KR20110094766A - Removal method of carbon dioxide in syngas using adsorbent for low temperature applications - Google Patents

Removal method of carbon dioxide in syngas using adsorbent for low temperature applications Download PDF

Info

Publication number
KR20110094766A
KR20110094766A KR1020100014374A KR20100014374A KR20110094766A KR 20110094766 A KR20110094766 A KR 20110094766A KR 1020100014374 A KR1020100014374 A KR 1020100014374A KR 20100014374 A KR20100014374 A KR 20100014374A KR 20110094766 A KR20110094766 A KR 20110094766A
Authority
KR
South Korea
Prior art keywords
carbon dioxide
adsorbent
low temperature
reaction
hydrogen
Prior art date
Application number
KR1020100014374A
Other languages
Korean (ko)
Inventor
한춘
김영훈
배종수
박주원
김재호
이재구
Original Assignee
한춘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한춘 filed Critical 한춘
Priority to KR1020100014374A priority Critical patent/KR20110094766A/en
Publication of KR20110094766A publication Critical patent/KR20110094766A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE: A method for eliminating carbon dioxide in synthetic gas using a low temperature carbon dioxide absorber is provided to selectively eliminate carbon dioxide from the synthetic gas containing hydrogen and the carbon dioxide and separate pure hydrogen. CONSTITUTION: An absorber carries 10 to 50 weight% of sodium carbonate in alumina. 20 weight% of absorber is used for eliminating carbon dioxide from synthetic gas containing hydrogen and carbon dioxide. The carbon dioxide is absorbed to be converted hydrogen carbonate salt and is eliminated from the synthetic gas at low temperature. A reverse reaction is generated at high temperature.

Description

저온용 이산화탄소 흡착제를 이용한 합성가스내 이산화탄소 제거방법 {Removal method of carbon dioxide in syngas using adsorbent for low temperature applications}Removal method of carbon dioxide in syngas using adsorbent for low temperature applications}

본 발명은 수소와 이산화탄소의 혼합가스에서 이산화탄소 분리를 통한 수소분리 방법에 관한 것으로서, 더욱 상세하게는 알루미나에 담지된 탄산나트륨흡착제를 이용하여 이산화탄소를 선택적으로 제거하는 것이다.
The present invention relates to a hydrogen separation method by separating carbon dioxide from a mixed gas of hydrogen and carbon dioxide, and more particularly to selectively remove carbon dioxide using a sodium carbonate adsorbent supported on alumina.

이산화탄소 흡착공정의 경우 PSA 공정, 분리막을 이용한 이산화탄소 제거 방법 등이 개발되었다. PSA 공정은 고체 흡착제에 공급가스 혼합물 중의 한 가지 또는 그와 유사한 흡착특성이 있는 성분들을 선택적으로 흡착시켜 공급혼합물의 조성과 다른 흡착조성을 이루도록 하는 공정이다. 이 공정은 적은 에너지 및 설비비용으로 고순도의 수소를 분리한다는 장점뿐만 아니라, 이를 이용하여 이산화탄소의 회수, 공기에서의 산소와 질소 분리, 제철소 배출기체로부터 이산화탄소회수, 천연가스정제 등 여러 방면으로 상업적으로 이용되고 있다. 혼합가스의 분리는 높은 압력에서의 흡착과 낮은 압력에서의 탈착의 반복을 포함하는 주기적인 공정을 이룬다. 또한, 낮은 압력에서 높은 압력으로 새로운 주기가 시작되는 과정과 분리효율을 향상시키기 위한 많은 기술적 단계들을 포함하고 있다. 분리막은 서로 다른 두 물질을 장애물을 이용하여 한 물질을 선택적으로 통과시키거나 억제하는 소재를 말하며, 통과하는 물질은 일반적으로 압력구배 및 전기적 전위차에 의해 결정된다. 분리막은 기공의 크기나 물질의 크기에 의해 규정된다. 세라믹분리막은 화학 침출, 고상 소결 및 졸-겔법을 이용하여 제조되며, 팔라듐계 원소, 알루미나, 제올라이트, 지르코니아, 스테인리스, 유리 등 무기재료를 이용하여 제조된다. 세라믹분리막은 고온에서 열적 안정성을 띄기 때문에 고온에서도 미세구조의 변화가 일어나지 않으면서도 분리공정이 가능하다. 또한, 화학적으로 안정성이 우수하기 때문에 사용 수명이 길며 유기용매나 산-알칼리 용액에서 실험을 진행할 경우에도 침식되거나 부식되지 않는다. 그러나 세라믹분리막에 경우 유기질막에 비해 제조하는데 상대적으로 비용이 많이 들며, 깨지기 쉬운 성질이 있어 공업적으로 이용하는 데는 기술적인 어려움이 있다. 이에 실험변수가 적고 비교적 간단하게 이산화탄소를 제거할 수 있는 파우더형 흡착제 개발이 요구되고 있는데, 이에 산화칼슘 및 리튬지르코네이트 등의 흡착제를 이용하여 이산화탄소를 흡착, 제거할 수 있다. 그러나 산화칼슘이나 리튬지르코네이트는 700oC 이상의 고온에서 이산화탄소 흡착능을 나타낼 뿐만 아니라 흡착용량도 작아서 실질적으로 이산화탄소 제거에는 많은 어려움이 있다. 따라서 저온에서 비교적 간단한 방법으로 이산화탄소를 제거할 수 있는 흡착제 개발이 요구되고 있다.
In the case of the carbon dioxide adsorption process, a PSA process and a carbon dioxide removal method using a separator have been developed. The PSA process is a process for selectively adsorbing one or similar components of the feed gas mixture to the solid adsorbent to achieve an adsorption composition different from that of the feed mixture. This process not only has the advantage of separating high purity hydrogen with low energy and equipment cost, but also uses it to recover carbon dioxide, separate oxygen and nitrogen from air, recover carbon dioxide from steel mill exhaust gas, purify natural gas, etc. It is used. Separation of the mixed gas is a periodic process involving repeated adsorption at high pressure and desorption at low pressure. In addition, the process starts a new cycle from low pressure to high pressure and includes many technical steps to improve separation efficiency. The separator refers to a material that selectively passes or suppresses two different materials through obstacles, and the materials passing through are generally determined by a pressure gradient and an electrical potential difference. The membrane is defined by the size of the pores or the size of the material. Ceramic separators are prepared by chemical leaching, solid state sintering, and sol-gel methods, and are made of inorganic materials such as palladium-based elements, alumina, zeolite, zirconia, stainless steel, and glass. Since the ceramic separator is thermally stable at high temperatures, the separation process can be performed at high temperatures without changing the microstructure. In addition, because of its excellent chemical stability, it has a long service life and does not corrode or corrode even when experimenting with organic solvents or acid-alkaline solutions. However, the ceramic separator is relatively expensive to manufacture compared to the organic membrane, and there is a technical difficulty in industrial use because of the fragile nature. Accordingly, there is a demand for developing a powder type adsorbent having a small number of experimental variables and relatively simple removal of carbon dioxide. Accordingly, carbon dioxide can be adsorbed and removed using an adsorbent such as calcium oxide and lithium zirconate. However, calcium oxide or lithium zirconate not only exhibits carbon dioxide adsorption capacity at high temperatures of 700 ° C. or more, but also has a small adsorption capacity. Therefore, there is a need for developing an adsorbent capable of removing carbon dioxide at a relatively simple method at low temperatures.

이에, 본 발명자들은 상기한 문제점들을 해결하여, 저온에서 쉽게 이산화탄소를 흡착하여 제거할 수 있는 알칼리계탄산염을 이용하여 흡착용량이 큰 흡착제 개발하고자 한다. 알칼리계탄산염은 주변의 수분과 함께 이산화탄소를 흡착하여 탄산수소염 형태로 전환되며, 고온에서는 그 역반응이 진행되어 빠른 재생이 가능하다. 또한 자체 제조한 알루미나에 탄산나트륨을 담지함으로써 이산화탄소 제거능을 극대화 할 수 있는 흡착제를 제조하여 합성가스내의 이산화탄소를 분리함에 목적을 두고 있다. Thus, the present inventors have solved the above problems, to develop an adsorbent having a large adsorption capacity using an alkali-based carbonate that can be easily removed by adsorbing carbon dioxide at low temperatures. Alkaline carbonate adsorbs carbon dioxide along with the surrounding water and converts it into a form of hydrogen carbonate. At high temperatures, the reverse reaction proceeds, allowing rapid regeneration. In addition, the purpose of the present invention is to prepare an adsorbent that can maximize the carbon dioxide removal ability by supporting sodium carbonate in the alumina manufactured by itself to separate the carbon dioxide in the synthesis gas.

상술한 바와 같이, 이산화탄소는 산화칼슘, 리튬지르코네이트 및 알칼리계 탄산염 등의 흡착제를 이용하여 제거할 수 있다. 그러나 산화칼슘이나 리튬지르코네이트의 경우 700oC 이상의 고온에서 이산화탄소 흡착능을 나타낼 뿐만 아니라 흡착용량도 작아서 실질적으로 이산화탄소 제거에는 어려움이 있다. 이에 따라, 저온에서 쉽게 이산화탄소를 흡착하여 제거할 수 있는 알칼리계 탄산염을 이용하여 흡착용량이 큰 흡착제 개발을 통한 합성가스내의 이산화탄소 분리에 대한 연구가 요구되고 있다. 알칼리계 탄산염은 주변의 수분과 함께 이산화탄소를 흡착하여 탄산수소염 형태로 전환되며, 고온에서는 그 역반응이 진행되어 빠른 재생이 가능하다. 또한, 알루미나 담지체에 담지함으로서 흡착능을 극대화시킬 수 있다.As described above, carbon dioxide can be removed using an adsorbent such as calcium oxide, lithium zirconate and alkali carbonate. However, calcium oxide or lithium zirconate not only exhibits carbon dioxide adsorption capacity at a high temperature of 700 ° C. or higher, but also has a small adsorption capacity, which makes it difficult to remove carbon dioxide. Accordingly, research on the separation of carbon dioxide in syngas through the development of an adsorbent having a high adsorption capacity using an alkali carbonate that can easily remove and absorb carbon dioxide at low temperatures is required. Alkaline carbonate adsorbs carbon dioxide together with the surrounding water and converts it into the form of hydrogen carbonate. At high temperatures, the reverse reaction proceeds and rapid regeneration is possible. In addition, it is possible to maximize the adsorption capacity by supporting the alumina carrier.

본 발명은 이산화탄소 흡착제를 이용하여 수소와 이산화탄소 혼합가스내 이산화탄소를 선택적으로 제거함에 있어, 10~50 질량%의 흡착제를 제조하여 반응기내 수분과 반응하여 이산화탄소를 제거함에 그 특징이 있다. 본 발명에서 이용하는 이산화탄소 흡착용 반응장치는 지름 25 mm, 높이 200 mm인 진공유리트랩을 이용하였다. 이때 흡착 반응에서 필요한 최소한의 수분을 제공하기 위해, 대상 가스는 물 층을 통과하여 반응기로 들어오도록 제조하였다. 또한 흡착제가 과량의 수분과 직접 반응하는 것을 막기 위하여 암면을 이용하여 흡착제를 격리시켜 충진 하였다. 동일양의 이산화탄소와 수소를 반응기로 흘려주었으며, 이때 유량비는 동일한양을 공급하였다. 반응기의 온도를 조절하기 위하여 반응기는 항온조 내에 설치하여 20~40oC의 범위에서 실험을 진행하였다. 반응 후 제거되는 이산화탄소의 양을 시간별로 반응기에 설치한 채취부에서 주사기를 이용하여 20 ㎕ 채취하여 가스크로마토그래피를 이용하여 분석하였다. 이산화탄소 흡착 반응용 탄산나트륨 흡착제의 경우 5 g을 채우고 이산화탄소, 수소를 흘려주면서 반응실험을 하였다. 이때 흡착제의 반응성을 극대화하기 위하여 나노기공을 지닌 알루미나 담지체를 제조하였다. 구조유도체인 로우릭산과 전구체인 알루미늄 트리 세크 부톡사이드를 각각 부탄올에 넣어 2시간 휘저음 하였다. 수화와 축합반응을 유도하기 위한 증류수는 펌프를 이용하여 시간당 0.5 ml씩 공급하면서 24시간 휘저음 하였다. 제조된 알루미나는 건조기에서 건조하였으며, 건조된 담체는 전기로에서 소성하여 구조유도체 제거와 함께 감마 알루미나 결정성을 확보하여 기계적 강도를 제공하였다. 제조한 알루미나에 탄산나트륨을 담지 시킴에 있어 탄산나트륨입자와 증류수의 반응이 일어나지 않게 하기 위하여 함침법을 이용하였으며, 알루미나 기준으로 10~50 질량%의 흡착제를 제조하였다. 제조한 흡착제는 공기 중의 수분과 반응하는 것을 억제하기 위하여 데시케이터에 보관하였다.
The present invention is characterized in that in the selective removal of carbon dioxide in the hydrogen and carbon dioxide mixed gas using a carbon dioxide adsorbent, to prepare a 10 to 50% by mass of the adsorbent to react with water in the reactor to remove the carbon dioxide. The reaction apparatus for carbon dioxide adsorption used in the present invention used a vacuum glass trap having a diameter of 25 mm and a height of 200 mm. At this time, in order to provide the minimum moisture required in the adsorption reaction, the target gas was prepared to enter the reactor through the water layer. In order to prevent the adsorbent from directly reacting with excess moisture, the adsorbent was sequestered and filled using rock wool. The same amount of carbon dioxide and hydrogen was flowed into the reactor, where the flow rate ratio was supplied in the same amount. In order to control the temperature of the reactor, the reactor was installed in a thermostat and experimented in the range of 20-40 o C. The amount of carbon dioxide removed after the reaction was analyzed by gas chromatography by collecting 20 μl from a sampling unit installed in the reactor by time using a syringe. In case of sodium carbonate adsorbent for carbon dioxide adsorption reaction, the reaction experiment was performed while flowing carbon dioxide and hydrogen. At this time, in order to maximize the reactivity of the adsorbent was prepared alumina carrier having nano pores. Structural derivatives, lactic acid and precursor aluminum trisec butoxide were added to butanol and stirred for 2 hours. Distilled water to induce hydration and condensation reaction was stirred for 24 hours while supplying 0.5 ml per hour using a pump. The prepared alumina was dried in a drier, and the dried carrier was calcined in an electric furnace to provide gamma alumina crystallinity with structural derivative removal, thereby providing mechanical strength. In impregnating sodium carbonate in the prepared alumina, an impregnation method was used to prevent the reaction between sodium carbonate particles and distilled water, and an adsorbent of 10-50 mass% was prepared based on alumina. The adsorbent thus prepared was stored in a desiccator to suppress the reaction with moisture in the air.

이하, 본 발명을 실시예에 근거하여 더욱 상세하게 설명하겠는바, 본 발명이 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.

실시예 1 Example 1

알루미나에 담지된 탄산나트륨의 양이 10~50 질량%로 증가함에 따라 반응기내 이산화탄소가 제거되고 이에 반응기내 탄산나트륨의 함량이 천천히 떨어지는 것을 확인할 수 있다. 즉 흡착반응을 통해 탄산수소나트륨의 형성이 일어나고 있음을 알 수 있다. 또한, 탄산나트륨의 담지량에 따른 이산화탄소 제거량은 증가하지만, 실제로 흡착된 이산화탄소량을 알루미나의 담지된 탄산나트륨의 그램 당 흡착 몰수를 계산하면 최적 담지량을 찾을 수 있다. 담지량이 10, 20, 30, 40, 50질량%의 경우, 각각의 이산화탄소 흡착량은 그램 당 2.38, 3.27, 2.94, 2.69, 2.37 mmol로 나타나 20 질량% 이상의 흡착제에서는 흡착제의 성능이 오히려 떨어지는 것을 알 수 있다.
As the amount of sodium carbonate supported in the alumina increases to 10 to 50% by mass, carbon dioxide in the reactor may be removed, and thus the content of sodium carbonate in the reactor may drop slowly. That is, it can be seen that the formation of sodium bicarbonate occurs through the adsorption reaction. In addition, although the amount of carbon dioxide removed according to the amount of sodium carbonate is increased, the optimum amount can be found by calculating the number of adsorption moles per gram of the supported sodium carbonate of alumina. At 10, 20, 30, 40 and 50% by mass, the amount of carbon dioxide adsorbed was 2.38, 3.27, 2.94, 2.69 and 2.37 mmol per gram, indicating that the adsorbent's performance was rather deteriorated at 20% or more by mass. Can be.

실시예 2 Example 2

실시예 1에서 실시한 바와 같이 최적 담지량 20 질량% 흡착제를 이용하여 반응온도 20~40oC에서 흡착성능을 알아보았다. 반응온도 20, 30, 40oC에서 각각의 이산화탄소 흡착량은 그램 당 3.27, 3.12, 2.83 mmol로 나타났다. 즉 저온용 흡착제는 가능한 상온에서 반응시키는 것이 가장 좋은 흡착능을 보인다는 것을 확인할 수 있다. 이는 반응기내 온도가 상승할 경우, 발열반응에 따른 이산화탄소의 흡착이 억제되고 그 역반응인 탈착반응이 일어나게 됨을 나타낸다. 이를 통해 다음 실시예에서 흡착제 재생 성능을 나타내었다.
As in Example 1, the adsorption performance was examined at a reaction temperature of 20 to 40 ° C. using an optimum loading of 20% by mass adsorbent. At the reaction temperatures of 20, 30 and 40 o C, the adsorption amount of carbon dioxide was 3.27, 3.12 and 2.83 mmol per gram. That is, it can be seen that the low temperature adsorbent shows the best adsorption capacity at the reaction at room temperature. This indicates that when the temperature in the reactor rises, the adsorption of carbon dioxide due to the exothermic reaction is suppressed and the desorption reaction, which is the reverse reaction, occurs. This shows the adsorbent regeneration performance in the following examples.

실시예 3 Example 3

흡착성능평가에서와 같이 20oC, 20 질량%흡착제를 이용할 경우 가장 높은 이산화탄소 흡착능을 보임을 알 수 있다. 그러나 흡착제는 사용 후 폐기할 경우 비경제적이며 2차 환경오염물질을 생산하게 되므로 흡착반응의 역반응을 이용한 재생을 하였다. 이에 열처리를 통해 역반응을 유도하여 흡착제를 재생시켰다. 흡착제는 재생시 다른 물질과 반응하는 것을 막기 위해 진공트랩 내의 물을 완전히 제거한 후 항온조 내에서 반응시켰다. 재생온도는 100oC를 유지한 상태에서 탈착된 이산화탄소를 내보내기 위하여 알곤 가스를 분당 200 ml로 흘려주면서 3시간 유지시켰다. 재생횟수가 증가함에 따라 이산화탄소 흡착량은 그램 당 3.27, 3.01, 2.67로 나타나 흡착제의 성능이 점진적으로 감소하지만 대체로 80%이상의 흡착능을 유지하였다.As shown in the adsorption performance evaluation, it can be seen that the highest carbon dioxide adsorption capacity is obtained when 20 ° C. and 20 mass% adsorbent are used. However, because the adsorbent is discarded after use, it is uneconomical and produces secondary environmental pollutants. The heat treatment induced a reverse reaction to regenerate the adsorbent. The adsorbent was reacted in a thermostat chamber after completely removing the water in the vacuum trap to prevent the reaction with other substances during regeneration. Regeneration temperature while flowing argon gas to 200 ml per minute in order to export the desorbed carbon dioxide while maintaining the 100 o C and held for 3 hours. As the number of regeneration was increased, the adsorption amount of carbon dioxide was 3.27, 3.01, 2.67 per gram.

Claims (2)

수소와 이산화탄소 혼합가스내 이산화탄소를 선택적으로 흡착, 제거함에 있어, 알루미나에 탄산나르튬을 10~50 질량%로 담지한 흡착제중 가장 경제적인 20 질량%의 흡착제를 이용하여 이산화탄소를 제거하는 방법.
A method of removing carbon dioxide by using the most economical 20 mass% adsorbent among the adsorbents in which 10 to 50 mass% of sodium carbonate is supported on alumina in selectively adsorbing and removing carbon dioxide in a mixture of hydrogen and carbon dioxide.
제 1 항에 있어서, 제조한 20 질량%를 이용하여 저온에서 이산화탄소를 제거하며, 고온에서는 역반응을 발생시켜 재생, 반복 이용하는 방법.     The method according to claim 1, wherein the produced 20 mass% is used to remove carbon dioxide at a low temperature, and a reverse reaction is generated to regenerate and repeat the use at a high temperature.
KR1020100014374A 2010-02-17 2010-02-17 Removal method of carbon dioxide in syngas using adsorbent for low temperature applications KR20110094766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100014374A KR20110094766A (en) 2010-02-17 2010-02-17 Removal method of carbon dioxide in syngas using adsorbent for low temperature applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100014374A KR20110094766A (en) 2010-02-17 2010-02-17 Removal method of carbon dioxide in syngas using adsorbent for low temperature applications

Publications (1)

Publication Number Publication Date
KR20110094766A true KR20110094766A (en) 2011-08-24

Family

ID=44930716

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100014374A KR20110094766A (en) 2010-02-17 2010-02-17 Removal method of carbon dioxide in syngas using adsorbent for low temperature applications

Country Status (1)

Country Link
KR (1) KR20110094766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160044708A (en) * 2014-10-15 2016-04-26 건국대학교 산학협력단 Material for adsorbing and storaging carbon dioxide and method for adsorbing and storaging carbon dioxide using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160044708A (en) * 2014-10-15 2016-04-26 건국대학교 산학협력단 Material for adsorbing and storaging carbon dioxide and method for adsorbing and storaging carbon dioxide using the same

Similar Documents

Publication Publication Date Title
CA2785323C (en) Co2 sorbent
Lee et al. CO2 absorption and regeneration of alkali metal-based solid sorbents
Derevschikov et al. High temperature CaO/Y2O3 carbon dioxide absorbent with enhanced stability for sorption-enhanced reforming applications
Lee et al. Development of new alumina-modified sorbents for CO2 sorption and regeneration at temperatures below 200° C
Santillán-Reyes et al. Analysis of the CO2 capture in sodium zirconate (Na2ZrO3). Effect of the water vapor addition
WO2014208712A1 (en) Carbon dioxide separating material, and method for separation or recovery of carbon dioxide
KR101770701B1 (en) Carbon dioxide adsorbent comprising barium titanate, carbondioxide capture module comprising the same, and methods for separating carbondioxide using the same
JP2010184229A (en) Carbon dioxide adsorbent and carbon dioxide recovery apparatus using the same
JP2019147710A (en) Method for producing cerium(iv) oxide, cerium(iv) oxide, adsorbent, method for removing carbon dioxide, and apparatus for removing carbon dioxide
WO2017134534A1 (en) Process for separation of hydrogen and oxygen
Meis et al. Carbon nanofiber-supported K2CO3 as an efficient low-temperature regenerable CO2 sorbent for post-combustion capture
CN102580468B (en) Method for implementing trapping and separation of CO2 in flue gas by adopting magnesium-based absorbent
JP2011173059A (en) Carbon dioxide adsorbent and carbon dioxide recovery apparatus using the same
RU2533710C1 (en) Method of obtaining methane from atmospheric carbon dioxide
CA2833983C (en) Co2 capturing material and co2 separation and recovery device
Wang et al. Carbon dioxide capture
KR20110094766A (en) Removal method of carbon dioxide in syngas using adsorbent for low temperature applications
JP2020028847A (en) Composite, structure body, adsorbent, carbon dioxide separator, carbon dioxide concentration control system, and manufacturing method of composite
CN105797678A (en) Compound type intermediate-temperature carbon dioxide adsorbent and preparation method thereof
JP5681460B2 (en) Carbon dioxide capture material
US9808784B2 (en) Mesoporous cellular foam impregnated with iron-substituted heteropolyacid, preparation method therefor, and carbon dioxide separation method using same
US9616407B2 (en) Isothermal CO2 adsorption column
CN102059092A (en) Refrigerating composite absorbent and preparation method thereof
KR101234223B1 (en) Method for preparing high efficiency carbon dioxide adsorbents using ion exchange resins
CN114539307B (en) CO (carbon monoxide) 2 Trapping material, synthesis method thereof and carbon trapping process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application