KR20110094677A - Novel indium dialkylglycinate and preparing method thereof - Google Patents

Novel indium dialkylglycinate and preparing method thereof Download PDF

Info

Publication number
KR20110094677A
KR20110094677A KR1020100014231A KR20100014231A KR20110094677A KR 20110094677 A KR20110094677 A KR 20110094677A KR 1020100014231 A KR1020100014231 A KR 1020100014231A KR 20100014231 A KR20100014231 A KR 20100014231A KR 20110094677 A KR20110094677 A KR 20110094677A
Authority
KR
South Korea
Prior art keywords
indium
compound
formula
dialkylglycine
sodium
Prior art date
Application number
KR1020100014231A
Other languages
Korean (ko)
Other versions
KR101187353B1 (en
Inventor
김창균
정택모
이영국
안기석
이선숙
류병환
정인경
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020100014231A priority Critical patent/KR101187353B1/en
Priority to PCT/KR2010/006959 priority patent/WO2011102584A1/en
Publication of KR20110094677A publication Critical patent/KR20110094677A/en
Application granted granted Critical
Publication of KR101187353B1 publication Critical patent/KR101187353B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)

Abstract

PURPOSE: A novel indium compound using modified glycine and a method for preparing the same are provided to ensure thermal stability and easy handling and to be used as a precursor for producing a compound containing indium. CONSTITUTION: An indium dialkyl glycine compound is denoted by chemical formula 1. In chemical formula 1, R1 and R2 are independently linear or branched alkyl group of C1-C5. The compound of chemical formula 1 is prepard by reacting an indium halide compound of chemical formula 2(InX_3) with a compound of chemical formula 3(NaOCOCH_2NR_1R_2). An indium oxide thin film is prepared using the indium dialkyl glycine compound as a precursor.

Description

신규의 인듐 디알킬글리신 화합물 및 그 제조 방법{Novel Indium dialkylglycinate and preparing method thereof} Novel indium dialkylglycin compounds and preparation methods thereof Novel Indium dialkylglycinate and preparing method

본 발명은 신규한 인듐 3가의 디알킬글리신 화합물에 관한 것으로서, 보다 상세하게는 인듐을 포함하는 물질을 제조하는데 전구체로서 유용한 인듐 디알킬글리신 화합물 및 그 제조 방법에 관한 것이다.FIELD OF THE INVENTION The present invention relates to novel indium trivalent dialkylglycine compounds, and more particularly to indium dialkylglycine compounds useful as precursors for the preparation of indium-containing materials and methods for their preparation.

인듐은 전기 도금을 통한 인듐 코팅분야에 있어 마모에 대한 저항력이 뛰어난 점과 알루미늄 전선에 접촉 시 저항이 낮다는 특성 때문에 유용하게 활용되고 있으며 유럽 지역에 있어 나트륨 가스램프(sodium vapor lamp)의 내부 코팅 재료로 산화 인듐이 이용되기도 한다. 또한 산화 인듐과 산화 주석-인듐 필름은 유리나 세라믹의 전도성을 띤 코팅 재료와 전자 발광 패널(electroluminescent pannels)에도 이용된다. 또한 산화 인듐은 열 절연체(heat insulator)로서 이용될 수 있고 태양 전지나 반도체 산업에도 응용될 수 있다 (M. Veith, S. Hill, V. Huch, Eur. J. Inorg. Chem., 1999, 1343). 또한 광전극 물질(photoelectrode material), 액정 표시 장치(liquid crystal display), 광기전 장치(photovoltaic device) 등에도 이용 가능하다 (C. R. Patra, A. Gedanken, New. J.Chem., 2004, 28, 1060).Indium is useful because of its high resistance to abrasion in electroplating and low resistance to contact with aluminum wires.Indium coating of sodium vapor lamp in Europe Indium oxide may be used as a material. Indium oxide and tin-indium oxide films are also used in conductive coating materials and electroluminescent pannels in glass and ceramics. Indium oxide can also be used as a heat insulator and in the solar cell or semiconductor industry (M. Veith, S. Hill, V. Huch, Eur. J. Inorg. Chem., 1999, 1343) . It can also be used for photoelectrode materials, liquid crystal displays, photovoltaic devices, etc. (CR Patra, A. Gedanken, New. J. Chem., 2004, 28, 1060 ).

산화 인듐 증착에 사용되어온 전구체로서 InCl3는 박막 증착 시에 염소 오염이 있을 수 있고 외부로부터 산소 원을 필요로 하는 단점이 있으며, Me3In나 Et3In 등의 트리알킬인듐(III)은 휘발성이 좋으나 산소와 수분에 매우 민감하다는 단점이 있다(C. Xu, T. H. Baum, I. Guzei, A. L. Rheingold, Inorg. Chem., 2000, 39, 2008). As a precursor that has been used for indium oxide deposition, InCl 3 may have chlorine contamination in thin film deposition and requires an oxygen source from the outside, and trialkylindium (III) such as Me 3 In or Et 3 In is volatile. It is good but has the disadvantage of being very sensitive to oxygen and moisture (C. Xu, TH Baum, I. Guzei, AL Rheingold, Inorg. Chem., 2000, 39, 2008).

또한 [In(OC2H4OMe)3]m, [In(OC2H4NMe2)3]m 등의 인듐 알콕사이드는 휘발성도 없고 공기 중에서 불안정하여 사용에 어려움이 많은 것으로 알려져 있다 (S. Daniele, D. Tchebou, L. G. Hubert-Pfalzgraf, S. Lecocq, Inorg. Chem. Comm., 2002, 5, 347). 또 다른 전구체로 In(thd)3 (여기서 thd는 2,2,6,6-테트라메틸-3,5-헵타디오네이트이다)와 In(acac)3 (여기서 acac는 acetylacetonate이다)와 같은 베타디케토네이트 리간드를 이용한 화합물이 있다 (P. Lobinger, H. S. Park, H. Hohmeister, H. W. Roesky, Chem. Vap. Deposition, 2001, 7, 105). 그러나 이들 베타디케토네이트 리간드를 이용한 화합물을 이용하여 인듐을 포함하는 재료를 만드는 경우 산소와 탄소의 오염으로 인하여 막의 성질이 나빠지는 단점이 있다. Indium alkoxides such as [In (OC 2 H 4 OMe) 3 ] m and [In (OC 2 H 4 NMe 2 ) 3 ] m are known to be difficult to use because they are not volatile and unstable in air (S. Daniele, D. Tchebou, LG Hubert-Pfalzgraf, S. Lecocq, Inorg.Chem. Comm., 2002, 5, 347). Other precursors include betadike, such as In (thd) 3 (where thd is 2,2,6,6-tetramethyl-3,5-heptadionate) and In (acac) 3 (where acac is acetylacetonate) Compounds using tonate ligands (P. Lobinger, HS Park, H. Hohmeister, HW Roesky, Chem. Vap. Deposition, 2001, 7, 105). However, when a material containing indium is made using a compound using these beta diketonate ligands, there is a disadvantage in that the properties of the film are deteriorated due to contamination of oxygen and carbon.

또 다른 전구체로 [Et2InOHEt2InNH2], [iPr2InOHiPr2InNH2]와 같은 물과 InR3 (여기서 R은 Et2, iPr2) 유도체의 알케인 제거 반응을 이용한 화합물이 있다. (Peter Lobinger, Hyung S. Park, Holger Hohmeister, and Herbert W. Roesky, Chem. Vap. Deposition., 2001, 7, 105). 그러나 이 인듐 화합물은 암모니아를 첨가해 줌으로써 인듐 옥사이드 박막을 고온에서 증착할 수 있다. 또한 단순한 알콕사이드 리간드 대신에 두 자리 리간드를 사용하여 금속의 배위 자리를 포화시키는 방법이 알려져 있으며 또한 두 자리 리간드 중에서도 아미노 알콕사이드 계통이 알콕시 알콕사이드보다 더 유용하다고 알려져 있다 (L. G. Hubert-Pfalzgraf, H. Guillon, Appl. Organomet. Chem.,1998, 12, 221).Another precursor is a compound using an alkane removal reaction of water such as [Et 2 InOHEt 2 InNH 2 ], [iPr 2 InOHiPr 2 InNH 2 ], and InR 3 (where R is Et 2 , iPr 2 ) derivative. (Peter Lobinger, Hyung S. Park, Holger Hohmeister, and Herbert W. Roesky, Chem. Vap. Deposition., 2001, 7, 105). However, this indium compound can deposit an indium oxide thin film at high temperature by adding ammonia. It is also known to saturate the coordination sites of metals by using a bidentate ligand instead of a simple alkoxide ligand, and among the bidentate ligands, amino alkoxide strains are known to be more useful than alkoxy alkoxides (LG Hubert-Pfalzgraf, H. Guillon, Appl. Organomet. Chem., 1998, 12, 221).

일반적으로 진공 공정으로 박막을 제조하기 위해서 해당 전구체가 높은 휘발성을 가져야 하고, 용액 공정을 이용하여 나노 물질을 제조하기 위해서는 전구체가 공기 중에서 안정하고 다루기 쉬워야 한다. 최근에는 인듐 화합물이 다른 금속과 함께 사용되어 인듐-갈륨-아연 산화물 (indium-gallium-zinc oxide, IGZO)와 같은 투명전자소자나 구리-인듐-갈륨 셀레나이드 (copper indium gallium selenide, CIGS)와 같은 무기태양전지소재를 제작하기 위한 전구체로 많이 연구하고 있다. In general, in order to prepare a thin film by a vacuum process, the precursor must have high volatility, and to prepare a nanomaterial using a solution process, the precursor must be stable and easy to handle in air. Recently, indium compounds have been used with other metals, such as transparent electronic devices such as indium-gallium-zinc oxide (IGZO) or copper indium gallium selenide (CIGS). Much research has been conducted as precursors for the production of inorganic solar cell materials.

미국 특허 제 6,127,202호는 나노입자 합성 단계에서 Cu-In-O, Cu-(In,Ga) -O(이하 CI, CIG 산화물) 산화물 전구체를 합성한 뒤 이를 이용하여 다시 CIS 및 CIGS 광흡수층을 제조하는 방법을 보고하였다. 반면, 전착법은 이러한 전구체 합성 공정 같은 추가 공정 없이 CIGS 박막을 제조할 수 있어 공정을 단순화 할 수 있다. 전착법을 이용한 CIGS박막 공정에 대해서도 몇 가지 기술이 제안 되었다. 국제 특허(PCT) 제 WO01/078154호는 용액 상에서 전착법으로 CIGS 박막을 제조하는 방법에 대하여 보고하였다. 이 방법은 박막의 갈륨 조성비를 높이기 위하여 용액에 Sodium Dodecyl Sulfate(SDS, C12H25SO4Na) 등과 같은 계면활성제를 추가로 첨가하기 때문에 유기물에 의한 박막의 오염을 피할 수 없다는 것이 단점으로 지적되었다. 한편, 국제 특허 제 WO01/078154호는 전착법으로 형성된 CIGS박막을 이용하여 태양전지를 제조하여 9% 대의 에너지 효율을 보고하였다. 하지만, 이 방법에서는 추가적으로 물리증착법(PVD, Physical Vapor Deposition)을 사용하여 CIGS 박막의 부족한 인듐 성분을 보충하였다.U. S. Patent No. 6,127, 202 synthesizes Cu-In-O, Cu- (In, Ga) -O (hereafter CI, CIG oxide) oxide precursors in the nanoparticle synthesis step, and then uses the same to prepare a CIS and CIGS light absorbing layer. Reported how to do it. Electrodeposition, on the other hand, can simplify CIGS thin film production without additional processes such as precursor synthesis. Several techniques have also been proposed for CIGS thin film processes using electrodeposition. International Patent (PCT) WO01 / 078154 reports on the preparation of CIGS thin films by electrodeposition in solution. The disadvantage of this method is that it adds surfactant such as sodium dodecyl sulfate (SDS, C 12 H 25 SO 4 Na) to the solution to increase the gallium composition ratio of the thin film. It became. On the other hand, International Patent No. WO01 / 078154 reported solar energy using a CIGS thin film formed by electrodeposition, and reported an energy efficiency of about 9%. In this method, however, physical vapor deposition (PVD) was used to compensate for the indium content of CIGS thin film.

이상과 같이 종래에 알려진 인듐 3가 화합물은 박막을 진공 공정에서 요구하는 충분하지 못한 휘발성, 제조된 막에 생기는 불소(fluorine) 오염 등의 문제점, 용액 공정에서 필요로 하는 공기 중에서 안정하고 적절한 온도에서 분해가 일어나지 않는 문제점을 가지고 있다. 따라서 용액 공정을 이용하여 산화 인듐 및 인듐을 포함하는 복합 물질을 제조하기 위해서 전구체로서 화합물 자체에 할로겐을 않고 공기 중에서 안정하며 나노 물질의 용이한 합성을 위해 유기 용매에 용해도가 좋으며 낮은 온도에서도 분해될 수 있는 인듐 3가 화합물의 개발은 그 의미가 상당히 크다고 할 수 있다.As described above, indium trivalent compounds known in the art have problems such as insufficient volatility required for a thin film in a vacuum process, fluorine contamination in the manufactured film, and stable and proper temperature in the air required for a solution process. There is a problem that decomposition does not occur. Therefore, to prepare a composite material containing indium oxide and indium by using a solution process, it is stable in the air without halogen in the compound itself as a precursor, solubility in organic solvents for easy synthesis of nanomaterials and decomposes even at low temperatures The development of an indium trivalent compound can be said to be quite significant.

본 발명은 새로운 리간드를 도입하여 인듐 금속에 여러 전자 주개 리간드가 배위하도록 함으로써 탄소나 할로겐의 오염을 일으키지 않으며 수분에서 안정하여 다루기 쉽고 보관이 용이하며 열적 안정성이 개선된 신규의 인듐 디알킬글리신 화합물 및 그 제조 방법을 제공하는 것이다.The present invention provides a novel indium dialkylglycine compound which introduces a new ligand and coordinates several electron donor ligands to the indium metal so as not to cause contamination of carbon or halogen, and is stable in moisture, easy to handle, easy to store, and improved thermal stability. The manufacturing method is provided.

본 발명은 상기 목적을 달성하기 위하여, 하기 화학식 1로 표시되는 인듐-글리신 화합물을 제공한다.The present invention provides an indium-glycine compound represented by the following Chemical Formula 1 in order to achieve the above object.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

[상기 화학식 1에서, R1 및 R2는 서로 독립적으로 선형 또는 분지형의 C1-C5의 알킬기이다.][In Formula 1, R 1 and R 2 are each independently a linear or branched C 1 -C 5 alkyl group.]

상기의 화학식 1의 화합물은 William P. Schaefer (Journal of the American Chemical Society 91(6), 1319, 1969)의 실험방법을 참고하여 제조한 디알킬글리신 에스터를 다시 수산화나트륨과 반응하여 나트륨 디알킬글리신을 제조한 후 상기 나트륨 디알킬글리신과 인듐염 화합물을 반응시켜 수득할 수 있다.The compound of Chemical Formula 1 may be reacted with sodium hydroxide to react dialkylglycine ester prepared by referring to the experimental method of William P. Schaefer (Journal of the American Chemical Society 91 (6), 1319, 1969). After the preparation, it can be obtained by reacting the sodium dialkylglycine with the indium salt compound.

구체적으로 상기 화학식 1에서 R1 및 R2는 서로 독립적으로 CH3, C2H5, C3H7 또는 C4H9로부터 선택되는 것이 바람직하다.
Specifically, in Formula 1, R 1 and R 2 are independently selected from CH 3 , C 2 H 5 , C 3 H 7 or C 4 H 9 .

이하, 본 발명에 따른 인듐 디알킬글리신 화합물의 제조방법을 상세히 설명한다.Hereinafter, a method for preparing an indium dialkylglycine compound according to the present invention will be described in detail.

본 발명에 따른 상기 화학식 1의 금속 디알킬글리신 화합물은, 출발 물질로서 하기 화학식 2로 표시되는 인듐 할라이드 화합물과, 하기 화학식 3으로 표시되는 나트륨 디알킬글리신을 유기용매 하에서 반응시켜 제조할 수 있으며, 이에 대한 반응은 하기 반응식 1로 나타낼 수 있다. The metal dialkylglycine compound of Chemical Formula 1 according to the present invention may be prepared by reacting an indium halide compound represented by Chemical Formula 2 as a starting material and sodium dialkylglycine represented by Chemical Formula 3 under an organic solvent, The reaction can be represented by the following scheme 1.

[화학식 2][Formula 2]

InX3 InX 3

[화학식 3](3)

NaOCOCH2NR1R2 NaOCOCH 2 NR 1 R 2

[반응식 1]Scheme 1

InX3 + 3 NaOCOCH2NR1R2 → In(OCOCH2NR1R2)3 + 3 NaXInX 3 + 3 NaOCOCH2NR 1 R 2 → In (OCOCH 2 NR 1 R 2 ) 3 + 3 NaX

상기 화학식 2, 화학식 3 및 반응식 1에서, X는 Cl, Br 또는 I이고, R1 및 R2는 서로 독립적으로 C1-C5의 선형 또는 분지형 알킬기가 선택된다.In Formula 2, Formula 3 and Scheme 1, X is Cl, Br or I, and R 1 and R 2 are independently selected from a linear or branched alkyl group of C 1 -C 5.

구체적으로 상기 R1 및 R2는 서로 독립적으로 CH3, C2H5, C3H7 또는 C4H9로부터 선택되는 것이 바람직하다. Specifically, R 1 and R 2 are each independently selected from CH 3 , C 2 H 5 , C 3 H 7 or C 4 H 9 .

상기 반응식 1을 보다 구체적으로 설명하면, 출발 물질인 상기 화학식 2로 표시되는 인듐 할라이드 화합물 1 당량과, 화학식 3의 나트륨 디알킬글리신 3 당량을 톨루엔과 같은 유기용매에서 6 내지 12 시간 동안 반응시키고 여과한 다음, 여과액으로부터 감압 하에서 용매를 제거하여 화학식 1의 화합물을 얻을 수 있다.In more detail, Reaction Scheme 1, 1 equivalent of the indium halide compound represented by Chemical Formula 2 and 3 equivalents of sodium dialkylglycine of Chemical Formula 3 are reacted for 6 to 12 hours in an organic solvent such as toluene and filtered. Thereafter, the solvent may be removed from the filtrate under reduced pressure to obtain a compound of Formula 1.

상기 화학식 2의 인듐 할라이드화합물로 바람직하게는 브롬화인듐을 사용할 수 있고, 상기 화학식 3의 나트륨 디알킬글리신은 나트륨 디메틸글리신, 나트륨 디에틸글리신, 나트륨 디프로필글리신, 나트륨 디부틸글리신에서 선택되는 1종 또는 2종 이상의 혼합물이 바람직하게 사용될 수 있으나, 이에 한정되는 것은 아니다.As the indium halide compound of Formula 2, indium bromide may be preferably used. The sodium dialkylglycine of Formula 3 may be selected from sodium dimethylglycine, sodium diethylglycine, sodium dipropylglycine, and sodium dibutylglycine. Or a mixture of two or more kinds may be preferably used, but is not limited thereto.

본 발명에 따른 인듐 디알킬글리신 화합물의 제조방법에서 반응 용매는 특별히 한정되지는 않고 탄화수소 용매이면 가능하며, 특히 톨루엔, 메탄올, 에탄올, 벤젠, n-햅탄, 테트라하이드로퓨란(THF), 또는 이들의 혼합용매가 바람직하다.In the method for preparing an indium dialkylglycine compound according to the present invention, the reaction solvent is not particularly limited and may be a hydrocarbon solvent, and in particular, toluene, methanol, ethanol, benzene, n-haptan, tetrahydrofuran (THF), or these Mixed solvents are preferred.

또한 상기 반응 시 반응온도는 상온 내지 110℃에서 수행되나, 특별히 가온하지 않고 상온에서 6 내지 12 시간이면 반응이 완결된다.In addition, the reaction temperature during the reaction is carried out at room temperature to 110 ℃, the reaction is completed in 6 to 12 hours at room temperature without special heating.

본 발명에서 합성한 인듐 디알킬글리신 화합물의 특성을 분석하기 위하여 수소 핵자기 공명 스펙트럼 (1H NMR)과 각 화합물의 열적 안정성, 휘발성, 분해 온도는 열무게 분석/시차 열분석법(thermogravimetric/differential thermal analysis, TG/DTA)을 이용하여 조사하였다.In order to characterize the indium dialkylglycine compounds synthesized in the present invention, the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) and the thermal stability, volatility, and decomposition temperature of each compound were analyzed by thermogravimetric / differential thermal analysis. analysis, TG / DTA).

도 1, 도 2, 도 4, 도 5, 도 6, 도 7 및 도 8은 각각 실시 예1과 실시 예1 내지 5에서 합성한 나트륨 디부틸글리신, 인듐 디부틸글리신(이하 In(DBG)3)과 나트륨 디메틸글리신, 인듐 디메틸글리신(이하 In(DMG)3), 인듐 디에틸글리신(이하 In(DEG)3), 인듐 디프로필글리신(이하 In(DPG)3), 인듐 에틸메틸글리신(이하 In(EMG)3)의 수소 원자 핵자기 공명 스펙트럼이다. 1, 2, 4, 5, 6, 7 and 8 are sodium dibutylglycine and indium dibutylglycine synthesized in Examples 1 and 1 to 5, respectively (hereinafter referred to as In (DBG) 3 ). ) And sodium dimethylglycine, indium dimethylglycine (hereinafter referred to as In (DMG) 3 ), indium diethylglycine (hereinafter referred to as In (DEG) 3 ), indium dipropylglycine (hereinafter referred to as In (DPG) 3 ), indium ethylmethylglycine (hereinafter referred to as Hydrogen atom nuclear magnetic resonance spectrum of In (EMG) 3 ).

도 3에 In(DBG)3의 TG 그래프 (10 ℃/min to 800 ℃, 100 cc/min N2 purge)를 도시하였다. 364 ℃에서 잔류 물질이 약 3.5% 정도 되었다. 3 shows a TG graph of In (DBG) 3 (10 ° C./min to 800 ° C., 100 cc / min N 2 purge). Residual material was about 3.5% at 364 ° C.

실시 예에서 얻은 인듐(III) 디알킬글리신 화합물은 새로운 리간드를 도입하여 인듐 금속에 여러 전자 주개 리간드가 배위하도록 함으로써 탄소나 할로겐의 오염을 일으키지 않으며 수분에서 안정하여 다루기 쉽고 보관이 용이하며 열적 안정성이 개선된 신규의 인듐(III) 디알킬글리신 화합물이다.The indium (III) dialkylglycine compound obtained in the example is prepared by introducing a new ligand to coordinate several electron donor ligands on the indium metal, which does not cause contamination of carbon or halogen, and is stable in moisture, easy to handle, easy to store, and thermally stable. Improved novel indium (III) dialkylglycine compounds.

본 발명에 따른 신규의 인듐 디알킬글리신 화합물을 이용하여 인듐 산화물 나노 입자, 인듐을 포함하는 복합금속 물질을 제조할 수 있을 뿐만 아니라 금속 유기 화학 증착법(metal organic chemical vapor deposition, MOCVD)을 통하여 인듐 산화물 박막 및 인듐을 포함하는 삼종금속 박막을 제조할 수 있는 장점이 있다.Using the novel indium dialkylglycine compounds according to the present invention, indium oxide nanoparticles and composite metal materials including indium can be prepared, as well as indium oxide through metal organic chemical vapor deposition (MOCVD). There is an advantage that can be produced three metal thin film including a thin film and indium.

본 발명에 따른 인듐 화합물은 수분에 안정해 다루기가 쉽고, 보관이 용이하며, 열적 안정성을 나타냄으로써 인듐 산화물 나노 입자, 그리고 인듐을 포함하는 화합물을 생성할 수 있는 전구체로 유용하게 사용할 수 있는 효과가 있다.The indium compound according to the present invention has an effect that can be usefully used as a precursor capable of producing compounds containing indium oxide nanoparticles and indium by being stable in moisture, easy to handle, easy to store, and thermally stable. have.

도 1은 본 발명에 따른 실시예 1에서 제조한 Na(DBG)의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼이고,
도 2는 본 발명에 따른 실시예 1에서 제조한 In(DBG)3의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼이고,
도 3는 실시예 1에서 제조한 In(DBG)3 화합물의 열중량 분석(TGA) 및 시차 열분석 (DTA) 결과를 나타내는 그래프이다.
도 4는 본 발명에 따른 실시예 2에서 제조한 Na(DMG)의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼이고,
도 5는 본 발명에 따른 실시예 2에서 제조한 In(DMG)3의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼이다.
도 6은 본 발명에 따른 실시 예3에서 제조한 In(DEG)3의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼이다.
도 7은 본 발명에 따른 실시 예4에서 제조한 In(DPG)3의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼이다.
도 8은 본 발명에 따른 실시 예5에서 제조한 In(EMG)3의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼이다.
1 is a hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of Na (DBG) prepared in Example 1 according to the present invention,
2 is a hydrogen atom nuclear magnetic resonance (1 H NMR) spectrum of the In (DBG) 3 prepared in Example 1 according to the invention,
3 is a graph showing the results of thermogravimetric analysis (TGA) and differential thermal analysis (DTA) of the In (DBG) 3 compound prepared in Example 1.
4 is a hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of Na (DMG) prepared in Example 2 according to the present invention,
5 is a hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of In (DMG) 3 prepared in Example 2 according to the present invention.
6 is a hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of In (DEG) 3 prepared in Example 3 according to the present invention.
7 is a hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of In (DPG) 3 prepared in Example 4 according to the present invention.
8 is a hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of In (EMG) 3 prepared in Example 5 according to the present invention.

본 발명은 하기의 실시 예에 의하여 더 잘 이해할 수 있으며, 하기의 실시 예는 본 발명의 예시 목적을 위한 것이며 첨부한 특허 청구 범위에 의하여 한정되는 보호 범위를 제한하고자 하는 것은 아니다.
The invention is better understood by the following examples, which are intended for purposes of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.

[실시 예][Example]

모든 실험은 장갑 상자 또는 슐렝크 관 (Schlenk line)을 이용하여 비활성 아르곤 또는 질소 분위기에서 수행하였다. 실시예 1 내지 5에서 각각 얻은 반응 생성물의 구조와 물성은 수소 원자 핵자기 공명법 (1H nuclear magnetic resonance, NMR), 열무게 분석/시차 열분석법 (Thermogravimetric/differential thermal analysis, TG/DTA)을 이용하여 확인하였다.
All experiments were performed in an inert argon or nitrogen atmosphere using a glove box or Schlenk line. The structures and physical properties of the reaction products obtained in Examples 1 to 5, respectively, were analyzed by 1 H nuclear magnetic resonance (NMR), thermogravimetric / differential thermal analysis (TG / DTA). It confirmed using.

[실시 예1] 인듐(III) 디부틸글리신의 제조Example 1 Preparation of Indium (III) Dibutylglycine

디부틸글리신 에스터의 제조Preparation of Dibutyl Glycine Ester

에틸 클로로아세테이트(10 g, 0.082 mol)와 2당량의 디부틸아민(21 g, 0.164 mol)을 앱솔루트 에탄올 100 mL에서 환류반응으로 15 시간 반응시켰다. 반응이 끝난 후 상온으로 냉각하였다. 이때 결정성의 부산물이 석출되는데 분리를 위하여 디에틸에테르를 과량 첨가하고 이것을 필터하였다. 걸러진 용액은 다시 증류하여 디부틸글리신 에스터를 얻었다.(100℃, 10-1 torr)
Ethyl chloroacetate (10 g, 0.082 mol) and 2 equivalents of dibutylamine (21 g, 0.164 mol) were reacted under reflux for 15 hours in 100 mL of absolute ethanol. After the reaction was cooled to room temperature. At this time, a crystalline byproduct was precipitated. An excess of diethyl ether was added for separation and the resultant was filtered. The filtered solution was distilled again to obtain dibutylglycine ester (100 ° C., 10 −1 torr).

나트륨 디부틸글리신의 제조Preparation of Sodium Dibutylglycine

상기 단계에서 제조된 디부틸글리신 에스터(15 g, 0.07 mol)와 수산화나트륨(2.8 g, 0.07 mol)을 과량의 증류수(20 mL)에서 3 시간동안 환류반응을 한 후, 부산물로 생성된 에탄올과 물을 제거한 후 분말 상을 수득하였다. 수득된 분말을 다시 메탄올에 녹인 후 과량의 아세톤을 넣어 나트륨 디부틸글리신을 석출시키고 이것을 여과 및 건조시켜 정제된 나트륨 디부틸글리신(Na(DBG))을 수득하였다. The dibutylglycine ester (15 g, 0.07 mol) and sodium hydroxide (2.8 g, 0.07 mol) prepared in the above step were refluxed in excess distilled water (20 mL) for 3 hours, and ethanol produced as a by-product. After the water was removed, a powdery phase was obtained. The obtained powder was dissolved in methanol again, and excess acetone was added to precipitate sodium dibutylglycine, which was filtered and dried to obtain purified sodium dibutylglycine (Na (DBG)).

도 1은 상기 Na(DBG)의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼이다.
1 is a hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of the Na (DBG).

인듐(III) 디부틸글리신(In(DBG)Indium (III) dibutylglycine (In (DBG) 33 )의 제조Manufacturing

브롬화인듐(InBr3, 1 g, 2.8 mmol, 1eq)과 나트륨 디부틸글리신(1.7 g, 8.4 mmol, 3eq)을 톨루엔 100 mL에 넣고 상온에서 12시간 교반시킨 후, 부산물로 생긴 브롬화나트륨은 여과하여 제거하고, 용액의 용매를 제거하여 표제 화합물을 수득하였다. Indium bromide (InBr 3 , 1 g, 2.8 mmol, 1eq) and sodium dibutylglycine (1.7 g, 8.4 mmol, 3eq) were added to 100 mL of toluene, stirred at room temperature for 12 hours, and the sodium bromide formed as a by-product was filtered. Remove and remove the solvent of the solution to afford the title compound.

도 2는 상기 인듐(III) 디부틸글리신(In(DBG)3)의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼이고, 도 3은 열중량 분석(TGA) 및 시차 열분석(DTA)(10 ℃/min to 800 ℃, 100 cc/min N2 purge) 결과를 나타내는 그래프이다. 364 ℃에서 잔류 물질이 약 3.5% 정도였다.
FIG. 2 is a hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of the indium (III) dibutylglycine (In (DBG) 3 ), and FIG. 3 is thermogravimetric analysis (TGA) and differential thermal analysis (DTA) (10). ℃ / min to 800 ℃, 100 cc / min N2 purge) is a graph showing the results. Residual material at about 364 ° C. was about 3.5%.

[실시 예2] 인듐(III) 디메틸글리신의 제조Example 2 Preparation of Indium (III) Dimethylglycine

나트륨 디메틸글리신의 제조Preparation of Sodium Dimethylglycine

디메틸글리신 에스터(15 g, 0.07 mol)와 수산화나트륨(2.8 g, 0.07 mol)을 과량의 증류수(20 mL)에서 3 시간동안 환류반응을 한 후, 부산물로 생성된 에탄올과 물을 제거한 후 분말 상을 수득하였다. 수득된 분말을 다시 메탄올에 녹인 후 과량의 아세톤을 넣어 나트륨 디메틸글리신을 석출시키고 이것을 여과하여 건조시켜 정제된 나트륨 디메틸글리신(Na(DMG))을 수득하였다. Dimethylglycine ester (15 g, 0.07 mol) and sodium hydroxide (2.8 g, 0.07 mol) were refluxed in an excess of distilled water (20 mL) for 3 hours. Obtained. The obtained powder was dissolved in methanol again, and excess acetone was added to precipitate sodium dimethylglycine, which was filtered and dried to obtain purified sodium dimethylglycine (Na (DMG)).

도 4는 Na(DMG)의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼을 나타낸 것이다.
Figure 4 shows the hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of Na (DMG).

인듐(III) 디메틸글리신의 제조Preparation of Indium (III) Dimethylglycine

브롬화인듐(InBr3, 1 g, 2.8 mmol, 1eq)와 나트륨 디메틸글리신(1.1 g, 8.4 mmol, 3eq)을 톨루엔 100 mL에 넣고 상온에서 12시간 교반시킨 후, 부산물로 생긴 브롬화나트륨은 여과하여 제거하고, 용액의 용매를 제거하여 표제 화합물(In(DMG)3)을 수득하였다.Indium bromide (InBr 3 , 1 g, 2.8 mmol, 1eq) and sodium dimethylglycine (1.1 g, 8.4 mmol, 3eq) were added to 100 mL of toluene, stirred at room temperature for 12 hours, and the sodium bromide formed as a by-product was filtered off. The solvent in the solution was removed to afford the title compound (In (DMG) 3 ).

도 5는 In(DMG)3의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼을 나타낸 것이다.
5 shows the hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of In (DMG) 3 .

[실시 예3] 인듐(III) 디에틸글리신의 제조Example 3 Preparation of Indium (III) Diethylglycine

브롬화인듐(InBr3, 1 g, 2.8 mmol, 1eq)과 나트륨 디에틸글리신(1.3 g, 8.4 mmol, 3eq)을 톨루엔 100 mL에 넣고 상온에서 12시간 교반시킨 후, 부산물로 생긴 염화나트륨은 여과하여 제거하고, 용액의 용매를 제거하여 표제 화합물을 수득하였다. Indium bromide (InBr 3 , 1 g, 2.8 mmol, 1eq) and sodium diethylglycine (1.3 g, 8.4 mmol, 3eq) were added to 100 mL of toluene, stirred at room temperature for 12 hours, and the sodium chloride formed as a by-product was filtered off. And the solvent in the solution was removed to afford the title compound.

도 6은 In(DEG)3의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼을 나타낸 것이다.
6 shows the hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of In (DEG) 3 .

[실시 예4] 인듐(III) 디프로필글리신의 제조Example 4 Preparation of Indium (III) Dipropylglycine

브롬화인듐(InBr3, 1 g, 2.8 mmol, 1eq)와 나트륨 디프로필글리신(1.5 g, 8.4 mmol, 3eq)을 톨루엔 100 mL에 넣고 상온에서 12시간 교반시킨 후, 부산물로 생긴 염화나트륨은 여과하여 제거하고, 용액의 용매를 제거하여 표제 화합물을 수득하였다.Indium bromide (InBr 3 , 1 g, 2.8 mmol, 1eq) and sodium dipropylglycine (1.5 g, 8.4 mmol, 3eq) were added to 100 mL of toluene, stirred at room temperature for 12 hours, and the sodium chloride formed as a by-product was filtered off. And the solvent in the solution was removed to afford the title compound.

도 7은 In(DPG)3의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼을 나타낸 것이다.
7 shows a hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of In (DPG) 3 .

[실시 예5] 인듐(III) 에틸메틸글리신의 제조 Example 5 Preparation of Indium (III) Ethylmethylglycine

브롬화인듐(InBr3, 1 g, 2.8 mmol, 1eq)와 나트륨 에틸메틸글리신(1.2 g, 8.4 mmol, 3eq)을 톨루엔 100 mL에 넣고 상온에서 12시간 교반시킨 후, 부산물로 생긴 염화나트륨은 여과하여 제거하고, 용액의 용매를 제거하여 표제 화합물을 수득하였다.Indium bromide (InBr 3 , 1 g, 2.8 mmol, 1eq) and sodium ethylmethylglycine (1.2 g, 8.4 mmol, 3eq) were added to 100 mL of toluene, stirred at room temperature for 12 hours, and the sodium chloride formed as a by-product was filtered off. And the solvent in the solution was removed to afford the title compound.

도 8은 In(EMG)3의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼을 나타낸 것이다.
8 shows a hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of In (EMG) 3 .

Claims (6)

하기 화학식 1로 표시되는 인듐 디알킬글리신 화합물:
[화학식 1]
Figure pat00002

[상기 화학식 1에서, R1 및 R2는 서로 독립적으로 선형 또는 분지형의 C1-C5의 알킬기이다.]
Indium dialkylglycine compounds represented by the following general formula (1):
[Formula 1]
Figure pat00002

[In Formula 1, R 1 and R 2 are each independently a linear or branched C 1 -C 5 alkyl group.]
제 1 항에 있어서,
상기 R1 및 R2는 독립적으로 CH3, C2H5, C3H7 또는 C4H9로부터 선택되는 인듐 디알킬글리신 화합물.
The method of claim 1,
R 1 and R 2 are independently an indium dialkylglycine compound selected from CH 3 , C 2 H 5 , C 3 H 7 or C 4 H 9 .
하기 화학식 2로 표시되는 인듐 할라이드 화합물과 하기 화학식 3으로 표시되는 나트륨 디알킬글리을 반응시키는 것을 특징으로 하는 화학식 1의 인듐 디알킬글리신 화합물의 제조방법.
[화학식 1]
Figure pat00003

[화학식 2]
InX3
[화학식 3]
NaOCOCH2NR1R2
[상기 화학식 1 내지 화학식 3에서, X는 Cl, Br 또는 I이고, R1 및 R2는 서로 독립적으로 C1-C5의 선형 또는 분지형의 알킬기이다.]
A method for producing an indium dialkylglycine compound of formula (1) characterized by reacting an indium halide compound represented by formula (2) with sodium dialkylglycol represented by formula (3).
[Formula 1]
Figure pat00003

(2)
InX 3
(3)
NaOCOCH 2 NR 1 R 2
[In Formulas 1 to 3, X is Cl, Br or I, and R 1 and R 2 are each independently a C1-C5 linear or branched alkyl group.]
제 1항 또는 제 2항에 따른 인듐 디알킬글리신 화합물을 전구체로 사용하는 인듐 산화물 박막.An indium oxide thin film using the indium dialkylglycine compound according to claim 1 as a precursor. 제 4항에 있어서,
상기 박막은 금속 유기 화학 증착법(MOCVD)으로 형성되는 인듐 산화물 박막.
The method of claim 4, wherein
The thin film is an indium oxide thin film formed by metal organic chemical vapor deposition (MOCVD).
제 1항 또는 제 2항에 따른 인듐 디알킬글리신 화합물을 전구체로 사용하는 인듐 나노 입자.An indium nanoparticle using the indium dialkylglycine compound according to claim 1 as a precursor.
KR1020100014231A 2010-02-17 2010-02-17 Novel Indium dialkylglycinate and preparing method thereof KR101187353B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100014231A KR101187353B1 (en) 2010-02-17 2010-02-17 Novel Indium dialkylglycinate and preparing method thereof
PCT/KR2010/006959 WO2011102584A1 (en) 2010-02-17 2010-10-12 Novel metal dialkyl glycine compound and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100014231A KR101187353B1 (en) 2010-02-17 2010-02-17 Novel Indium dialkylglycinate and preparing method thereof

Publications (2)

Publication Number Publication Date
KR20110094677A true KR20110094677A (en) 2011-08-24
KR101187353B1 KR101187353B1 (en) 2012-10-05

Family

ID=44930647

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100014231A KR101187353B1 (en) 2010-02-17 2010-02-17 Novel Indium dialkylglycinate and preparing method thereof

Country Status (1)

Country Link
KR (1) KR101187353B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2649147C1 (en) * 2017-06-20 2018-03-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Indium tris n, n-diethylcarbamate, method of its production and obtaining of films of indium oxide on its basis

Also Published As

Publication number Publication date
KR101187353B1 (en) 2012-10-05

Similar Documents

Publication Publication Date Title
US8580989B2 (en) Process for the preparation of indium chlordialkoxides
KR101485522B1 (en) Molybdenum precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101629696B1 (en) Novel indium derivatives, its preparation method and the thin film using the same
KR100897495B1 (en) Novel gallium amino-alkoxide complexes and process for preparing thereof
KR101187353B1 (en) Novel Indium dialkylglycinate and preparing method thereof
CN115260018B (en) Preparation method of tris (2,2,6,6-tetramethyl-3,5-pimelic acid) bismuth
KR101052360B1 (en) Novel gallium alkoxide compound and preparation method thereof
KR101485520B1 (en) Tungsten precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR100965270B1 (en) Gallium complexes with donor-functionalized ligands and process for preparing thereof
KR100627631B1 (en) Volatile indium amino-alkoxide complexes and process for preparing thereof
KR101190161B1 (en) Novel zinc amino-alkoxide complexes and process for preparing thereof
KR100976877B1 (en) Novel indium amino-alkoxide complexes and process for preparing thereof
WO2011102584A1 (en) Novel metal dialkyl glycine compound and manufacturing method thereof
KR20200083340A (en) Precursor For Forming A Thin Film, Method For Preparing Thereof, Method For Preparing The Thin Film, and The Thin Film
Jain Synthesis and purification of some main group organometallic precursors for compound semiconductors
KR102548031B1 (en) Novel Organo-Indium Compounds and Method for forming thin film using the same
KR101187700B1 (en) Novel gallium dialkylglycinate and preparing method thereof
KR101505126B1 (en) Noble Tungsten Compounds, Preparation Method Thereof and Process for the Thin Film Using the Same
KR100666755B1 (en) Novel iron amino-alkoxide complexes and process for preparing thereof
KR101255850B1 (en) Novel gallium glycolate compounds and preparing method thereof
KR100695466B1 (en) Novel gadoliniumiii complexes and preparation method thereof
KR101082330B1 (en) Novel indium alkoxide complexes and process for preparing thereof
KR101242772B1 (en) Novel bismuth amino alkoxide complexes and process for preparing thereof
KR20100087071A (en) Novel indium amino-alkoxide complexes and process for preparing thereof
KR101331972B1 (en) Copper precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150710

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160607

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee