KR20110092936A - Apparatus for analyzing samples with ultralow temperature concentration modules - Google Patents

Apparatus for analyzing samples with ultralow temperature concentration modules Download PDF

Info

Publication number
KR20110092936A
KR20110092936A KR1020100012651A KR20100012651A KR20110092936A KR 20110092936 A KR20110092936 A KR 20110092936A KR 1020100012651 A KR1020100012651 A KR 1020100012651A KR 20100012651 A KR20100012651 A KR 20100012651A KR 20110092936 A KR20110092936 A KR 20110092936A
Authority
KR
South Korea
Prior art keywords
gas
dilution
sample
supply line
standard gas
Prior art date
Application number
KR1020100012651A
Other languages
Korean (ko)
Other versions
KR101134068B1 (en
Inventor
심창현
김종환
이수형
신우진
Original Assignee
주식회사 케이엔알
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이엔알 filed Critical 주식회사 케이엔알
Priority to KR1020100012651A priority Critical patent/KR101134068B1/en
Publication of KR20110092936A publication Critical patent/KR20110092936A/en
Application granted granted Critical
Publication of KR101134068B1 publication Critical patent/KR101134068B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N2030/042Standards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/324Control of physical parameters of the fluid carrier of pressure or speed speed, flow rate

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE: A sample analysis apparatus is provided to analyze the concentration of each diluted reference gas obtained by mixing reference gas and dilute gas in various mixture ratios. CONSTITUTION: A sample analysis apparatus(1) includes a super low temperature concentrating system and a diluting device(50) supplying reference gas after diluting. The diluting device includes the following a reference gas supply line(51) and a diluted gas supply line(53); a flow speed controller(42) controlling the flowing amount and speed of each gas; a mixing chamber(56) for mixing the reference gas and diluted gas; and a heating block(55) for heating each gas flowing into the mixing chamber.

Description

초저온 농축시스템을 이용한 시료 분석장치{Apparatus for analyzing samples with ultralow temperature concentration modules}Apparatus for analyzing samples with ultralow temperature concentration modules

본 발명은 시료 분석장치에 관한 것으로서, 보다 상세하게는 정량분석을 위한 희석장치를 구성하여 다양한 희석배수를 통해서 다양한 농도로 분석이 가능하고, 시료의 흡착성능을 향상시킨 초저온 농축시스템을 이용한 시료 분석장치에 관한 것이다.
The present invention relates to a sample analysis device, and more specifically, it is possible to analyze at various concentrations through various dilution multiples by constructing a dilution device for quantitative analysis, and to analyze a sample using a cryogenic concentration system which improves the adsorption performance of the sample. Relates to a device.

현재 휘발성 유기화합물을 분석하는 데에는 통상 가스 크로마토그래피(Gas Chromatography, 이하, 'GC'로 약칭함)를 사용하는 바, 분석하고자 하는 휘발성 유기화합물 시료를 포집하여 그 포집된 시료를 GC에 일정량 만큼 주입함에 있어서는 시료가 휘발성이 강하기 때문에 불활성족의 액체질소나 액체 아르곤을 사용하여 그 시료를 액화농축시킨 다음 주입하는 액화농축 시료주입법과, 기체시료를 액화농축시키지 않고 고체 흡착관에 포집한 뒤 그 흡착관에 열을 가하면서 GC에 직접주입하는 소위 열탈착방법이 사용되고 있다. 그러나, 상기 액화농축 시료주입법은 고가의 액화농축장비가 필요하므로 비경제적이라는 단점이 있어, VOC 분석에 있어서 열탈착방법이 상용된다. 피분석체인 VOC 시료는 흡인펌프에 의하여 흡착관에 흡착되며, 일단 포집된 VOC 시료는 고온으로 가열되면서 탈착되어 GC 등의 분석장치로 이동된다.Currently, gas chromatography (Gas Chromatography, hereinafter abbreviated as 'GC') is used to analyze volatile organic compounds.The sample is collected by injecting a certain amount of the sample into the GC. In the case of the sample, since the sample is highly volatile, the liquefied concentrated sample injection method in which the sample is liquefied and concentrated by using inert liquid nitrogen or liquid argon, and the gas sample is collected in the solid adsorption tube without liquefied concentration and then adsorbed. A so-called thermal desorption method is used in which the tube is directly injected into the GC while heating the tube. However, the liquefied concentrated sample injection method is disadvantageous because it requires an expensive liquefied concentrated equipment, the thermal desorption method is commonly used in VOC analysis. The VOC sample to be analyzed is adsorbed to the adsorption tube by a suction pump, and once collected, the collected VOC sample is desorbed while being heated to a high temperature and transferred to an analytical device such as GC.

특히, 이러한 온라인 무인시스템에서는 정량분석을 위해 표준가스를 연동하여 주기적으로 점검하도록 되어 있다. 기존 시스템은 하나의 농도로 제조된 가스를 미리 연동시켜 놓고 일정 기간 동안 사용 후 교체하도록 되어 있다.In particular, such an online unmanned system is to check periodically by linking the standard gas for quantitative analysis. Existing systems are designed to pre-link a gas produced at one concentration and replace it after a period of use.

하지만, 이러한 표준가스는 대부분이 수입품으로, 가격이 매우 비쌀 뿐만 아니라 제품의 용량도 적어 금방 소모됨으로써, 온라인 무인시스템에서 흡착제와 표준가스를 자주 교체하므로 생산성이 떨어지고, 인력과 시간의 낭비를 초래할 뿐 아니라 경제적인 문제 및 분석의 정확성을 담보하기가 어려운 측면이 있다.However, these standard gases are mostly imported, not only very expensive, but also quickly consumed due to their small capacity, which often leads to a decrease in productivity and waste of manpower and time by frequently replacing adsorbents and standard gases in online unmanned systems. Rather, it is difficult to ensure economic problems and the accuracy of the analysis.

더불어, 정량분석을 위해 GC에 시료를 주입하기 전에 흡착관에서 흡착되어 -10℃∼-30℃ 정도의 저온으로 농축되는데, 이때 시료 중 일부는 끓는 점이 -70℃ 이하인 저비등점 시료들이 있고, 이러한 저비등점 시료들은 흡착관에 잘 흡착되지 않기 때문에 정확한 분석이 어려우므로, 정확한 분석을 위해 저온 상태에서의 흡착관에 흡착력이 강한 흡착제를 충진하여 사용하는데, 이는 반대로 고비등점의 VOC 시료가 강하게 흡착되어 떨어지지 않기 때문에, 시간에 따라 흡착성능의 현저한 저하를 가져오게 되는 단점이 있다.
In addition, before the sample is injected into the GC for quantitative analysis, it is adsorbed in the adsorption tube and concentrated to a low temperature of about -10 ° C to -30 ° C, wherein some of the samples have low boiling point samples having a boiling point of -70 ° C or lower. Since the low boiling point samples are not adsorbed well in the adsorption tube, it is difficult to accurately analyze them. Therefore, a high adsorption agent is packed into the adsorption tube at low temperature for accurate analysis. On the contrary, the high boiling point VOC sample is strongly adsorbed. Since it does not fall, there is a disadvantage that a significant decrease in adsorption performance with time.

이에, 본 발명은 전술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 정량분석 시 표준가스와 희석가스를 혼합하는 희석장치를 구성함으로써 다양한 희석배수를 통해 표준가스의 농도를 다양화하여 나타내므로 시료를 보다 정확하게 분석할 수 있도록 한, 초저온 농축시스템을 이용한 시료 분석장치를 제공하는데 그 목적이 있다.Thus, the present invention was devised to solve the problems of the prior art as described above, by varying the concentration of the standard gas through various dilution times by configuring a dilution apparatus for mixing the standard gas and dilution gas in the quantitative analysis It is an object of the present invention to provide a sample analysis device using an ultra low temperature concentration system, which enables the sample to be analyzed more accurately.

또, 본 발명의 다른 목적은, 흡착관과 저온플레이트 사이에 저온은 효과적으로 전달하면서 고온은 단열시키는 사파이어블럭을 구성함으로써, 저온플레이트의 저온을 유지한 상태에서 고온의 열로서 흡착관에 강하게 흡착된 시료를 신속하게 탈착시킬 수 있도록 한, 초저온 농축시스템을 이용한 시료 분석장치를 제공함에 있다.
In addition, another object of the present invention is to form a sapphire block which insulates the high temperature while effectively transferring the low temperature between the adsorption tube and the low temperature plate, thereby being strongly adsorbed to the adsorption tube as high temperature heat while maintaining the low temperature of the low temperature plate. An object of the present invention is to provide a sample analysis apparatus using an ultra low temperature concentration system, which allows a sample to be quickly detached.

상술한 목적은, 분석하고자 하는 시료를 표준가스와 비교 분석하는 시료 분석장치에 있어서, 상기 시료 분석장치에는 표준가스를 희석시켜 공급하는 희석장치가 구성되되, 상기 희석장치는 표준가스와 희석가스가 각기 다른 라인으로 공급되는 표준가스공급라인 및 희석가스공급라인; 상기 표준가스공급라인 및 희석가스공급라인 상에 설치되어 공급되는 각 가스의 유량 및 속도를 조절하는 유량속도조절기; 상기 표준가스공급라인 및 희석가스공급라인과 연결되어 각기 공급된 표준가스와 희석가스가 혼합되는 혼합챔버; 및 상기 혼합챔버와 유량속도조절기 사이에 구성되어 혼합챔버로 유입되는 각 가스를 가열하는 히팅블럭;을 포함하는 것을 특징으로 하는, 초저온 농축시스템을 이용한 시료 분석장치에 의해 달성된다.In the above-described object, a sample analysis device for comparatively analyzing a sample to be analyzed with a standard gas, the sample analysis device is configured with a dilution device for diluting and supplying a standard gas, the dilution device is a standard gas and a dilution gas A standard gas supply line and a dilution gas supply line supplied to different lines; A flow rate controller for controlling the flow rate and speed of each gas supplied and installed on the standard gas supply line and the dilution gas supply line; A mixing chamber connected to the standard gas supply line and the dilution gas supply line to mix the supplied standard gas and the dilution gas; And a heating block configured between the mixing chamber and the flow rate regulator to heat each gas introduced into the mixing chamber.

그리고, 상기 초저온 농축시스템을 이용한 시료 분석장치에는 흡입된 시료를 저온농축하는 진공챔버가 구성되되, 상기 진공챔버는, 쿨러와 냉매관을 통해 연통되게 연결된 본체; 상기 본체에 관통되게 설치되고 그 내부에는 시료가 흡착되며 외측면에는 열선이 설치된 흡착관; 상기 흡착관과 냉매관 사이에 설치된 저온플레이트; 및 상기 저온플레이트와 흡착관 사이에 설치된 사파이어블럭;을 포함하여 구성됨이 바람직하다.
The sample analyzing apparatus using the cryogenic concentration system includes a vacuum chamber for concentrating the sucked sample at a low temperature, the vacuum chamber comprising: a main body connected in communication with a cooler and a refrigerant pipe; An adsorption tube installed to penetrate the main body, a sample adsorbed therein, and a heating wire installed on an outer surface thereof; A low temperature plate installed between the suction pipe and the refrigerant pipe; And a sapphire block installed between the low temperature plate and the adsorption tube.

본 발명의 시료 분석장치에 따르면, 정량분석 시 희석장치에 의해서 표준가스와 희석가스가 다양한 혼합비로 혼합된 각 희석표준가스의 농도를 분석하여 저장함으로써 다양화된 표준가스의 농도값에 의해서 시료를 보다 정확하게 분석할 수 있는 장점이 있다.According to the sample analysis device of the present invention, the sample is analyzed by the concentration value of the standard gas diversified by analyzing and storing the concentration of each dilution standard gas in which the standard gas and the dilution gas are mixed at various mixing ratios by the dilution device in the quantitative analysis. There is an advantage that can be analyzed more accurately.

그리고, 본 발명에 따르면, 흡착관과 저온플레이트 사이에 구성된 사파이어블럭이 쿨러의 극저온은 흡착관으로 효과적으로 전달하고 열선의 고열은 저온플레이트로 전달되지 않도록 단열시켜 차단함으로써, 저온플레이트에 온도변화를 주지 않으면서 고온의 열로서 시료를 흡착관으로부터 신속하게 탈착시킬 수 있는 장점이 있다.
In addition, according to the present invention, the sapphire block formed between the adsorption tube and the low temperature plate effectively blocks the cryogenic temperature of the cooler to the adsorption tube and insulates and blocks the high temperature of the heating wire so as not to be transferred to the low temperature plate, thereby notifying temperature change in the low temperature plate. There is an advantage that the sample can be quickly desorbed from the adsorption tube as a high temperature heat without.

도 1은 본 발명에 따른 초저온 농축시스템을 이용한 시료 분석장치의 구성도이다.
도 2는 본 발명에 따른 초저온 농축시스템을 이용한 시료 분석장치에 구성된 진공챔버의 단면 구성도이다.
1 is a block diagram of a sample analysis apparatus using the cryogenic concentration system according to the present invention.
Figure 2 is a cross-sectional configuration of the vacuum chamber configured in the sample analysis device using the cryogenic concentration system according to the present invention.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 본 발명의 각 도면에 도시된 구성요소들에 참조부호를 부여함에 있어, 동일한 구성요소들에 대해서는 비록 다른 도면상에 도시되더라도 가능한 한 동일한 부호를 가지도록 하였음에 유의해야 한다. 이와 더불어, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.First, in the reference numerals to the components shown in each drawing of the present invention, it should be noted that the same reference numerals as much as possible even if shown on the other drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.

첨부도면 도 1 및 도 2는 본 발명에 따른 시료 분석장치의 구성을 보인 도면이다.1 and 2 are views showing the configuration of a sample analyzing apparatus according to the present invention.

본 발명의 시료 분석장치(1)는 도 1에 도시된 바와 같이, 분석하고자 하는 시료를 표준가스와 비교 분석하는 장치로서, 흡입된 시료를 저온농축하는 진공챔버(10)와, 표준가스를 희석시켜 공급하는 희석장치(50)를 포함한다.As shown in FIG. 1, the sample analyzing apparatus 1 of the present invention is a device for comparing and analyzing a sample to be analyzed with a standard gas, and diluting the standard gas with a vacuum chamber 10 for concentrating a sucked sample at low temperature. And a dilution device 50 for feeding.

그리고, 상기 진공챔버(10)와 희석장치(50) 사이에는 유로를 결정하는 다수의 ST 밸브(20)(21)(22)와, 검출기(30) 및 진공펌프(40)(흡인펌프, 이하 "진공펌프" 라 한다)가 각각의 라인으로 연결되어 있다.
In addition, a plurality of ST valves 20, 21, 22, a detector 30, and a vacuum pump 40 (suction pump, hereinafter) are provided between the vacuum chamber 10 and the dilution apparatus 50. "Vacuum pump" is connected to each line.

한편, 도면에 도시된 ST 밸브(20)(21)(22)는 편의상 3 포지션 ST 밸브를 예시하였으나, 이에 국한되거나 한정되는 것은 아니며 다양하게 변경 실시될 수 있다.Meanwhile, the ST valves 20 and 21 and 22 illustrated in the drawings illustrate three-position ST valves for convenience, but the present invention is not limited thereto or may be variously modified.

도 1에 도시된 제 1 ST 밸브(20)는 표준가스공급측 희석장치(50) 및 시료공급측에 각각 가스 이송이 가능한 희석표준가스공급라인(26)과 시료공급라인(25)을 통해 연결된다.The first ST valve 20 shown in FIG. 1 is connected through a dilution standard gas supply line 26 and a sample supply line 25 capable of gas transfer to the standard gas supply side dilution device 50 and the sample supply side, respectively.

제 1 ST 밸브(20)와 가스 이송이 가능한 별도의 연결라인(23)으로 연결된 제 2 ST 밸브(21)는 진공펌프(40)(흡인펌프, 이하 "진공펌프" 라 한다)와 캐리어가스공급측 및 검출기(30)에 각각 가스 이송이 가능한 진공라인(41)과 캐리어가스공급라인(24) 및 연결라인(23)을 통해 연결된다. 이때, 상기 진공라인(41) 상에는 유량속도조절기(42)가 설치된다.The second ST valve 21 connected to the first ST valve 20 by a separate connection line 23 capable of gas transfer has a vacuum pump 40 (a suction pump, hereinafter referred to as a “vacuum pump”) and a carrier gas supply side. And a vacuum line 41, a carrier gas supply line 24, and a connection line 23 capable of gas transfer to the detector 30, respectively. At this time, the flow rate regulator 42 is installed on the vacuum line 41.

제 2 ST 밸브(21)와 가스 이송이 가능한 별도의 연결라인(23)으로 연결된 제 3 ST 밸브(22)는 진공챔버(10)와 가스 이송이 가능한 별도의 연결라인(23)을 통해 연결된다.The third ST valve 22 connected to the second ST valve 21 by a separate connection line 23 capable of gas transfer is connected to the vacuum chamber 10 through a separate connection line 23 capable of gas transfer. .

한편, 이들 ST 밸브(20)(21)(22), 연결라인(23), 유량속도조절기(42)는 당업계에서 통상적으로 사용되는 부품이고, 특히 ST 밸브(20)(21)(22)는 제어부의 전기적 신호에 의한 회전수단(미도시)에 의하여 상단이 회전되면서 유로를 변경할 수 있는 장치이며, 이러한 ST 밸브(20)(21)(22)의 구성, 기능, 작동 및 시퀀스 제어는 일반적이 사항이다.On the other hand, these ST valves 20, 21, 22, the connection line 23, the flow rate regulator 42 is a component commonly used in the art, in particular ST valve 20 (21) (22) Is a device that can change the flow path while the upper end is rotated by a rotating means (not shown) by the electrical signal of the control unit, the configuration, function, operation and sequence control of the ST valve 20, 21, 22 is generally This is the matter.

여기서, 전술한 연결라인(23)은 동일한 작용을 하므로 동일한 부호를 부여하여 설명키로 한다.
Here, since the above-described connection line 23 has the same function, the same reference numerals are used to describe the key.

상기 희석장치(50)는 도 1에 도시된 바와 같이, 그 일측 포트에 표준가스가 이송되어 공급되는 표준가스공급라인(51)이 연결되고, 타측 포트에는 희석가스가 이송되어 공급되는 희석가스공급라인(53)이 연결되며, 이러한 표준가스공급라인(51)과 희석가스공급라인(53)의 반대편은 혼합챔버(56)와 연결된다.As shown in FIG. 1, the dilution apparatus 50 is connected to a standard gas supply line 51 to which standard gas is transferred and supplied to one port thereof, and a dilution gas supply to which the dilution gas is supplied is supplied to the other port. The line 53 is connected, and the opposite side of the standard gas supply line 51 and the dilution gas supply line 53 is connected to the mixing chamber 56.

따라서, 표준가스공급라인(51)과 희석가스공급라인(53)을 통한 표준가스와 희석가스는 혼합챔버(56) 내에서 혼합된다.Therefore, the standard gas and the dilution gas through the standard gas supply line 51 and the dilution gas supply line 53 are mixed in the mixing chamber 56.

한편, 상기 표준가스공급라인(51)과 희석가스공급라인(53) 상에는 혼합챔버(56)로 공급되는 가스의 유량 및 속도를 조절하기 위한 유량속도조절기(52)(54)가 각각 설치되고, 이 유량속도조절기(52)(54)와 혼합챔버(56) 사이에는 혼합챔버(56)로 공급되는 가스를 가열하여 활성화시킴으로써 가스의 원활한 혼합을 유도하는 히팅블럭(55)이 설치되며, 상기 히팅블럭(55)과 유량속도조절기(52)(54)는 제어부(미도시)에 의해 제어되고, 상기 히팅블럭(55)에는 히팅블럭(55)의 온도를 감지하여 그 감지신호를 제어부로 인가하는 온도센서(미도시)가 설치됨이 바람직하다.On the other hand, on the standard gas supply line 51 and the dilution gas supply line 53, flow rate regulators 52 and 54 for adjusting the flow rate and speed of the gas supplied to the mixing chamber 56, respectively, A heating block 55 is installed between the flow rate regulators 52 and 54 and the mixing chamber 56 to induce smooth mixing of the gas by heating and activating the gas supplied to the mixing chamber 56. The block 55 and the flow rate regulators 52 and 54 are controlled by a controller (not shown), and the heating block 55 senses the temperature of the heating block 55 and applies the detection signal to the controller. Preferably, a temperature sensor (not shown) is installed.

따라서, 상기와 같이 혼합챔버(56)에서 혼합된 표준가스와 희석가스(이하 "희석표준가스" 라 한다)는 희석배수 즉 혼합비를 달리함으로써 각기 다른 농도의 희석표준가스를 형성할 수 있으므로 이 희석표준가스를 통해 시료의 농도를 보다 정확하고 정밀하게 분석할 수 있게 된다.Therefore, the standard gas and the dilution gas (hereinafter referred to as "dilution standard gas") mixed in the mixing chamber 56 as described above can form dilution standard gas of different concentrations by changing the dilution factor, that is, the mixing ratio. Standard gases enable more accurate and accurate analysis of sample concentrations.

예를 들면, 종래에는 100의 농도를 갖는 표준가스를 기준으로 시료의 농도를 분석하였는데, 본 발명에서는 10, 100, 200의 농도를 갖는 표준가스의 농도값을 기준으로 하여 시료의 농도를 보다 정확하게 분석해 낼 수 있게 된다.For example, in the prior art, the concentration of a sample was analyzed based on a standard gas having a concentration of 100. In the present invention, the concentration of the sample is more accurately based on the concentration value of a standard gas having a concentration of 10, 100, or 200. It can be analyzed.

한편, 본 발명의 혼합챔버(56) 내에서 혼합되는 표준가스와 희석가스는 삼투현상에 의한 혼합과정으로 혼합될 수도 있다.
On the other hand, the standard gas and the dilution gas to be mixed in the mixing chamber 56 of the present invention may be mixed in the mixing process by the osmotic phenomenon.

상기 진공챔버(10)는 도 2에 도시된 바와 같이, -180℃ 이하의 극저온을 구현하기 위해 펄스 튜브 쿨러(Pulse Tube Cooler) 방식을 사용하는데, 이때 쿨러(17)의 냉매로는 헬륨(helium) 가스를 사용함으로써 -200℃ 부근까지 냉각이 가능하게 된다.As shown in FIG. 2, the vacuum chamber 10 uses a pulse tube cooler method to implement cryogenic temperatures of −180 ° C. or less. In this case, the refrigerant of the cooler 17 is helium. ) By using the gas, cooling to around -200 ° C is possible.

이러한 상기 진공챔버(10)는, 쿨러(17)와 냉매관(16)을 통해 연통되게 연결된 본체(11)와, 상기 본체(11)의 내부에 관통되게 설치되고 그 내부에는 시료가 흡착되는 흡착제가 구비되어 있으며 외측면에는 열선(13)이 설치된 흡착관(12)과, 상기 흡착관(12)과 냉매관(16) 사이에 설치된 저온플레이트(15) 및 상기 저온플레이트(15)와 흡착관(12) 사이에 설치된 사파이어블럭(14)을 포함한다.The vacuum chamber 10 includes a main body 11 connected in communication with a cooler 17 and a refrigerant pipe 16, and an adsorbent that is installed to penetrate the inside of the main body 11 and adsorbs a sample therein. The outer surface is provided with an adsorption tube 12, the heating wire 13 is installed, the cold plate 15 and the cold plate 15 and the adsorption tube installed between the adsorption tube 12 and the refrigerant tube 16 And a sapphire block 14 provided between (12).

상기 흡착관(12)은 본체(11)를 관통한 상태로 그 양단부에는 제 3 ST 밸브(22)에 각각의 연결라인(23)으로 연결된다.The adsorption tube 12 is penetrated through the main body 11 and is connected to each end of the third ST valve 22 by connecting lines 23 at both ends thereof.

한편, 이와 같이 구성된 진공챔버(10)는 쿨러(17)의 냉매가 냉매관(16)을 통해 본체(11) 내부의 저온플레이트(15)에 작용함으로써 저온플레이트(15)의 온도를 극저온으로 낮추게 되고, 이러한 극저온은 저온플레이트(15) 위에 설치된 사파이어블럭(14)을 통해 흡착관(12)으로 전달됨으로써 흡착관(12) 내부를 유동하는 시료를 저온농축시킬 수 있게 된다.In the vacuum chamber 10 configured as described above, the refrigerant of the cooler 17 acts on the low temperature plate 15 inside the body 11 through the coolant tube 16 to lower the temperature of the low temperature plate 15 to cryogenic temperature. The cryogenic temperature is transferred to the adsorption tube 12 through the sapphire block 14 installed on the low temperature plate 15 so that the sample flowing in the adsorption tube 12 can be concentrated at low temperature.

이때, 상기 사파이어블럭(14)은 저온은 효과적으로 전달하면서 고온은 단열시키는 효과가 있는 것으로, 저온플레이트(15) 상에 1∼3㎜의 두께로 설치되어, 흡착관(12) 내부에서 저온농축된 시료를 탈착시키기 위해 열선(13)을 통한 흡착관(12)의 고온가열 시 고온의 열이 저온플레이트(15)로 전달되지 않게 한다. 이러한 사파이어블럭(14)은 당업계에서 일반적으로 사용되는 부품이다.
At this time, the sapphire block 14 is to effect the low temperature while effectively transferring the low temperature, is installed on the low temperature plate 15 to a thickness of 1 to 3mm, the low temperature concentrated in the adsorption tube 12 In order to desorb the sample, the high temperature heat of the adsorption tube 12 through the hot wire 13 is prevented from being transferred to the low temperature plate 15. Such sapphire block 14 is a component generally used in the art.

이상과 같이 구성된 본 발명의 시료 분석장치의 작동을 설명한다.The operation of the sample analyzer of the present invention configured as described above will be described.

<희석표준가스 흡착과정><Dilution standard gas adsorption process>

표준가스공급라인(51)과 희석가스공급라인(53)으로 각각 공급되는 표준가스와 희석가스가 각각의 유량속도조절기(52)(54)를 통해서 유량 조절된 후 히팅블럭(55)을 통해 가열되면서 혼합챔버(56)로 공급되어 혼합된다. 이와 같이 혼합되는 혼합가스인 희석표준가스는 다양한 희석배수 즉 혼합비를 달리하여 각기 다른 다양한 농도로 혼합될 수 있고, 이와 같이 혼합된 희석표준가스는 혼합챔버(56)에서 배출된다.The standard gas and the dilution gas supplied to the standard gas supply line 51 and the dilution gas supply line 53 are respectively adjusted by the flow rate through the flow rate regulators 52 and 54 and then heated by the heating block 55. While being supplied to the mixing chamber 56 and mixed. The dilution standard gas, which is the mixed gas mixed as described above, may be mixed at various concentrations by varying the dilution factor, that is, the mixing ratio, and the dilution standard gas thus mixed is discharged from the mixing chamber 56.

이때, 제어부는 ST 밸브(20)(21)(22)의 유로를 다음과 같이 설정한다. 제 1 ST 밸브(20)의 유로는 희석표준가스공급라인(26)과 연결라인(23)이 연통되고(시료공급라인(25)은 차단), 제 2 ST 밸브(21)의 유로는 진공라인(41)과 연결라인(23)이 연통되며(캐리어가스공급라인(24) 및 검출기(30)의 연결라인(23)은 차단), 제 3 ST 밸브(22)의 유로는 모든 연결라인(23)이 연통되도록 설정된다.At this time, the controller sets the flow paths of the ST valves 20, 21, 22 as follows. The flow path of the first ST valve 20 is connected to the dilution standard gas supply line 26 and the connection line 23 (the sample supply line 25 is blocked), and the flow path of the second ST valve 21 is the vacuum line. The connection line 23 and 41 are in communication with each other (the connection line 23 of the carrier gas supply line 24 and the detector 30 is blocked), and the flow path of the third ST valve 22 is connected to all the connection lines 23. ) Is set to communicate.

이와 같은 유로가 확보된 상태에서 혼합챔버(56)에서 배출된 희석표준가스는 희석표준가스공급라인(26)과 연결라인(23)을 통해 제 1,2,3 ST 밸브(20)(21)(22)를 지나 진공챔버(10)의 흡착관(12)을 지나게 되고, 극저온 상태를 유지하고 있는 흡착관(12) 내부의 흡착제에 희석표준가스가 흡착되어 포집된다.The dilution standard gas discharged from the mixing chamber 56 while the flow path is secured is the first, second and third ST valves 20 and 21 through the dilution standard gas supply line 26 and the connection line 23. After passing through the 22 and passing through the adsorption tube 12 of the vacuum chamber 10, the dilution standard gas is adsorbed and collected by the adsorbent in the adsorption tube 12 maintained in the cryogenic state.

<희석표준가스 열탈착과정><Dilution Standard Gas Thermal Desorption Process>

제어부는 ST 밸브(20)(21)(22)의 유로를 다음과 같이 설정한다. 제 1 ST 밸브(20)의 유로는 모든 라인을 차단시키고, 제 2 ST 밸브(21)의 유로는 캐리어가스공급라인(24)과 연결라인(23) 및 검출기(30) 측의 연결라인(23)이 연통되며(진공라인(41)은 차단), 제 3 ST 밸브(22)의 유로는 모든 연결라인(23)이 연통되도록 설정된다.The control unit sets the flow paths of the ST valves 20, 21, 22 as follows. The flow path of the first ST valve 20 cuts off all the lines, and the flow path of the second ST valve 21 connects the carrier gas supply line 24 with the connection line 23 and the connection line 23 on the detector 30 side. ) Is communicated (the vacuum line 41 is blocked), and the flow path of the third ST valve 22 is set such that all the connection lines 23 communicate.

그리고, 이때 진공챔버(10)의 흡착관(12)에 감김 설치된 열선(13)은 발열되어 고온의 열을 흡착관(12)에 제공함으로써 흡착관(12) 내에 흡착된 희석표준가스는 탈착된다.At this time, the heating wire 13 wound around the adsorption tube 12 of the vacuum chamber 10 generates heat to provide high temperature heat to the adsorption tube 12, so that the diluted standard gas adsorbed in the adsorption tube 12 is desorbed. .

따라서, 탈착된 희석표준가스는 상기와 같이 확보된 유로를 따라 이동되는 캐리어가스에 의해 검출기(30)로 이송되어 각 희석표준가스의 농도가 각각 분석된 후 데이터화되어 저장된다.Therefore, the desorbed dilution standard gas is transferred to the detector 30 by the carrier gas moving along the flow path secured as described above, and the concentration of each dilution standard gas is analyzed, and then data is stored.

이러한 희석표준가스의 분석과정 즉 흡착 및 열탈착과정은 각기 다른 농도로 준비된 희석표준가스마다 각각 행해진다.Analysis of the dilution standard gas, that is, adsorption and thermal desorption, is performed for each dilution standard gas prepared at different concentrations.

<시료 흡착과정><Sample adsorption process>

제어부는 ST 밸브(20)(21)(22)의 유로를 다음과 같이 설정한다. 제 1 ST 밸브(20)의 유로는 시료공급라인(25)과 연결라인(23)이 연통되고(희석표준가스공급라인(26)은 차단), 제 2 ST 밸브(21)의 유로는 진공라인(41)과 연결라인(23)이 연통되며(캐리어가스공급라인(24) 및 검출기(30)의 연결라인(23)은 차단), 제 3 ST 밸브(22)의 유로는 모든 연결라인(23)이 연통되도록 설정된다.The control unit sets the flow paths of the ST valves 20, 21, 22 as follows. The flow path of the first ST valve 20 communicates with the sample supply line 25 and the connection line 23 (the dilution standard gas supply line 26 is blocked), and the flow path of the second ST valve 21 is a vacuum line. The connection line 23 and 41 are in communication with each other (the connection line 23 of the carrier gas supply line 24 and the detector 30 is blocked), and the flow path of the third ST valve 22 is connected to all the connection lines 23. ) Is set to communicate.

이와 같이 유로가 확보된 상태에서 진공펌프(40)의 진공압에 의해서 시료가 시료공급라인(25)과 연결라인(23)을 통해 제 1,2,3 ST 밸브(20)(21)(22)를 지나 진공챔버(10)의 흡착관(12)을 지나게 되고, 극저온 상태를 유지하고 있는 흡착관(12) 내부의 흡착제에 시료가 흡착되어 포집된다.As described above, the first, second, and third ST valves 20, 21, and 22 are sampled through the sample supply line 25 and the connection line 23 by the vacuum pressure of the vacuum pump 40 while the flow path is secured. ) Is passed through the adsorption tube 12 of the vacuum chamber 10, and the sample is adsorbed and collected by the adsorbent inside the adsorption tube 12 maintained in a cryogenic state.

<시료 열탈착과정>Sample thermal desorption process

제어부는 ST 밸브(20)(21)(22)의 유로를 다음과 같이 설정한다. 제 1 ST 밸브(20)의 유로는 모든 라인을 차단시키고, 제 2 ST 밸브(21)의 유로는 캐리어가스공급라인(24)과 연결라인(23) 및 검출기(30) 측의 연결라인(23)이 연통되며(진공라인(41)은 차단), 제 3 ST 밸브(22)의 유로는 모든 연결라인(23)이 연통되도록 설정된다.The control unit sets the flow paths of the ST valves 20, 21, 22 as follows. The flow path of the first ST valve 20 cuts off all the lines, and the flow path of the second ST valve 21 connects the carrier gas supply line 24 with the connection line 23 and the connection line 23 on the detector 30 side. ) Is communicated (the vacuum line 41 is blocked), and the flow path of the third ST valve 22 is set such that all the connection lines 23 communicate.

그리고, 이때 희석표준가스의 열탈착과정과 마찬가지로 진공챔버(10)의 흡착관(12)에 감김 설치된 열선(13)은 발열되어 고온의 열을 흡착관(12)에 제공함으로써 흡착관(12) 내에 흡착된 시료는 탈착된다. 이때, 열선(13)의 고열은 사파이어블럭(14)에 의해서 저온플레이트(15)로 열전달되지 않으므로 저온플레이트(15)는 극저온 상태를 유지할 수 있게 된다. 이러한 작용은 희석표준가스 열탈착과정에서도 동일하게 일어난다.At this time, similar to the thermal desorption process of the diluting standard gas, the heating wire 13 wound around the adsorption tube 12 of the vacuum chamber 10 generates heat to provide high temperature heat to the adsorption tube 12 to thereby absorb the inside of the adsorption tube 12. The adsorbed sample is desorbed. At this time, since the high heat of the hot wire 13 is not transferred to the low temperature plate 15 by the sapphire block 14, the low temperature plate 15 can maintain a cryogenic state. This action also occurs in the thermal desorption process of dilute standard gas.

따라서, 탈착된 시료는 상기와 같이 확보된 유로를 따라 이동되는 캐리어가스에 의해 검출기(30)로 이송되어 시료의 농도가 분석된 후 저장된 희석표준가스의 각 농도값과 비교 분석된다.
Therefore, the desorbed sample is transferred to the detector 30 by the carrier gas moving along the flow path secured as described above, and the concentration of the sample is analyzed and compared with each concentration value of the stored dilution standard gas.

1 : 시료 분석장치 10 : 진공챔버
11 : 본체 12 : 흡착관
13 : 열선 14 : 사파이어블럭
15 : 저온플레이트 16 : 냉매관
17 : 쿨러 20,21,22 : ST 밸브
23 : 연결라인 24 : 캐리어가스공급라인
25 : 시료공급라인 26 : 희석표준가스공급라인
30 : 검출기 40 : 진공펌프
41 : 진공라인 42 : 유량속도조절기
50 : 희석장치 51 : 표준가스공급라인
52 : 유량속도조절기 53 : 희석가스공급라인
54 : 유량속도조절기 55 : 히팅블럭
56 : 혼합챔버
1: Sample Analysis Device 10: Vacuum Chamber
11 main body 12 adsorption tube
13: heating wire 14: sapphire block
15: low temperature plate 16: refrigerant tube
17: cooler 20, 21, 22: ST valve
23: connection line 24: carrier gas supply line
25: sample supply line 26: dilution standard gas supply line
30 detector 40 vacuum pump
41: vacuum line 42: flow rate controller
50: dilution unit 51: standard gas supply line
52: flow rate regulator 53: dilution gas supply line
54: flow rate controller 55: heating block
56: mixing chamber

Claims (2)

분석하고자 하는 시료를 표준가스와 비교 분석하는 시료 분석장치에 있어서,
상기 시료 분석장치에는 표준가스를 희석시켜 공급하는 희석장치가 구성되되,
상기 희석장치는 표준가스와 희석가스가 각기 다른 라인으로 공급되는 표준가스공급라인 및 희석가스공급라인;
상기 표준가스공급라인 및 희석가스공급라인 상에 설치되어 공급되는 각 가스의 유량 및 속도를 조절하는 유량속도조절기;
상기 표준가스공급라인 및 희석가스공급라인과 연결되어 각기 공급된 표준가스와 희석가스가 혼합되는 혼합챔버; 및
상기 혼합챔버와 유량속도조절기 사이에 구성되어 혼합챔버로 유입되는 각 가스를 가열하는 히팅블럭;을 포함하는 것을 특징으로 하는, 초저온 농축시스템을 이용한 시료 분석장치.
In the sample analysis device that compares the sample to be analyzed with the standard gas,
The sample analysis device comprises a dilution device for diluting and supplying a standard gas,
The dilution apparatus includes a standard gas supply line and a dilution gas supply line, in which standard gas and dilution gas are supplied to different lines;
A flow rate controller for controlling the flow rate and speed of each gas supplied and installed on the standard gas supply line and the dilution gas supply line;
A mixing chamber connected to the standard gas supply line and the dilution gas supply line to mix the supplied standard gas and the dilution gas; And
And a heating block configured between the mixing chamber and the flow rate regulator to heat each gas introduced into the mixing chamber.
청구항 1에 있어서,
상기 시료 분석장치에는 흡입된 시료를 저온농축하는 진공챔버가 구성되되,
상기 진공챔버는, 쿨러와 냉매관을 통해 연통되게 연결된 본체;
상기 본체에 관통되게 설치되고 그 내부에는 시료가 흡착되며 외측면에는 열선이 설치된 흡착관;
상기 흡착관과 냉매관 사이에 설치된 저온플레이트; 및
상기 저온플레이트와 흡착관 사이에 설치된 사파이어블럭;을 포함하는 것을 특징으로 하는, 초저온 농축시스템을 이용한 시료 분석장치.
The method according to claim 1,
The sample analysis device comprises a vacuum chamber for concentrating the sucked sample at low temperature,
The vacuum chamber may include a main body connected in communication with a cooler and a refrigerant pipe;
An adsorption tube installed to penetrate the main body, a sample adsorbed therein, and a heating wire installed on an outer surface thereof;
A low temperature plate installed between the suction pipe and the refrigerant pipe; And
And a sapphire block installed between the low temperature plate and the adsorption tube.
KR1020100012651A 2010-02-11 2010-02-11 Apparatus for analyzing samples with ultralow temperature concentration modules KR101134068B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100012651A KR101134068B1 (en) 2010-02-11 2010-02-11 Apparatus for analyzing samples with ultralow temperature concentration modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100012651A KR101134068B1 (en) 2010-02-11 2010-02-11 Apparatus for analyzing samples with ultralow temperature concentration modules

Publications (2)

Publication Number Publication Date
KR20110092936A true KR20110092936A (en) 2011-08-18
KR101134068B1 KR101134068B1 (en) 2012-04-13

Family

ID=44929708

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100012651A KR101134068B1 (en) 2010-02-11 2010-02-11 Apparatus for analyzing samples with ultralow temperature concentration modules

Country Status (1)

Country Link
KR (1) KR101134068B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101345756B1 (en) * 2012-02-06 2014-01-07 한국표준과학연구원 System for remote control analyzing atmosphere sample
KR101721387B1 (en) * 2016-12-15 2017-04-10 포항공과대학교 산학협력단 Gas extraction apparatus and gas analysis system comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69216258T2 (en) * 1991-02-15 1997-07-17 Yamatake Honeywell Co Ltd Gas chromatographic system for the analysis of exhaust gases
JP2001208726A (en) 2000-01-26 2001-08-03 Yazaki Corp Solid electrolyte type carbon dioxide gas sensor and method of correcting the same
JP3357912B2 (en) 2000-02-18 2002-12-16 独立行政法人産業技術総合研究所 Supply container and supply method for standard sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101345756B1 (en) * 2012-02-06 2014-01-07 한국표준과학연구원 System for remote control analyzing atmosphere sample
KR101721387B1 (en) * 2016-12-15 2017-04-10 포항공과대학교 산학협력단 Gas extraction apparatus and gas analysis system comprising the same

Also Published As

Publication number Publication date
KR101134068B1 (en) 2012-04-13

Similar Documents

Publication Publication Date Title
CN204630990U (en) A kind of for trace hydro carbons enriching apparatus in the rock gas of stable isotope detection
JP6282304B2 (en) Flow reduction system for isotope ratio measurement
US8584507B2 (en) Gas sample introduction device and a gas chromatograph using the same
CN109358143B (en) Water removal method, sample injection method and device for gas concentration sampling
CN105043846A (en) Volatile organic compound sample gas trapping system and method
GB2537915B (en) Method and apparatus for preconcentrating a gaseous sample
CN108562666A (en) Complete online pre-concentration gas-chromatography-flight time mass spectrum monitoring system and its application
CN102128896A (en) Sampling method and device
KR101134068B1 (en) Apparatus for analyzing samples with ultralow temperature concentration modules
CN105612424B (en) Liquid chromatography device for quickly measuring
CN103760283B (en) A kind of absorption thermal desorption sampling device and method
CN208109558U (en) Volatile organic matter enriching apparatus
CN205786045U (en) A kind of volatile organic matter sample gas trapping system
CN216350533U (en) Online monitoring gas circuit system for shunting/non-shunting volatile organic compounds
CN208937547U (en) A kind of thermal desorption gas sample injection device and system
US20030172718A1 (en) Gaseous sample injection apparatus for gas chromatography
US11879878B2 (en) Gas separation system
CN103376293A (en) Supercritical fluid chromatograph (SFC) and precise fluid divider applying same
CN203672850U (en) Adsorption/thermal desorption sample feeding device
CN112763634A (en) Sample introduction device for sulfur hexafluoride gas field analysis
CN209841796U (en) A water trap and sampling device for concentrated sampling of gas
KR101348540B1 (en) Outgas Analysis Apparatus Having Concentrating Device
KR102067864B1 (en) Measuring device of solubility of mixed gas and measuring method by using the same
KR20190098601A (en) Method of analyzing gas samples and analyzing apparatus thereof
CN221007444U (en) Direct-measurement detection device for non-methane total hydrocarbons

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150302

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160302

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 8