KR20110093173A - Wind power fluff rdf plasma gasification chp system - Google Patents

Wind power fluff rdf plasma gasification chp system Download PDF

Info

Publication number
KR20110093173A
KR20110093173A KR1020100013056A KR20100013056A KR20110093173A KR 20110093173 A KR20110093173 A KR 20110093173A KR 1020100013056 A KR1020100013056 A KR 1020100013056A KR 20100013056 A KR20100013056 A KR 20100013056A KR 20110093173 A KR20110093173 A KR 20110093173A
Authority
KR
South Korea
Prior art keywords
gas
plasma
solid fuel
produced
plasma gasification
Prior art date
Application number
KR1020100013056A
Other languages
Korean (ko)
Inventor
임용하
Original Assignee
임용하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임용하 filed Critical 임용하
Priority to KR1020100013056A priority Critical patent/KR20110093173A/en
Publication of KR20110093173A publication Critical patent/KR20110093173A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • C10J2300/1675Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A cogeneration system for plasma-gasification of fluff RDF(Reuse Derived Fuel) & RPF(Refused Plastic Fuel) using the wind power is provided to consecutively produce the constant output of the small cogeneration engine and gas turbine by homogenizing the synthetic gas produced in the plasma gasification device to the hydroxyl gas. CONSTITUTION: A cogeneration system drives the plasma gasification device using the electricity produced in a wind power generator(4). The rhinoplasty solid fuel putting into in a plasma gasification reactor(3) is formed into the synthetic gas. The synthetic gas is homogenized to the hydroxyl gas. The electricity is produced by the small cogeneration engine or the gas turbine(12). The warm water is produced and provided by collecting the waste exhaust heat. The electricity is additionally produced by operating the waste heat boiler(13) and steam turbine(14).

Description

풍력 비성형고형화연료 플라즈마가스화 열병합발전 시스템{Wind Power Fluff RDF Plasma Gasification CHP System}Wind Power Fluff RDF Plasma Gasification CHP System

본 발명은 풍력발전 전력으로 비성형고형화연료를 플라즈마 가스화하여, 균질화된 합성가스로 열병합발전을 하고 전기와 온수를 공급하는 시스템으로, 플라즈마장치의 특성상 NOx, CO, HC, 매연 등 유해 연소배기가스를 줄일 수 있으며, 다이옥신이 검출이 안 되는 합성가스를 생산하여 소형열병합 장치나 가스터빈을 운전하여 전기를 생산하고, 폐열을 이용한 온수를 공급하거나 폐열보일러와 증기터빈을 가동하여 추가적인 전력을 생산하는 풍력 비성형고형화연료 플라즈마가스화 열병합발전 시스템인 신재생에너지 발전시스템에 관한 것이다. The present invention is a system for plasma-forming non-molded solid fuel with wind power, cogeneration with homogenized syngas, and supplying electricity and hot water. Due to the characteristics of the plasma apparatus, NOx, CO, HC, fumes, etc. Wind power that can reduce and produce electricity by producing a synthesis gas that is not detected by dioxin, and operate electricity from a small cogeneration device or gas turbine, supply hot water using waste heat, or generate additional power by operating waste heat boiler and steam turbine. The present invention relates to a renewable energy generation system, an unmolded solid fuel plasma gasification cogeneration system.

기존의 고형화연료(RDF)는 시멘트소성로나 산업용보일러, 화력발전소의 순환유동층 보일러에 사용 되었으나, 외국의 경우는 고형화연료의 특성상 발열량이 낮아서 화석연료와 혼소용으로 사용 되었다.
Conventional solidified fuel (RDF) has been used in circulating fluidized bed boilers for cement kilns, industrial boilers, and thermal power plants, but in foreign countries, it has been used for mixing with fossil fuels due to its low calorific value.

고형화연료의 폐기물에 함유된 수분과 금속류, 유리등의 불연성분을 건조, 파쇄, 선별 등의 공정을 통하여 제거하고 가연성분만을 가공하여 만든 고체연료이다.
It is a solid fuel made by removing only non-combustible components such as water, metals and glass contained in solid fuel waste through drying, crushing and screening processes and processing only combustible components.

고형화연료 제조의 문제점은 복잡한 제조과정 및 제조비용이다. 제조과정은 파봉기, 투입호퍼, 1차 파쇄기, 자력선별기, 2차 파쇄기, 1차 사이로, 건조기, 풍력선별기, 건조기, 2차 풍력선별기, 분쇄기, 비철금속선별기, 2차사이로, 성형기를 거쳐 제조된다.
Problems of solidified fuel production are complicated manufacturing processes and manufacturing costs. The manufacturing process is manufactured through crusher, input hopper, primary crusher, magnetic separator, secondary crusher, primary furnace, dryer, wind separator, dryer, secondary wind separator, crusher, nonferrous metal separator, secondary cylinder, and molding machine. .

복잡한 제조과정에 소요되는 동력 및 건조 비용이 고형화연료의 제조비용을 높이는 문제점으로 대두되고 있어서, 국가에서 비성형고형화연료의 사용을 적극 권장하고 있는 실정이다.
As the cost of power and drying in complicated manufacturing processes raises the cost of manufacturing solid fuel, the use of non-molded solid fuel is highly recommended in the country.

국내에서 생산된 고형화연료는 수요처가 미비하여 시멘트 업체에 시멘트소성로 연료로 운송비 까지 들여가며 무상으로 공급되고 있다.
Solid fuels produced in Korea are supplied to the cement companies free of charge, with the cost of transporting them as cement-fired fuel to cement companies.

화력발전소의 순환유동층 보일러의 경우, 고형화연료는 순환유동층 보일러에서 연소되고 고온의 연소가스(최대 900℃)는 연소로 벽면의 증발기, 대류전열부의 과열기, 절탄기, 공기예열기 순의 열교환을 거치면서 열을 방출한다.
In the case of a circulating fluidized bed boiler of a thermal power plant, the solidified fuel is burned in the circulating fluidized bed boiler, and the hot combustion gas (up to 900 ° C) is subjected to heat exchange in the order of evaporator on the wall of the furnace, superheater of convective heat transfer part, pelletizer, and air preheater. Releases heat.

보일러 수관 쪽에서는 수처리 된 순수가 절탄기에 보내지고 드럼, 연소로 내부의 증발기, 대류전열부의 과열기 순으로 흐르면서 단계적으로 스팀으로 변환한다.
On the boiler water side, water-treated pure water is sent to the coal mill, which is converted into steam step by step in the order of drums, evaporators inside the furnace, and superheaters in the convective heat transfer section.

보일러에서 만들어진 스팀은 주증기 배관을 거쳐 증기터빈을 회전시키며 연결된 발전기를 구동하여 전기를 생산하거나, 산업용 스팀으로도 사용된다.
The steam produced in the boiler rotates the steam turbine through the main steam pipe and drives the connected generator to produce electricity or is used as industrial steam.

스팀을 발생시키고 냉각된 연소가스는 백필터, 흡수탑 등 다단의 정제시설을 거쳐 유해물질이 제거된 후 배기가스는 실시간 연소감시 장치를 통해 연돌로 배출된다.
After generating steam and cooling the combustion gas through multi-stage purification facilities such as bag filter and absorption tower, the harmful gas is removed, and the exhaust gas is discharged to the stack through the real-time combustion monitoring system.

이와 같이 화력발전소의 순환유동층 보일러의 경우, 고형화연료는 보일러에서 연소되어 그 연소열로 순수를 스팀으로 전환하고, 스팀이 터빈을 가동하여 전기를 생산하는 시스템이기 때문에, 보일러 용량이 클 뿐만 아니라 소요 장치비가 KW당 250만 원 이상 소요되며, 작은 용량일 경우에는 적은 증기량으로 증기터빈을 가동할 수 없는 폐단이 있으며, 전기 생산 효율이 30% 정도밖에 되지 않는다.
As described above, in the case of the circulating fluidized bed boiler of a thermal power plant, the solidified fuel is burned in the boiler to convert pure water into steam, and steam operates a turbine to produce electricity. It costs more than 2.5 million won per KW, and in the case of small capacity, there is a closed end that cannot operate the steam turbine with a small amount of steam, and the electricity production efficiency is only about 30%.

또한, 발전소의 운전에 필요한 상시전력을 이용하기 위해서는 별도의 수전시스템이 필요하며, 생산된 전력을 공급하기 위하여서도 별도의 송전탑 등 송전설비가 필요하다.
In addition, in order to use the constant power required for the operation of the power plant, a separate power receiving system is required, and a separate power transmission facility such as a power transmission tower is required to supply the produced power.

소형열병합이나 가스터빈을 사용하여 전력을 생산할 경우에도 고형화연료를 가스화하여 합성된 가스는 폐기물의 성상에 따라, 합성가스의 성분의 변화가 많기 때문에 합성가스를 균질화 하지 않을 때에는 일정한 출력을 얻기 어렵다.
Even in the case of power generation using small cogeneration or gas turbines, the gas synthesized by gasifying the solidified fuel is difficult to obtain a constant output when the syngas is not homogenized because the composition of the syngas varies greatly depending on the properties of the waste.

특허 10-2003-7009260(고형연료가스화 장치) 경우는 수증기개질로 임으로 수증기개질반응에 의해 조연료 가스 생성 개질역, 열분해가스도입구와 수증기 및 공기혼합기 도입구 등 구조가 복잡하고, 별도의 수증기를 필요로 하는 단점이 있다.Patent 10-2003-7009260 (solid fuel gasifier) is a steam reforming process, and the structure of the crude fuel gas reforming zone, the pyrolysis gas inlet and the steam, and the air mixture inlet by the steam reforming reaction are complicated and separate steam There is a disadvantage that requires.

특허 10-0814447(고형화연료를 이용한 산업용보일러) 경우에도 고형화연료를 직접 연소하여 사용함으로 불완전 연소로 인한 유해가스 배출 및 보일러 효율이 저감되는 단점이 있다.Patent 10-0814447 (industrial boiler using solidified fuel) also has the disadvantage of reducing the harmful gas emissions and boiler efficiency due to incomplete combustion by directly using the solidified fuel.

본 발명은 전술한 바와 같이 고형화연료를 종래의 연소방식이나 가스화 방식 및 발전시스템이 아닌, 풍력발전을 이용한 고온의 플라즈마를 생성하여 비성형고형화연료를 가스화하여 합성가스를 생산하고, 생산된 합성가스를 수산소가스로 균질화하여 소형열병합엔진 또는 가스터빈을 운전하여 전기를 생산하고, 폐열을 회수하여 온수를 공급하거나 폐열보일러와 증기터빈을 가동하여 전기를 추가적으로 생산하며, 플라즈마가스화로 인한 유해가스를 저감하는 풍력 비성형고형화연료 플라즈마가스화 열병합발전 시스템인 신재생에너지 발전시스템에 관한 것이다. The present invention produces a synthesis gas by gasifying the non-molded solid fuel by generating a high-temperature plasma using a wind power generation, rather than the conventional combustion method or gasification method and power generation system as described above, the synthesis gas produced To produce electricity by operating a small cogeneration engine or gas turbine by homogenizing with oxygen gas, supplying hot water by recovering waste heat, or additionally producing electricity by operating waste heat boiler and steam turbine. The present invention relates to a renewable energy generation system, which is a non-forming solidified fuel plasma gasification cogeneration system for reducing wind power.

이상에서 상세히 기술한 바와 같이 본 발명의 풍력 비성형고형화연료 플라즈마가스화 열병합발전 시스템은,
As described in detail above, the wind-unmolded solid fuel plasma gasification cogeneration system of the present invention is

도서지방과 같이 송수전 선로가 없는 지역의 경우, 풍력발전을 이용하여 생산된 전력을 비성형고형화연료 플라즈마가스화 열병합발전 시스템에 용이하게 공급토록하며, 비성형고형화연료를 사용함으로써 고형화연료의 고가의 제조비용을 저감시킬 수 있으며, In the case of islands without transmission lines, such as islands, the power generated by wind power can be easily supplied to non-molded solid-state fuel-gas and cogeneration systems. Reduce manufacturing costs,

플라즈마가스화 장치에서 생산된 합성가스를 수산소가스로 균질화하여 소형열병합엔진 및 가스터빈을 연속적으로 일정출력 생산이 용이하고, 전력과 온수를 동시에 공급하여 에너지효율을 극대화 시킬 수 있으며, 고온 플라즈마 장치의 특성상 유해배기 가스를 저감 할 수 있는 효과가 있다. By synthesizing the synthesis gas produced in the plasma gasifier with oxygen gas, it is easy to produce a small cogeneration engine and gas turbine continuously, and it is possible to maximize the energy efficiency by supplying electric power and hot water at the same time. Due to its characteristics, it is effective to reduce harmful exhaust gas.

도1은 본 발명에 따른 풍력 비성형고형화연료 플라즈마가스화 열병합발전 시스템의 개념도이다.1 is a conceptual diagram of a wind power unmolded solid fuel plasma gasification cogeneration system according to the present invention.

본 발명은 비성형고형화연료(Fluff RDF & RPF)를 풍력발전에서 생산된 전력으로 고온의 플라즈마가스화 장치를 가동하여 합성가스를 생산하고, 생산된 합성가스를 균질화하여 소형열병합 장치나 가스터빈을 운전하여 전기를 생산하고, 배기되는 폐열을 이용하여 온수를 공급하거나 폐열보일러와 증기터빈을 가동하여 추가적인 전력을 생산하는 시스템으로 구성하는 풍력 비성형고형화연료 플라즈마가스화 열병합발전 시스템으로, 다음과 같이 구성 및 작용한다.
The present invention produces a synthesis gas by operating a plasma gasifier of high temperature with the power of a non-molded solid fuel (Fluff RDF & RPF) produced by wind power generation, and homogenizes the produced synthesis gas to operate a small cogeneration device or gas turbine It is a non-forming solid fuel plasma gasification cogeneration system consisting of a system that produces electricity and supplies hot water by using waste heat exhausted, or generates additional power by operating a waste heat boiler and a steam turbine. Works.

도1과 같이 비성형고형화연료(1)는 연료이송장치(2)에 의하여 플라즈마가스화 반응기(3)로 투입되고, 투입된 비성형고형화연료는 풍력발전장치(4)에서 생산된 전력으로 플라즈마토치(5)에서 발생된 고온의 플라즈마아크(5,600 ~22,400℃)에 의하여 플라즈마 가스화 반응기(3)내에서 약 1,100~1,200℃의 분위기온도로 가스화하되고 후단의 냉각장치(6)에서 급냉되여, 가스세정기(7) 및 흡수기(8)에서 정제된 합성가스는 송풍기(9)에 의하여, 합성가스탱크(11)로 이송되고 수산소발생장치(10)에서 생산된 수산소가스와 균질화되여 소형열병합엔진 또는 가스터빈(12)에 연료로 공급되여 전기를 생산하고 배기폐열을 회수하여 온수를 생산하거나 폐열회수보일러(13)와 증기터빈(14)를 가동하여 전기를 추가적으로 생산한다.
As shown in FIG. 1, the non-molded solidified fuel 1 is introduced into the plasma gasification reactor 3 by the fuel transfer device 2, and the injected non-molded solidified fuel is a plasma torch with power produced by the wind power generator 4. 5) gasified in the plasma gasification reactor (3) by the high temperature plasma arc (5,600 ~ 22,400 ℃) generated in the gas at an ambient temperature of about 1,100 ~ 1,200 ℃ and quenched in the cooling device (6) of the next stage, the gas cleaner (7) and the syngas purified in the absorber (8) is transferred to the syngas tank (11) by the blower (9) and homogenized with the oxygen gas produced in the oxygen generating device (10) to produce a small cogeneration engine or The gas turbine 12 is supplied with fuel to generate electricity and recover exhaust waste heat to produce hot water or operate the waste heat recovery boiler 13 and the steam turbine 14 to further generate electricity.

플라즈마가스화 발전시스템은 기존의 석탄화력 발전방식(발전효율 : 30~40%)에 비해, 88% 이상의 전기와 온수를 생산하며, 황산화물 90%이상, 질소산화물 75%이상, 이산화탄소 10%이상이 저감되는 효과를 갖고 있다.
Plasma gasification power generation system produces more than 88% of electricity and hot water compared to the existing coal-fired power generation method (generation efficiency: 30-40%), more than 90% of sulfur oxides, more than 75% nitrogen oxides, more than 10% carbon dioxide It has the effect of being reduced.

또한 석탄가스화복합발전의 이론적 발전효율은 50%대까지 가능하여, 기존의 화력발전소의 발전효율에 비하여 매우 높다.
In addition, the theoretical power generation efficiency of coal gas combined cycle power generation is possible up to 50%, which is very high compared to the power generation efficiency of the existing thermal power plant.

플라즈마가스화 기술은 합성석유 및 합성원료의 생산도 가능하다. 플라즈마 가스화 과정을 거쳐 생산된 합성가스를 F-T(Fisher-Tropsch)반응을 통해 액화시키면 디젤, LPG 등과 같은 합성석유와 석유화학 제품의 원료로 사용되는 나프타도 얻을 수 있다.
Plasma gasification technology can also produce synthetic oil and synthetic raw materials. When liquefied syngas produced through plasma gasification through FT (Fisher-Tropsch) reaction, naphtha used as a raw material for synthetic petroleum and petrochemical products such as diesel and LPG can be obtained.

[실시 예 1] [Example 1]

시간당 1톤의 비성형RDF 100%를 투입하여 플라즈마 가스화시 합성가스에 의한 에너지 생산량은 2,110 KW 이며, 합성가스를 이용한 발전량은 696 KW 이며, 온수생산량은 1,161 KW 이다.
The energy output by syngas is 2,110 KW when plasma gasification is carried out by adding 100% of unmolded RDF at 1 ton per hour, the power generation using syngas is 696 KW, and the hot water production is 1,161 KW.

[실시 예 2] [Example 2]

시간당 1톤의 비성형RDF 50% + 비성형RPF 50%를 투입하여 플라즈마 가스화시 합성가스에 의한 에너지 생산량은 3,932 KW 이며, 합성가스를 이용한 발전량은 1,298 KW 이며, 온수생산량은 2,163 KW 이다.
The energy production by syngas is 3,932 KW when plasma gasification is carried out by adding 1 ton of unmolded RDF 50% + unmolded RPF 50% per hour, the power generation using syngas is 1,298 KW, and the hot water production is 2,163 KW.

[실시 예 3] Example 3

시간당 1톤의 비성형RPF 100%를 투입하여 플라즈마 가스화시 합성가스에 의한 에너지 생산량은 5,755 KW 이며, 합성가스를 이용한 발전량은 1,899 KW 이며, 온수생산량은 3,165 KW 이다.
The amount of energy produced by syngas is 5,755 KW, and the amount of power generated by syngas is 1,899 KW and the amount of hot water is 3,165 KW.

[실시 예 4] Example 4

시간당 1톤의 비성형RDF 50% + 비성형RPF 50%를 투입하여 플라즈마 가스화시 발생한 합성가스 50%와 수산소가스 50%를 혼소한 에너지 생산량은 1,715 KW 이며, 합성가스를 이용한 발전량은 566 KW 이며, 온수생산량은 943 KW 이다.With 50 tons of non-molded RDF and 50% of non-molded RPF of 1 ton per hour, the combined energy output of 50% of syngas generated from plasma gasification and 50% of oxyhydrogen gas is 1,715 KW. The hot water production is 943 KW.

1 : 비성형고형화연료(Fluff RDF & RPF)
2 : 연료이송장치
3 : 플라즈마 반응기
4 : 풍력발전장치
5 : 플라즈마토치
6 : 냉각장치
7 : 가스세정기
8 : 흡수기
9 : 송풍기
10 : 수산소가스 발생장치
11 : 합성가스탱크
12 : 소형열병합장치 또는 가스터빈
13 : 폐열회수보일러
14 : 증기터빈
1: Unmolded solid fuel (Fluff RDF & RPF)
2: fuel feeder
3: plasma reactor
4: wind power generator
5: plasma torch
6: chiller
7: gas cleaner
8: absorber
9: blower
10: hydroxyl gas generator
11: syngas tank
12: small cogeneration unit or gas turbine
13: waste heat recovery boiler
14: steam turbine

Claims (4)

풍력발전장치에서 생산된 전력을 이용하여, 플라즈마가스화 장치를 구동하고, 플라즈마가스화 반응기내에 투입된 비성형고형화연료를 합성가스화 하고, 생산된 합성가스를 수산소가스로 균질화하여 소형열병합장치 또는 가스터빈을 가동하여 전력을 생산하고, 배기폐열을 회수하여 온수를 생산공급하거나 폐열보일러와 증기터빈을 가동하여 전기를 추가적으로 생산하며, 플라즈마가스화로 인한 유해가스를 저감하는 풍력 비성형고형화연료 플라즈마가스화 열병합발전 시스템.
Using the electric power produced by the wind power generator, the plasma gasifier is driven, the non-molded solid fuel injected into the plasma gasification reactor is synthesized into gas, and the synthesized gas is homogenized with oxygen gas to produce a small cogeneration device or gas turbine. Non-molded solid fuel plasma gasification cogeneration system that produces electricity by operating, produces hot water by recovering exhaust waste heat, or supplies additional electricity by operating waste heat boiler and steam turbine, and reduces harmful gas from plasma gasification. .
청구항 1에서 비성형고형화연료(Fluff RDF 100%)를 풍력 플라즈마가스화 하여, 전력 및 온수를 생산하는 풍력 비성형고형화연료 플라즈마가스화 열병합발전 시스템.
In claim 1, the non-molded solid fuel (Fluff RDF 100%) by converting the wind plasma gas, the non-molded solid fuel plasma gasification cogeneration system for producing power and hot water.
청구항 1에서 비성형고형화연료(Fluff RPF 100%)를 풍력 플라즈마가스화 하여, 전력 및 온수를 생산하는 풍력 비성형고형화연료 플라즈마가스화 열병합발전 시스템.
In claim 1, the non-molded solid fuel (Fluff RPF 100%) by converting the wind plasma gas to produce power and hot water, the non-molded solid fuel plasma gasification cogeneration system.
청구항 1에서 비성형고형화연료(Fluff RDF 10~90%, Fluff RPF 10~90% 비율)를 풍력 플라즈마 가스화 하여 생산된 합성가스를 10~90%, 수산소발생장치에서 생산된 수산소가스 10~90% 비율로 균질화하여, 열병합발전 장치를 가동하여 전력 및 온수를 생산하는 풍력 비성형고형화연료 플라즈마가스화 열병합발전 시스템.
In claim 1, non-molded solid fuel (Fluff RDF 10 ~ 90%, Fluff RPF 10 ~ 90% ratio) 10 ~ 90% of the synthesis gas produced by wind plasma gas, 10 ~ 10% hydrogen gas produced in the oxygen generator Non-molded solid fuel plasma gasification cogeneration system for wind power homogenizing at 90% ratio to operate cogeneration unit to produce electric power and hot water.
KR1020100013056A 2010-02-11 2010-02-11 Wind power fluff rdf plasma gasification chp system KR20110093173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100013056A KR20110093173A (en) 2010-02-11 2010-02-11 Wind power fluff rdf plasma gasification chp system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100013056A KR20110093173A (en) 2010-02-11 2010-02-11 Wind power fluff rdf plasma gasification chp system

Publications (1)

Publication Number Publication Date
KR20110093173A true KR20110093173A (en) 2011-08-18

Family

ID=44929903

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100013056A KR20110093173A (en) 2010-02-11 2010-02-11 Wind power fluff rdf plasma gasification chp system

Country Status (1)

Country Link
KR (1) KR20110093173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108471141A (en) * 2018-04-28 2018-08-31 长沙理工大学 A kind of energy hinge wind-powered electricity generation containing uncertain wind power integration preferentially dissolves method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108471141A (en) * 2018-04-28 2018-08-31 长沙理工大学 A kind of energy hinge wind-powered electricity generation containing uncertain wind power integration preferentially dissolves method
CN108471141B (en) * 2018-04-28 2021-05-04 长沙理工大学 Wind power preferential digestion method for energy hub with uncertain wind power access

Similar Documents

Publication Publication Date Title
US4261167A (en) Process for the generation of power from solid carbonaceous fuels
US10208948B2 (en) Solid fuel grade gasification-combustion dual bed poly-generation system and method thereof
US5290327A (en) Device and allothermic process for producing a burnable gas from refuse or from refuse together with coal
AU2012362086B2 (en) Biomass gasification island process under high temperature and atmospheric pressure
US20110315096A1 (en) Gasifier Hybrid combined cycle power plant
KR100993908B1 (en) Method of transforming combustible wastes into energy fuel and Gasification system of combustible wastes
EP1154008A2 (en) Method for the gasification of coal
CN101818073B (en) Dry distillation and semicoke incineration integrated system for oil shale
CN103409171A (en) Biomass pressurized fluidized bed gasification gas turbine combined cycle power generation system
CN203403070U (en) Biomass pressurized fluidized-bed gasification gas turbine combined cycle power generation system
KR101097443B1 (en) Method of transforming combustible wastes into energy fuel and Gasification system of combustible wastes
RU2250872C1 (en) Combined method of electric power and a liquid synthetic fuel production by gas turbine and steam-gas installations
CN201851184U (en) Waste heat power generation system for coke oven
CN111718757A (en) Thermal power plant coal pyrolysis gas hydrogen production system and method
CN111718756A (en) Thermal power plant pyrolysis hydrogen production system and hydrogen production method
KR20110093173A (en) Wind power fluff rdf plasma gasification chp system
RU2211927C1 (en) Method of and installation for thermal treatment of brown coal with production of electric energy
CN210122559U (en) Thermal power plant pyrolysis hydrogen production system
CN209128379U (en) A kind of system of biomass and sludge mixing gasifying preparing liquid fuel
RU2428459C1 (en) Plant for combined production of hydrogen-containing gas, and electric and heat energy
KR20100090936A (en) Coal drying process and facilities using the same
SU1584757A3 (en) Method of producing electric power from carbonaceous fuel
CN211394378U (en) Thermal power plant pyrolysis of coal gas hydrogen manufacturing system
CN218232280U (en) System for cogeneration of oil gas coke and heat by pyrolysis combustion of biomass by semicoke heat carrier method
RU2783213C1 (en) Method for environmentally sustainable recycling of solid household waste at a multi-fuel power complex and apparatus for implementation thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application