이러한 펨토 기지국(21~25)이 처한 주변환경(예를 들어, 매크로 기지국과의 거리)은 펨토 기지국(21~25)마다 다르기 때문에 사용되는 전력제어 파라미터도 상이하게 결정되어야 한다.
매크로 기지국(30)에 비해 숫자가 많은 펨토 기지국(21~25)의 전력제어 파라미터를 결정하기 위해 SON(Self Organizing network) 서버(40) 개념이 도입된다. SON 서버는 다음과 같이 기능적 두 단계를 목적으로 한다.
1. 자기 배치(Self-configuration): 플러그 앤 플레이(plug and play) 기능과 같이 네트워크 노드(network node)나 셀을 자동적으로 설치하는 것을 의미한다. 네트워크 장비의 고장시 자체적으로 복구할 수 있는 기능을 포함한다.
2. 자기 최적화(Self-optimization): 자기 배치 이후 네트워크 성능을 자동적으로 최적화하고 변화하는 주변 환경에 적응하는 기능이다.
펨토 기지국(21~25)에 전원이 들어오면 자동적으로 셀을 설치하기 위하여 자기 배치 단계를 수행하고 이후 자기 최적화를 통하여 변화하는 무선환경에 적응하게 된다.
도 3은 본 발명의 실시예에 따른 펨토 기지국의 구성을 보이는 블록도이다. 펨토 기지국(100)은 주변환경 측정부(110) 및 전력제어 파라미터 계산부(120)를 포함한다.
주변환경 측정부(110)는 상향링크 간섭량, 주변 기지국과의 경로 손실 등의 주변 환경 정보를 측정한다. 즉, 주변환경 측정부(110)는 상향링크 간섭량 측정과 주변 기지국과의 경로 손실 측정을 담당한다. 일실시예에 있어서, 주변 기지국과의 경로 손실은 펨토 기지국(21~25)의 하향링크 수신기를 이용하여 측정할 수 있다. 다른 실시예에 있어서, 펨토 기지국(21~25)에 하향링크 수신기가 없는 경우에, 펨토 기지국(21~25)에 접속되어 있는 사용자 단말(10)에 명령하여 획득하거나, GPS(global positioning system)를 이용하여 펨토 기지국(21~25)과 사용자 단말(10) 사이의 거리 차이를 구하고 펨토 기지국(21~25)과 사용자 단말(10) 사이의 거리 차이 및 전파 손실 모델을 이용하여 산출할 수 있다. 한편 상향링크 간섭량은 펨토 기지국(21~25) 주위에 있는 사용자 단말(10)에 의한 수신전력을 측정하여 산출할 수 있다.
전력제어 파라미터 계산부(120)는 주변환경 측정부(110)에서 측정된 주변 환경 정보를 이용하여 펨토 기지국(21~25)에 필요한 전력제어 파라미터를 산출한다. 일실시예에 있어서, 전력제어 파라미터 계산부(120)는 주변 사용자 단말(10)의 간섭량이 많다고 판단되면 펨토 기지국(21~25)에 접속되어 있는 사용자 단말(10)의 전력을 증가시키도록 전력제어 파라미터를 설정하고, 간섭량이 적다고 판단되면 펨토 기지국(21~25)에 접속되어 있는 사용자 단말(10)의 전력을 감소시키도록 전력제어 파라미터를 설정한다. 다만, 펨토 기지국(21~25)이 주변기지국에 가까이 있는 경우에 펨토 기지국(21~25)에 접속되어 있는 사용자 단말(10)의 전력이 주변 기지국에 간섭을 유발할 수 있으므로, 미리 설정된 임계값 이상의 전력으로는 증가시키지 못하도록 설정할 수 있다.
전력제어 파라미터 계산부(120)에서 설정된 전력제어 파라미터는 RRC(Radio Resource Control) 프로토콜을 이용하여 방송 채널 또는 전용 채널로 전송한다. 방송 채널 또는 전용 채널 등을 통하여 펨토 기지국(21~25)으로부터 전력제어에 필요한 파라미터를 획득한 후 사용자 단말(10)은 상기 수학식 1을 이용하여 송신 전력을 산출하고, 산출된 송신 전력을 이용하여 상향링크 패킷을 전송한다.
도 4는 본 발명의 실시예에 따른 이동통신 시스템의 구성을 보이는 예시도이다.
본 발명에 따른 전력제어는 펨토 기지국(410)이 주변의 무선환경을 측정하면서 개시된다. 펨토 기지국(410)은 상향링크 수신기(미도시)를 이용하여 주변 사용자 단말(UE2)의 간섭량을 측정한다. 주변 사용자 단말(UE2)의 간섭량은 수학식 4에 의해 열잡음 간섭(IoT: interference over thermal noise)으로 변환된다.
수학식 4에서 I는 주변 사용자 단말(UE2)의 간섭량을 나타내고, N은 잡음 전력을 나타낸다.
또한, 펨토 기지국(410)은 하향링크 수신기(미도시)를 이용하여 주변 셀(미도시)과의 경로 감쇄()를 측정한다. 만약 펨토 기지국(410)에 하향링크 수신기가 없는 경우에는 GPS 등의 위치 정보를 이용할 수 있고, 사용자 단말(UE1)에 명령하여 경로감쇄 값(Pathloss 혹은 RSRP: reference signal received power)을 얻을 수도 있다.
펨토 기지국(410)은 주변 단말(UE2)로부터 수신되는 간섭량과 수학식 5를 이용하여 펨토 기지국(410)의 P0를 결정한다.
수학식 5에서 는 펨토 기지국(410)의 경계에 해당하는 경로 감쇄값이고, 은 에서의 신호 품질(QoS; quality of service)을 신호대 잡음비(SINR: signal to noise ratio)로 나타낸 것이다. 은 기지국이 사용하는 RB의 개수를 나타내고, 은 잡음 전력을 나타낸다.
수학식 6에서 PL은 펨토 기지국(410)과 사용자 단말(UE1)의 경로 감쇄를 나타낸다.
수학식 6에 의하면 사용자 단말(UE1)이 펨토 기지국(410)에 가까이 있는 경우(즉, PL이 작은 경우) 가 클수록 SINR은 높아진다. 예를 들어 일 경우에 이면 SINR=4dB이고, 이면 SINR=12dB이 된다. 즉, 사용자 단말(UE1)이 펨토 기지국(410)에 가까이 있는 경우의 데이터 전송률을 높이고자 한다면 펨토 기지국(410)의 를 낮게 설정하고 전송률을 낮추려면 를 높게 설정한다.
수학식 5를 이용하여 전력제어를 수행하는 경우 상향링크 간섭이 크면 펨토 기지국(410)에 접속되어 있는 사용자 단말(UE1)의 전력이 커지므로 주변 기지국(420)에 영향(IoT1)이 커질 수 있다. 이러한 경우 펨토 기지국(410)이 갖고 있는 주변 셀과의 경로 감쇄값을 이용하여 수학식 7과 같이 사용자 단말(UE1)의 최대 전력을 제한할 수 있다.
수학식 7에서 는 펨토 기지국(410)이 갖고 있는 주변 기지국(420)과의 경로 감쇄를 나타내고, 는 펨토 기지국(410)에 접속되어 있는 사용자 단말(UE1)에 의한 주변 기지국(420)의 열잡음 간섭(IoT)을 나타낸다.
도 5와 도 6은 펨토셀의 전력제어를 기존의 방법(즉 펨토셀의 P0를 일정하게 하는 것)과 본 발명의 방법(즉 펨토셀의 경계에서의 신호 품질(QoS)을 맞춰 주는 것)에 대한 결과 그래프를 도시한 것이다. 도 5는 두 가지 방법에 대한 매크로셀의 처리용량(Cell Capacity, [bps/Hz])과 셀 경계에서의 성능(Cell edge Throughput, [bps/Hz])을 보이는 그래프이고 도 6은 펨토셀의 처리용량과 셀 경계에서의 성능을 보이는 그래프이다. 도 5와 도 6에서와 같이 매크로셀당 펨토셀의 수가 20에서 100으로 변화할 때 기존의 방법에 비하여 주변 셀환경을 고려하는 본 발명의 성능이 우수함을 알 수 있다. 또한 각각의 방법에 대하여 펨토셀에 접속해 있는 단말기의 평균 송신 전력은 기존방법이 -12.2dBm, 본 발명이 -22.2dBm으로, 본 발명의 송신전력이 기존 방법보다 약 10dB 낮게 되므로 사용자 단말의 전력소모가 본 발명에서 현저히 낮아짐을 알 수 있다.
본 명세서에서는 본 발명이 일부 실시예들과 관련하여 설명되었지만, 본 발명이 속하는 기술분야의 당업자가 이해할 수 있는 본 발명의 정신 및 범위를 벗어나지 않는 범위에서 다양한 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 변형 및 변경은 본 명세서에 첨부된 특허청구의 범위 내에 속하는 것으로 생각되어야 한다.
10: 사용자 단말 21~25, 410: 펨토 기지국
30, 420: 매크로 기지국 40: SON 서버
50: MME 110: 주변환경 측정부
120: 전력제어 파라미터 계산부
30, 420: 매크로 기지국 40: SON 서버
50: MME 110: 주변환경 측정부
120: 전력제어 파라미터 계산부
Claims (15)
- 소형 기지국으로서,
상/하향링크를 통해 기지국 주변의 무선환경 정보를 측정하는 주변환경 측정부; 및
상기 무선환경 정보를 이용하여 전력제어 파라미터를 산출하는 전력제어 파리미터 계산부를 포함하는 소형 기지국. - 제 1 항에 있어서,
상기 무선환경 정보는,
상향링크 수신기를 이용하여 측정된 주변 사용자 단말의 간섭량 정보와, 하향링크 수신기를 이용하여 측정된 인접 기지국과의 경로 손실 정보 중 적어도 하나를 포함하는 소형 기지국. - 제2항에 있어서,
상기 간섭량 정보는, 상기 상향링크 수신기를 이용하여 상기 소형 기지국 주위의 사용자 단말에 의한 수신전력을 측정한 값인, 소형 기지국. - 제2항에 있어서,
상기 경로 손실 정보는, 상기 하향링크 수신기를 이용하여 인접 기지국과의 경로 감쇄를 측정한 값인, 소형 기지국. - 제2항에 있어서,
상기 경로 손실 정보는,
상기 소형 기지국에 접속되어 있는 사용자 단말에 명령하여 획득한 값인, 소형 기지국. - 제2항에 있어서,
상기 경로 손실 정보는,
GPS(global positioning system)를 이용하여 상기 소형 기지국과 상기 사용자 단말의 거리 차이를 구하고, 거리 차이 및 전파 손실 모델을 이용하여 산출하는 값인, 소형 기지국. - 제1항에 있어서,
상기 전력제어 파라미터는, 간섭량이 많으면 상기 소형 기지국에 접속되어 있는 사용자 단말의 전력을 증가시키도록 설정되고, 상기 간섭량이 적으면 상기 소형 기지국에 접속되어 있는 사용자 단말의 전력을 감소시키도록 설정되는, 소형 기지국. - 제7항에 있어서,
상기 전력제어 파라미터는, 상기 소형 기지국이 매크로 기지국에 근접해 있는 경우, 기 설정된 임계값 이상으로 상기 소형 기지국에 접속되어 있는 사용자 단말의 전력을 증가시키지 못하도록 설정되는, 소형 기지국. - 제1항 내지 제8항 중 어느 한 항에 있어서,
상기 전력제어 파라미터는, 방송 채널 또는 전용 채널을 통해 사용자 단말로 전송되는, 소형 기지국. - 제9항에 있어서,
상기 사용자 단말이 상기 전력제어 파라미터를 이용하여 상향링크 송신 전력을 설정하는, 소형 기지국. - 기지국의 전력제어 방법으로서,
상/하향링크를 통해 기지국 주변의 무선환경 정보를 측정하는 단계; 및
상기 무선환경 정보를 이용하여 전력제어 파라미터를 산출하는 단계를 포함하는 전력제어 방법. - 제 11 항에 있어서,
상기 무선환경 정보는,
상향링크 수신기를 이용하여 측정된 주변 사용자 단말의 간섭량 정보와, 하향링크 수신기를 이용하여 측정된 인접 기지국과의 경로 손실 정보 중 적어도 하나를 포함하는 전력제어 방법. - 제12항에 있어서,
상기 전력제어 파라미터는, 간섭량이 많으면 상기 기지국에 접속되어 있는 사용자 단말의 전력을 증가시키도록 설정되고, 상기 간섭량이 적으면 상기 기지국에 접속되어 있는 사용자 단말의 전력을 감소시키도록 설정되는, 전력제어 방법. - 제13항에 있어서,
상기 전력제어 파라미터는, 상기 기지국이 매크로 기지국에 근접해 있는 경우, 기 설정된 임계값 이상으로 상기 기지국에 접속되어 있는 사용자 단말의 전력을 증가시키지 못하도록 설정되는, 전력제어 방법. - 제11항 내지 제14항 중 어느 한 항에 있어서,
상기 전력제어 파라미터를 사용자 단말로 전송하는 단계; 및
상기 사용자 단말이 상기 전력제어 파라미터를 이용하여 상향링크 송신 전력을 설정하는 단계를 더 포함하는 전력제어 방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11775272.5A EP2566261A4 (en) | 2010-04-27 | 2011-04-27 | SMALL BASE STATION AND METHOD OF CONTROLLING UPLINK POWER |
US13/643,660 US20130040690A1 (en) | 2010-04-27 | 2011-04-27 | Small base station and uplink power control method thereof |
PCT/KR2011/003103 WO2011136567A2 (ko) | 2010-04-27 | 2011-04-27 | 소형 기지국 및 그의 상향링크 전력제어 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100039003 | 2010-04-27 | ||
KR20100039003 | 2010-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20110119578A true KR20110119578A (ko) | 2011-11-02 |
Family
ID=45391103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110039147A KR20110119578A (ko) | 2010-04-27 | 2011-04-26 | 소형 기지국 및 그의 상향링크 전력제어 방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130040690A1 (ko) |
EP (1) | EP2566261A4 (ko) |
KR (1) | KR20110119578A (ko) |
WO (1) | WO2011136567A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130067757A (ko) * | 2011-12-14 | 2013-06-25 | 에릭슨 엘지 주식회사 | 기지국의 시스템 파라미터 설정 장치 및 그를 위한 이동통신 시스템 |
WO2021034051A1 (ko) * | 2019-08-16 | 2021-02-25 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말이 상향링크 신호를 전송하는 방법 및 이를 위한 장치 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102202310A (zh) * | 2010-03-25 | 2011-09-28 | 上海贝尔股份有限公司 | 在微小区的接入设备中消减微小区间干扰的方法及装置 |
JP5772345B2 (ja) * | 2011-07-25 | 2015-09-02 | 富士通株式会社 | パラメータ設定装置、コンピュータプログラム及びパラメータ設定方法 |
GB2496908B (en) | 2011-11-28 | 2017-04-26 | Ubiquisys Ltd | Power management in a cellular system |
US9332458B2 (en) | 2012-03-25 | 2016-05-03 | Cisco Technology, Inc. | System and method for optimizing performance of a communication network |
US9167444B2 (en) | 2012-12-04 | 2015-10-20 | Cisco Technology, Inc. | Method for managing heterogeneous cellular networks |
IL224926A0 (en) | 2013-02-26 | 2013-07-31 | Valdimir Yanover | A method and system for allocating resources in the @telecommunications@cellphone network |
US9295016B2 (en) * | 2013-06-12 | 2016-03-22 | Microsoft Technology Licensing, Llc | Cooperative phase tracking in distributed multiple-input multiple-output system |
CN105309017B (zh) * | 2013-06-18 | 2019-12-31 | Lg电子株式会社 | 用于在支持无线资源的用途的改变的无线通信系统中控制传输功率的方法及其装置 |
GB2518584B (en) | 2013-07-09 | 2019-12-25 | Cisco Tech Inc | Power setting |
WO2015053581A1 (ko) * | 2013-10-11 | 2015-04-16 | 엘지전자 주식회사 | 무선랜에서 하향링크 프레임을 수신하는 방법 및 장치 |
US9655102B2 (en) | 2014-06-20 | 2017-05-16 | Cisco Technology, Inc. | Interference control in a cellular communications network |
US10212670B2 (en) | 2014-09-10 | 2019-02-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and network node for obtaining nominal power and pathloss compensation factor of a power control process |
US9918314B2 (en) | 2015-04-14 | 2018-03-13 | Cisco Technology, Inc. | System and method for providing uplink inter cell interference coordination in a network environment |
KR102246608B1 (ko) * | 2015-07-20 | 2021-04-30 | 삼성전자주식회사 | 무선 통신 시스템에서 송신 전력을 제어하기 위한 장치 및 방법 |
US9860852B2 (en) * | 2015-07-25 | 2018-01-02 | Cisco Technology, Inc. | System and method to facilitate small cell uplink power control in a network environment |
US9648569B2 (en) | 2015-07-25 | 2017-05-09 | Cisco Technology, Inc. | System and method to facilitate small cell uplink power control in a network environment |
US9854535B2 (en) | 2015-07-28 | 2017-12-26 | Cisco Technology, Inc. | Determining fractional frequency reuse power levels for downlink transmissions |
US9854536B2 (en) | 2015-08-03 | 2017-12-26 | Cisco Technology, Inc. | User equipment power level selection for downlink transmissions |
US9848389B2 (en) | 2015-08-03 | 2017-12-19 | Cisco Technology, Inc. | Selecting cells for downlink inter-cell interference coordination |
US10154415B2 (en) | 2015-08-04 | 2018-12-11 | Cisco Technology, Inc. | Resource adaptation for frequency domain downlink inter-cell interference coordination |
US9967067B2 (en) | 2015-09-08 | 2018-05-08 | Cisco Technology, Inc. | Serving noise/macro interference limited user equipment for downlink inter-cell interference coordination |
US9820296B2 (en) | 2015-10-20 | 2017-11-14 | Cisco Technology, Inc. | System and method for frequency and time domain downlink inter-cell interference coordination |
US9826408B2 (en) | 2015-12-07 | 2017-11-21 | Cisco Technology, Inc. | System and method to provide uplink interference coordination in a network environment |
US10143002B2 (en) | 2016-01-12 | 2018-11-27 | Cisco Technology, Inc. | System and method to facilitate centralized radio resource management in a split radio access network environment |
US9813970B2 (en) | 2016-01-20 | 2017-11-07 | Cisco Technology, Inc. | System and method to provide small cell power control and load balancing for high mobility user equipment in a network environment |
US10091697B1 (en) | 2016-02-08 | 2018-10-02 | Cisco Technology, Inc. | Mitigation of uplink interference within heterogeneous wireless communications networks |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6934555B2 (en) * | 2001-06-29 | 2005-08-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Software analysis tool for CDMA system |
US7096034B2 (en) * | 2001-10-01 | 2006-08-22 | Microsoft Corporation | System and method for reducing power consumption for wireless communications by mobile devices |
KR100421080B1 (ko) * | 2001-12-24 | 2004-03-04 | 에스케이 텔레콤주식회사 | 무선통신시스템에서 선택적 전력제어 결정 파라메터의가변 할당 방법 |
JP4519606B2 (ja) * | 2004-11-05 | 2010-08-04 | 株式会社エヌ・ティ・ティ・ドコモ | 基地局および移動通信システム並びに送信電力制御方法 |
US20070082620A1 (en) * | 2005-10-06 | 2007-04-12 | Interdigital Technology Corporation | Method and apparatus for controlling uplink transmission power for ofdma based evolved utra |
US9629096B2 (en) * | 2006-12-15 | 2017-04-18 | Alcatel-Lucent Usa Inc. | Controlling uplink power for picocell communications within a macrocell |
US9295003B2 (en) * | 2007-03-19 | 2016-03-22 | Apple Inc. | Resource allocation in a communication system |
KR101435601B1 (ko) * | 2008-04-02 | 2014-09-01 | 삼성전자주식회사 | 광대역 무선 통신 시스템의 자동 간섭 제어 장치 및 방법 |
GB2462063B (en) * | 2008-07-15 | 2010-11-10 | Ip Access Ltd | Method and apparatus for setting an uplink transmit power level for a wireless communication unit |
-
2011
- 2011-04-26 KR KR1020110039147A patent/KR20110119578A/ko not_active Application Discontinuation
- 2011-04-27 EP EP11775272.5A patent/EP2566261A4/en not_active Withdrawn
- 2011-04-27 WO PCT/KR2011/003103 patent/WO2011136567A2/ko active Application Filing
- 2011-04-27 US US13/643,660 patent/US20130040690A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130067757A (ko) * | 2011-12-14 | 2013-06-25 | 에릭슨 엘지 주식회사 | 기지국의 시스템 파라미터 설정 장치 및 그를 위한 이동통신 시스템 |
WO2021034051A1 (ko) * | 2019-08-16 | 2021-02-25 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말이 상향링크 신호를 전송하는 방법 및 이를 위한 장치 |
Also Published As
Publication number | Publication date |
---|---|
US20130040690A1 (en) | 2013-02-14 |
WO2011136567A2 (ko) | 2011-11-03 |
EP2566261A4 (en) | 2015-07-15 |
EP2566261A2 (en) | 2013-03-06 |
WO2011136567A3 (ko) | 2012-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20110119578A (ko) | 소형 기지국 및 그의 상향링크 전력제어 방법 | |
US8385220B2 (en) | Systems and methods for determining time varying radio frequency isolation characteristics between network cells | |
EP2700273B1 (en) | Uplink interference management for a heterogeneous wireless network | |
Saad et al. | A survey on power control techniques in femtocell networks. | |
US8903397B2 (en) | Neighbor cell list automatic configuration apparatus and method for self-organizing network and mobile telecommunication system for the same | |
JP5896177B2 (ja) | 無線通信システム、基地局、管理サーバ及び無線通信方法 | |
US8396505B2 (en) | Radio communication system, network side device, small cell base station, and transmission power control method | |
US20130260805A1 (en) | Apparatus and method for controlling cell transmit power to reduce interference of cell and mobile telecommunication base station for the same | |
Mach et al. | QoS-guaranteed power control mechanism based on the frame utilization for femtocells | |
JP5324659B2 (ja) | 無線通信システム、大セル基地局及び通信制御方法 | |
Saad et al. | A fractional path-loss compensation based power control technique for interference mitigation in LTE-A femtocell networks | |
US9456423B2 (en) | Automated parameter adjustment to compensate self adjusting transmit power and sensitivity level at the node B | |
US20210099959A1 (en) | Deriving configured output powers with overlapping durations under uplink pre-emption | |
Kim et al. | Interference-aware uplink power control in 3GPP LTE-A HetNet | |
EP3010284A1 (en) | Cellular repeater activation | |
JP2016532348A (ja) | 自己組織化ネットワークの分散更新のための装置および方法 | |
Turkka et al. | Performance of LTE SON uplink load balancing in non-regular network | |
Yuliana et al. | Uplink power control for LTE femtocell based on overload indicator | |
WO2014205747A1 (zh) | 一种功率控制方法和设备 | |
KR20130028624A (ko) | Pci 자동 할당 방법 및 시스템 | |
KR101305714B1 (ko) | 이질적인 무선 네트워크 환경에서 서비스 품질을 보장하는 펨토셀의 전력 제어 방법 및 시스템 | |
Saad et al. | DYNAMIC PARTIAL PATH-LOSS COMPENSATION-BASED POWER CONTROL TECHNIQUE IN LTE-A FEMTOCELL NETWORKS. | |
KR101449767B1 (ko) | 이동통신 단말의 송신 출력 제어 장치 및 방법 | |
Weitzen et al. | Managing Coverage and Interference in UMTS Femtocell Deployments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |