KR20110097072A - 극저온 냉동기 - Google Patents

극저온 냉동기 Download PDF

Info

Publication number
KR20110097072A
KR20110097072A KR1020100016700A KR20100016700A KR20110097072A KR 20110097072 A KR20110097072 A KR 20110097072A KR 1020100016700 A KR1020100016700 A KR 1020100016700A KR 20100016700 A KR20100016700 A KR 20100016700A KR 20110097072 A KR20110097072 A KR 20110097072A
Authority
KR
South Korea
Prior art keywords
piston
displacer
refrigerant
cylinder
cooling unit
Prior art date
Application number
KR1020100016700A
Other languages
English (en)
Inventor
박성운
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020100016700A priority Critical patent/KR20110097072A/ko
Publication of KR20110097072A publication Critical patent/KR20110097072A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

본 발명에 따른 극저온 냉동기는 리니어 모터에 의해 피스톤 및 이와 연동된 디스플레이서가 움직이면서 냉각부를 극저온 상태로 유지시키되, 냉각부 측에 온도센서 및 히터가 구비되기 때문에 냉각부 측의 온도를 적정 온도 이상으로 유지하여 과도한 냉각을 방지하고, 냉각부 측의 냉각 능력을 높이기 위하여 리니어 모터에 의해 피스톤의 스트로크를 일정 크기 이상으로 유지할 수 있어 압축 공간에서 냉매의 압력을 고압 상태로 유지할 수 있으며, 서로 마찰되는 부품들 사이에 오일을 사용하지 않더라도 고압의 냉매를 이용하는 가스 베어링을 적용할 수 있다.

Description

극저온 냉동기 {COOLER}
본 발명은 일정 이상의 스트로크를 유지하여 가스 베어링을 적용할 수 있는 극저온 냉동기에 관한 것이다.
일반적으로 극저온 냉동기는 소형 전자부품 또는 초전도체 등을 냉각하기 위하여 사용되는 저진동 고신뢰성의 냉동기로서, 헬륨 혹은 수소 등의 작동유체가 압축 및 팽창 등의 과정을 통해 냉동출력을 발생시키며, 대표적으로 스터링 냉동기(Stirling refrigerator)와 지엠 냉동기(GM refrigerator) 또는 줄-톰슨 냉동기(Joule-Thomson refrigerator) 등이 널리 알려져 있다. 이러한 냉동기들은 고속 운전시 그 신뢰성이 저하되는 것은 물론 운전시 마찰부위의 마모에 대비하여 별도의 윤활을 실시해야 하는 문제점이 있다. 따라서, 고속 운전에서도 신뢰성이 유지될 뿐 아니라 별도의 윤활이 필요 없이 장기간 보수하지 않아도 되는 극저온 냉동기가 요구되고 있으며, 최근에는 고압의 작동유체가 일종의 베어링 역할을 하여 부품들 사이의 마찰을 저감시키는 무윤활 극저온 냉동기가 적용되고 있다.
이와 같은 극저온 냉동기는 냉매를 압축공간에서 압축하면서 펌핑시키고, 방열 및 재생 과정을 거친 다음, 팽창공간에서 팽창시키면, 주변과 열교환 작용을 통하여 주변 온도를 극저온 상태를 유지하도록 구성된다. 이때, 리니어 모터에 의해 피스톤 및 디스플레이서가 연동하면서 냉매를 등온 압축, 재생, 등온 팽창, 재생하도록 반복하고, 냉매의 등온 팽창이 이루어지는 냉각부에서 극저온 상태를 유지하게 된다. 물론, 냉각부에서 온도가 일정 이하로 떨어지면, 리니어 모터에 의해 피스톤의 스트로크가 줄어들게 되고, 상기에서 설명한 바와 같이 피스톤이 디스플레이서와 같이 연동하면서 작동되더라도 냉매의 유동량이 줄어듦에 따라 냉각부에서 냉각 능력도 줄어들도록 제어된다.
그러나, 종래의 극저온 냉동기는 오일에 의해 부품들을 윤활하지 않고, 고압 냉매를 이용하여 부품들을 윤활시키는 가스 베어링을 적용하기 때문에 냉각부 측에서 과도한 냉각이 발생되면, 냉각 능력을 줄이기 위하여 리니어 모터에 의해 피스톤의 스트로크를 줄이게 되고, 냉매의 압력이 줄어듦에 따라 냉매가 가스 베어링이 정상적으로 작동되기 어렵게 되며, 이로 인하여 서로 마찰되는 부품들 사이에 마모로 작동 신뢰성을 떨어뜨리는 문제점이 있다.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 냉각부를 적정 온도 이상으로 유지시키는 극저온 냉동기를 제공하는데 그 목적이 있다.
본 발명은 피스톤의 스트로크를 일정 크기 이상으로 유지시키는 극저온 냉동기를 제공하는데 그 목적이 있다.
본 발명은 압축 공간의 냉매를 이용하여 서로 마찰되는 부품들 사이를 윤활시키는 극저온 냉동기를 제공하는데 그 목적이 있다.
상기한 과제를 해결하기 위한 본 발명에 따른 극저온 냉동기는 압축공간을 형성하는 고정부재; 고정부재 내측에서 왕복 직선 운동하면서 냉매를 압축 및 팽창시키는 가동부재; 가동부재를 왕복 구동시키는 리니어 모터; 가동부재의 축방향에 결합되어 압축된 냉매와 팽창된 냉매를 서로 반대 방향으로 유동시키면서 재생시키는 재생기; 고정부재 외부에 구비되어 압축되는 냉매의 열을 외부로 방열시키는 방열부; 재생기의 축방향에 팽창공간을 형성하도록 결합되어 팽창되는 냉매가 외부로부터 흡열하는 냉각부; 냉각부의 온도를 측정하는 온도 센서; 그리고, 냉각부에 장착되고, 냉각부의 온도가 설정 온도 이하에서 작동되는 히터;를 포함하는 것을 특징으로 한다.
또한, 본 발명에서, 리니어 모터는 설정 스트로크 이상으로 가동부재를 왕복 구동시키는 것을 특징으로 한다.
또한, 본 발명에서, 고정부재는 압축공간을 내부에 구비한 실린더와, 실린더의 축방향으로 연장된 디스플레이서 하우징을 포함하고, 가동부재는 실린더 내측에서 왕복 직선 운동하는 피스톤과, 디스플레이서 하우징 내부에서 피스톤과 연동하여 왕복 직선 운동하는 디스플레이서를 포함하며, 실린더와 피스톤과 디스플레이서 사이에는 가스 베어링이 구비된 것을 특징으로 한다.
또한, 본 발명에서, 피스톤은 실린더 내측에 설치된 피스톤 바디와, 피스톤 내측에 설치된 피스톤 플러그로 이루어지고, 디스플레이서는 피스톤 플러그 중심을 관통하는 디스플레이서 축과, 디스플레이서 하우징에 내장하도록 디스플레이서 축의 단부에 연결된 디스플레이서 바디를 포함하고, 가스 베어링은 압축공간과 연통하도록 피스톤 플러그의 축방향으로 관통된 유로와, 유로 상에 개폐 가능하게 설치된 피스톤 밸브와, 유로와 연통되도록 피스톤 플러그의 외주면에 구비된 저장홈과, 저장홈에 저장된 냉매를 실린더와 피스톤 바디 사이로 공급하도록 피스톤 바디의 반경 방향으로 관통된 내부 주입구와, 저장홈에 저장된 냉매를 피스톤 플러그와 디스플레이서 로드 사이로 공급하도록 피스톤 플러그의 반경 방향으로 관통된 외부 주입구와, 저장홈과 내/외부 주입구를 연통시키도록 피스톤 플러그 외주면에 원주 방향 또는 축방향으로 형성된 복수개의 그루브를 포함하는 것을 특징으로 한다.
상기와 같이 구성되는 본 발명에 따른 극저온 냉동기는 냉각부 측에 온도센서 및 히터가 구비되기 때문에 냉각부 측의 온도를 적정 온도 이상으로 유지하여 과도한 냉각을 방지하고, 냉각부 측의 냉각 능력을 높이기 위하여 리니어 모터에 의해 피스톤의 스트로크를 일정 크기 이상으로 유지할 수 있어 압축 공간에서 냉매의 압력을 고압 상태로 유지할 수 있으며, 서로 마찰되는 부품들 사이에 오일을 사용하지 않더라도 고압의 냉매를 이용하는 가스 베어링을 적용할 수 있는 이점이 있다.
도 1은 본 발명에 따른 극저온 냉동기의 일예가 도시된 측면도.
도 2는 본 발명에 따른 극저온 냉동기의 일예가 도시된 측단면 사시도.
도 3은 본 발명에 따른 극저온 냉동기의 일예가 도시된 측단면도.
도 4는 본 발명에 따른 극저온 냉동기의 냉각부 일예가 도시된 측단면도.
도 5는 본 발명에 따른 극저온 냉동기의 가스 베어링 일예가 도시된 측단면도.
도 6은 본 발명에 따른 극저온 냉동기의 가스 베어링 일부인 피스톤 플러그 일예가 도시된 사시도.
이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세히 설명한다.
도 1 내지 도 3은 본 발명에 따른 극저온 냉동기의 일예가 도시된 도면이다.
본 발명에 따른 극저온 냉동기의 일예는 도 1 내지 도 3에 도시된 바와 같이 외관을 형성하는 케이스(case : 10)와, 케이스(10) 내에 고정되어 소정 공간을 형성하는 고정부재(20)와, 고정부재(20) 내의 압축공간(C)에서 축방향으로 왕복 직선 운동하면서 냉매를 압축 및 팽창시키는 가동부재(30)와, 케이스(10)와 고정부재(20) 사이에 설치되어 가동부재(30)를 구동시키는 리니어 모터(linear motor : 40)와, 가동부재(30)의 축방향에 결합되어 서로 반대 방향으로 유동되는 냉매 사이에 등적 재생이 이뤄지는 재생기(50)와, 고정부재(20)와 가동부재(30) 및 재생기(50) 주변에 장착되어 압축되는 냉매의 열을 외부로 방열시키는 방열부(60)와, 재생기(50)의 축방향에 팽창공간(E)을 형성하도록 결합되어 팽창되는 냉매가 외부의 열을 흡열하는 냉각부(70)로 이루어진다.
케이스(10)는 재생기(50)와 방열부(60) 및 냉각부(70)와 동심을 이루는 프레임(frame : 11)과, 프레임(11)의 축방향에 연결 고정된 원통형의 쉘 튜브(shell tube : 12)를 포함한다. 프레임(11) 중 고정부재(20)가 볼트 체결되는 부분은 쉘 튜브(12)보다 직경이 작더라도 두께가 두껍게 형성되는데, 프레임(11) 중 방열부(60)가 장착되는 부분은 열교환 효율을 높이기 위하여 두께가 보다 얇게 형성된다. 쉘 튜브(12)에는 소정의 관(13)이 구비되는데, 케이스(10)의 내부가 거의 100% 가까운 진공 상태를 유지한 다음, 순정의 He 가스와 같은 냉매를 주입하기 때문에 진공 상태를 형성하기 위하여 공기를 빼주거나, 냉매를 주입하기 위한 관(13)이 구비된다. 그 외에도, 쉘 튜브(12)에는 리니어 모터(40)로 공급되는 전원을 공급하기 위한 전원 단자(14)가 구비된다.
고정부재(20)는 프레임(11)에 고정되는 동시에 쉘 튜브(12) 내측까지 연장된 실린더(cylinder : 21)와, 프레임(11) 내측에 맞물리도록 실린더(21)로부터 확장된 디스플레이서 하우징(displacer housing : 22)을 포함한다. 실린더(21)와 디스플레이서 하우징(22)은 단차진 원통 형상으로 형성되는데, 실린더(21)보다 디스플레이서 하우징(22)의 직경이 더 작게 형성되고, 실린더(21)의 외주면에 확장된 연결 부분이 프레임(11)에 볼트 고정된다. 이때, 실린더(21)와 디스플레이서 하우징(22)은 내부에 냉매가 압축되는 압축공간(C)을 형성하게 되는데, 방열부(60) 내측과 연통되는 통공(21h,22h)이 각각 구비된다.
가동부재(30)는 실린더(21) 내부에서 왕복 직선 운동하는 피스톤(piston : 31)과, 디스플레이서 하우징(22) 내부에서 피스톤(31)과 연동하여 왕복 직선 운동하는 디스플레이서(displacer : 32)를 포함한다. 피스톤(31)은 실린더(21) 내주면에 간극을 두고 설치된 피스톤 바디(piston body : 311)와, 피스톤 바디(311) 내측에 설치된 피스톤 플러그(piston plug : 312)로 이루어진다. 디스플레이서(32)는 피스톤 플러그(312) 중심을 관통하는 동시에 케이스(10)에 고정된 판 스프링(S)에 의해 완충 가능하게 지지된 디스플레이서 로드(displacer rod : 321)과, 디스플레이서 하우징(22)에 내장된 디스플레이서 로드(321)의 단부인 디스플레이서 바디(321a)에 축방향으로 수용/결합되어 냉매가 유동되는 소정의 공간을 형성하는 디스플레이서 커버(displacer cover : 322)로 구성되는데, 피스톤(31)과 디스플레이서 바디(321a) 사이에 압축공간(C)이 형성된다. 이때, 디스플레이서 바디(321a)는 단면이 'U' 자 형상으로 형성되는 동시에 방열부(60) 내측과 연통되는 제1,2통공(321h,321H)이 구비되고, 디스플레이서 커버(322)는 재생기(50)와 연통되는 흡입구(미도시)에 압력차에 의해 개폐되는 디스플레이서 밸브(323)가 구비될 뿐 아니라 디스플레이서 바디(321a) 내측과 연통되는 통공(322H)이 구비된다.
한편, 가동부재(30)가 왕복 직선 운동하기 때문에 판 스프링(S) 이외에도 서로 마찰되는 부품들을 윤활할 수 있는 가스 베어링이 적용될 수 있는데, 하기에서 자세히 설명하기로 한다.
리니어 모터(40)는 실린더(21) 외주면에 고정된 원통형 이너스테이터(inner stator : 41)와, 이너스테이터(41) 외측에 일정 간격을 유지하도록 쉘 튜브(12) 내주면에 고정된 원통형 아우터스테이터(outer stator : 42)와, 이너스테이터(41)와 아우터스테이터(42) 사이에 간극을 유지하도록 피스톤 바디(311)와 연결된 영구자석(permanent magnet : 43)을 포함한다. 물론, 아우터스테이터(42)는 코일 권선체(411)에 복수개의 코어 블록(sore black : 412)이 장착되는데, 코일 권선체(411)는 케이스(10) 측의 전원 단자(14)와 연결된다.
재생기(50)는 디스플레이서 하우징(321a)에 결합된 원통 형상의 재생 하우징(51)과, 디스플레이서 하우징(321a) 일부 및 재생 하우징(51) 내측에 삽입되는 축열재(52)와, 재생 하우징(51) 단부를 덮어주도록 부착된 앤드 캡(end cap : 53)으로 이루어지는데, 냉매가 축열재(52)와 엔드 캡(53)을 통과할 수 있도록 구성된다. 축열재(52)는 냉매가스와 접하여 열교환하면서 에너지를 받아 축적하였다가 되돌려주는 역할을 하기 때문에 열교환 면적 및 비열이 클 뿐 아니라 열전도 계수가 작으며, 균일한 통기성을 가진 재질로 이루어지는 것이 바람직하며, 일예로 미세한 실이 뭉쳐진 형태로 구성될 수 있다.
방열부(60)는 원통 형태의 베이스(61) 및 이에 원주 방향으로 촘촘하게 나열된 판 형태의 핀(62)으로 구성되는데, 열전달 효율이 높은 구리 등과 같은 금속 재질로 형성된다.
냉각부(70)는 앤드 캡(53)과 사이에 팽창공간(E)을 형성하도록 재생기(50) 단부에 장착되는데, 열교환 작용을 통하여 극저온을 유지하게 된다. 물론, 냉각부(70)는 내부의 냉매와 외부의 공기 사이에 열교환 작용을 위하여 보다 넓은 표면적을 형성하도록 구성될 수 있다.
그 외에도, 미도시된 도면 부호 80은 패시브 밸런서(passive balancer)를 나타내는데, 극저온 냉동기의 작동 시에 발생되는 진동을 저감시킨다.
상기와 같이 구성된 극저온 냉동기의 작동을 살펴보면, 다음과 같다.
먼저, 전원 단자(14)를 통하여 전류가 아우터스테이터(42)로 공급되면, 이너스테이터(41)와 아우터스테이터(42) 및 영구자석(43) 사이에 상호 전자기력이 발생되고, 이러한 전자기력에 의해 영구자석(43)이 왕복 직선 운동하게 된다. 이때, 영구자석(43)이 피스톤 바디(311) 및 이와 맞물린 피스톤 플러그(312)와 연결되기 때문에 영구자석(43)과 함께 피스톤(31)이 왕복 직선 운동하게 된다. 따라서, 실린더(21) 내부에서 피스톤(31)이 왕복 직선 운동하면, 관성력에 의해 디스플레이서(32)가 피스톤(31)의 움직임에 대해 반대 방향으로 움직이는 동시에 판 스프링(S)에 의해 탄성 지지된다.
따라서, 피스톤(31)과 디스플레이서(32)의 왕복 직선 운동에 의해 실린더(21) 내부의 압축공간(C)에 냉매가 압축되는 동시에 실린더(21)의 통공(21h)을 통과하여 프레임(12) 내측을 지나면서 방열부(60)에 의해 방열되는 등온압축과정을 거치게 된다. 이후, 등온압축과정을 거친 냉매는 디스플레이서 하우징(22)의 통공(22h) 및 디스플레이서 바디(321a)의 제1통공(321h)을 통하여 재생기(50) 내부를 유입되고, 서로 반대 방향으로 유동되는 냉매와 열교환 작용을 하면서 등적재생과정을 거치게 된다. 이후, 등적재생과정을 거친 냉매는 팽창공간(E)으로 빠져나와서 팽창되는 동시에 냉각부(70)에서 외부 공기를 냉각시키는 등온팽창과정을 거치게 된다. 이후, 등온팽창과정을 거친 냉매는 다시 재생기(50) 내부로 유입된 다음, 상기에서 설명한 바와 같이 반대 방향으로 유동되는 냉매에 의해 재생되는 등적재생과정을 거친다. 이때, 디스플레이서 커버(322)에 구비된 흡입구 및 디스플레이서 밸브(323)를 통하여 디스플레이서 바디(321a) 및 디스플레이서 커버(322) 내부를 지난 다음, 냉매는 디스플레이서 커버(322)의 통공(322H)과 디스플레이서 바디(321a)의 제2통공(321H)을 통하여 다시 압축공간(C)으로 유입된다. 물론, 리니어 모터(40)가 작동되는 동안 상기와 같은 등온압축과정, 등적재생과정, 등온팽창과정, 등적재생과정을 순차적으로 반복하고, 냉각부(70)에서 극저온 냉각이 이뤄지도록 한다.
도 4는 본 발명에 따른 극저온 냉동기의 냉각부 일예가 도시된 측단면도이다.
본 발명의 극저온 냉동기의 냉각부는 상기에서 설명한 바와 같이 냉매의 등온 팽창으로 인하여 주변을 극저온 상태로 유지하게 되는데, 과도한 냉각을 방지하기 위하여 도 4에 도시된 바와 같이 온도를 측정하는 온도 센서(90)와, 온도 센서(90)의 측정 온도에 따라 작동되는 히터(91)가 구비된다. 이때, 온도 센서(90)에서 냉각부(70)의 온도가 설정 온도 이하로 측정되면, 히터(91)가 켜져서 냉각부(70)를 가열하도록 작동되며, 리니어 모터(40 : 도 3에 도시)는 온도 센서(90)에서 측정된 온도 또는 다른 측정값에 따라 피스톤(31 : 도 3에 도시)의 스트로크를 조절한다.
따라서, 리니어 모터(40 : 도 3에 도시)가 작동됨에 따라 피스톤(31 : 도 3에 도시)이 소정의 스트로크로 왕복 직선 운동하는 동시에 디스플레이서(32 : 도 3에 도시)와 연동되는 동안, 냉매가 압축 공간, 재생기(50), 냉각부(70), 재생기(50)를 따라 순환하며, 등온 팽창, 재생, 등온 압축, 재생을 거치게 된다. 그런데, 냉각부(70) 측에서 설정 온도 이하로 극저온 상태를 유지하면, 냉동 능력을 줄이기 위하여 리니어 모터(40 : 도 3에 도시)는 피스톤(31 : 도 3에 도시)의 스트로크를 줄이는 방향으로 제어하게 된다. 이때, 온도 센서(90)에 의해 측정된 냉각부(70)의 온도가 설정 온도 이하로 떨어지면, 히터(91)는 온도 센서(90)로부터 입력된 제어 신호에 따라 작동하면서 냉각부(70)를 가열시키고, 온도 센서(90)에 의해 측정된 냉각부(70)의 온도가 설정 온도 이하로 떨어지면, 히터(91)는 온도 센서(90)로부터 입력된 제어 신호에 따라 정지되면서 냉각부(70)의 가열을 중단하도록 작동된다. 물론, 냉각부(70)가 히터(91)에 의해 가열되면, 냉각부(70) 내측의 냉매가 소정의 온도가 올라가는 동시에 팽창되는 과정을 거치기 때문에 전체적으로 냉각부(70) 측의 냉매의 온도 및 압력이 올라감에 따라 냉동 능력을 높이기 위하여 리니어 모터(40 : 도 3에 도시)에 의해 피스톤(31 : 도 3에 도시)의 스트로크가 일정 크기 이상으로 유지되고, 압축공간의 냉매가 고압 상태를 유지할 수 있어 고압의 냉매에 의하여 마찰하는 부품들 사이를 윤활시키는 가스 베어링이 정상적으로 작동될 수 있도록 한다.
도 5는 본 발명에 따른 극저온 냉동기의 가스 베어링 일예가 도시된 측단면도이고, 도 6은 본 발명에 따른 극저온 냉동기의 가스 베어링 일부인 피스톤 플러그 일예가 도시된 사시도이다.
본 발명의 극저온 냉동기에 적용된 가스 베어링의 일예는 도 5 내지 도 6에 도시된 바와 같이 압축공간의 고압 냉매가 피스톤(31)으로 유입된 다음, 실린더(21)와 피스톤(31) 사이의 간극, 피스톤(31)과 디스플레이서(32) 사이의 간극으로 공급될 수 있도록 구성된다.
압축공간의 냉매가 피스톤(31)으로 유입되는 유로를 형성하기 위하여, 압축공간의 냉매가 유입될 수 있도록 피스톤 플러그(312)의 축 방향으로 구비된 유로(312a)와, 피스톤 플러그(312)의 유로(312a)를 개폐시키도록 구비된 박판 형상의 피스톤 밸브(313)와, 피스톤 플러그(312)의 유로(312a)와 연통되도록 피스톤 플러그(312)의 외주면을 따라 원주 방향으로 형성된 복수개의 저장홈(312b)이 구비된다.
피스톤(31) 내부의 냉매가 피스톤(31)과 맞닿는 실린더(21)와 디스플레이서(32) 사이의 간극으로 유입되는 유로를 형성하기 위하여, 피스톤 플러그(312)의 저장홈(312b)에 저장된 냉매를 피스톤 바디(311)와 실린더(21) 사이의 공간으로 공급하도록 피스톤 바디(311)의 반경 방향으로 관통된 복수개의 홀(311h)과, 피스톤 플러그(312)의 저장홈(312b)에 저장된 냉매를 피스톤 플러그(312)와 디스플레이서 로드(321) 사이의 공간으로 공급하도록 피스톤 플러그(312)의 반경 방향으로 관통된 복수개의 홀(312h)이 구비된다. 물론, 피스톤 플러그(312)의 저장홈(312b)에 저장된 냉매를 피스톤 바디(311)의 홀(311h) 또는 피스톤 플러그(312)의 홀(312h)로 안내하기 위하여 피스톤 플러그(312)의 외주면에는 축 방향으로 일정 간격을 두고 원주 방향을 따라 링 형상으로 형성된 그루브(g) 또는 그루브(g)를 연결하도록 축 방향을 따라 길게 형성된 홈(h)이 구비된다.
따라서, 압축공간과 피스톤 플러그(312)의 저장홈(312b) 사이의 압력차에 의해 피스톤 밸브(313)가 개방되면, 압축공간의 고압 냉매는 피스톤 플러그(312)의 유로(312a)를 따라 피스톤 플러그(312)의 저장홈(312b)으로 유입되고, 피스톤 플러그(312)의 저장홈(312b)으로 유입된 고압 냉매는 피스톤 플러그(312)의 그루브(g) 및 홈(h)으로 안내된 다음, 피스톤 바디(311)의 홀(311h) 또는 피스톤 플러그(312)의 홀(312h)을 통하여 피스톤 바디(311)와 실린더(21) 사이의 간극 또는 피스톤 플러그(312)와 디스플레이서 로드(321) 사이의 간극으로 유입되고, 부품들 사이가 맞닿지 않도록 간극을 유지시킨다. 물론, 상기에서 설명한 바와 같이 피스톤(31)의 스트로크를 일정 크기 이상으로 유지하기 때문에 고압의 냉매가 균일하게 부품들 사이의 간극을 유지하면서 윤활 작용을 하게 된다.
이상에서, 본 발명은 본 발명의 실시예 및 첨부도면에 기초하여 예로 들어 상세하게 설명하였다. 그러나, 이상의 실시예들 및 도면에 의해 본 발명의 범위가 제한되지는 않으며, 본 발명의 범위는 후술한 특허청구범위에 기재된 내용에 의해서만 제한될 것이다.

Claims (4)

  1. 압축공간을 형성하는 고정부재;
    고정부재 내측에서 왕복 직선 운동하면서 냉매를 압축 및 팽창시키는 가동부재;
    가동부재를 왕복 구동시키는 리니어 모터;
    가동부재의 축방향에 결합되어 압축된 냉매와 팽창된 냉매를 서로 반대 방향으로 유동시키면서 재생시키는 재생기;
    고정부재 외부에 구비되어 압축되는 냉매의 열을 외부로 방열시키는 방열부;
    재생기의 축방향에 팽창공간을 형성하도록 결합되어 팽창되는 냉매가 외부로부터 흡열하는 냉각부;
    냉각부의 온도를 측정하는 온도 센서; 그리고,
    냉각부에 장착되고, 냉각부의 온도가 설정 온도 이하에서 작동되는 히터;를 포함하는 것을 특징으로 하는 극저온 냉동기.
  2. 제1항에 있어서,
    리니어 모터는 설정 스트로크 이상으로 가동부재를 왕복 구동시키는 것을 특징으로 하는 극저온 냉동기.
  3. 제1항 또는 제2항에 있어서,
    고정부재는 압축공간을 내부에 구비한 실린더와, 실린더의 축방향으로 연장된 디스플레이서 하우징을 포함하고,
    가동부재는 실린더 내측에서 왕복 직선 운동하는 피스톤과, 디스플레이서 하우징 내부에서 피스톤과 연동하여 왕복 직선 운동하는 디스플레이서를 포함하며,
    실린더와 피스톤과 디스플레이서 사이에는 가스 베어링이 구비된 것을 특징으로 하는 극저온 냉동기.
  4. 제3항에 있어서,
    피스톤은 실린더 내측에 설치된 피스톤 바디와, 피스톤 내측에 설치된 피스톤 플러그로 이루어지고,
    디스플레이서는 피스톤 플러그 중심을 관통하는 디스플레이서 축과, 디스플레이서 하우징에 내장하도록 디스플레이서 축의 단부에 연결된 디스플레이서 바디를 포함하고,
    가스 베어링은 압축공간과 연통하도록 피스톤 플러그의 축방향으로 관통된 유로와, 유로 상에 개폐 가능하게 설치된 피스톤 밸브와, 유로와 연통되도록 피스톤 플러그의 외주면에 구비된 저장홈과, 저장홈에 저장된 냉매를 실린더와 피스톤 바디 사이로 공급하도록 피스톤 바디의 반경 방향으로 관통된 내부 주입구와, 저장홈에 저장된 냉매를 피스톤 플러그와 디스플레이서 로드 사이로 공급하도록 피스톤 플러그의 반경 방향으로 관통된 외부 주입구와, 저장홈과 내/외부 주입구를 연통시키도록 피스톤 플러그 외주면에 원주 방향 또는 축방향으로 형성된 복수개의 그루브를 포함하는 것을 특징으로 하는 극저온 냉동기.
KR1020100016700A 2010-02-24 2010-02-24 극저온 냉동기 KR20110097072A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100016700A KR20110097072A (ko) 2010-02-24 2010-02-24 극저온 냉동기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100016700A KR20110097072A (ko) 2010-02-24 2010-02-24 극저온 냉동기

Publications (1)

Publication Number Publication Date
KR20110097072A true KR20110097072A (ko) 2011-08-31

Family

ID=44932140

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100016700A KR20110097072A (ko) 2010-02-24 2010-02-24 극저온 냉동기

Country Status (1)

Country Link
KR (1) KR20110097072A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200130954A (ko) * 2019-05-13 2020-11-23 한국세라믹기술원 전극 배열 및 모듈 연결 구조 최적화를 통해 우수한 출력 전압 특성을 갖는 구조진단용 모니터링 센서 및 에너지 하베스터용 플렉서블 멀티 압전체 모듈

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200130954A (ko) * 2019-05-13 2020-11-23 한국세라믹기술원 전극 배열 및 모듈 연결 구조 최적화를 통해 우수한 출력 전압 특성을 갖는 구조진단용 모니터링 센서 및 에너지 하베스터용 플렉서블 멀티 압전체 모듈

Similar Documents

Publication Publication Date Title
US7275375B2 (en) Regenerator and cryocooler using the same
KR100348618B1 (ko) 맥동관 냉동기의 에프터 쿨러 및 그 제조방법
KR20110097065A (ko) 극저온 냉동기
KR100393792B1 (ko) 맥동관 냉동기
KR20110097069A (ko) 극저온 냉동기의 피스톤 밸브 고정구조
US5505047A (en) Gas compression/expansion apparatus
KR20110097072A (ko) 극저온 냉동기
KR20110097070A (ko) 극저온 냉동기의 디스플레이서 밸브
KR20110097067A (ko) 극저온 냉동기의 방열부
US9322271B2 (en) Cryogenic refrigerator
KR20110097071A (ko) 극저온 냉동기의 밸브
KR20110097066A (ko) 극저온 냉동기
KR100284427B1 (ko) 맥동관냉동기의구동모터방열장치
KR20110097068A (ko) 극저온 냉동기의 방열부
KR100296296B1 (ko) 선형액츄에이터
KR100283156B1 (ko) 무윤활 맥동관 냉동기의 예냉기 구조
KR20110097073A (ko) 극저온 냉동기
KR100311373B1 (ko) 무윤활맥동관냉동기
KR100273437B1 (ko) 선형 액츄에이터 방열구조
JPH1137585A (ja) ガス圧縮膨張機
JP3883716B2 (ja) ガス圧縮膨張機
JPH11201571A (ja) ガス圧縮膨張機
CN118128724A (zh) 直线压缩机及制冷机
KR20000052196A (ko) 무윤활 맥동관 냉동기의 냉각장치
KR20000012904A (ko) 맥동관 냉동기의 열전달 방지장치

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right