KR20110090271A - Activated carbon coated nanometal/photocatalyst sol - Google Patents

Activated carbon coated nanometal/photocatalyst sol Download PDF

Info

Publication number
KR20110090271A
KR20110090271A KR1020100009962A KR20100009962A KR20110090271A KR 20110090271 A KR20110090271 A KR 20110090271A KR 1020100009962 A KR1020100009962 A KR 1020100009962A KR 20100009962 A KR20100009962 A KR 20100009962A KR 20110090271 A KR20110090271 A KR 20110090271A
Authority
KR
South Korea
Prior art keywords
weight
activated carbon
parts
nanometal
photocatalyst
Prior art date
Application number
KR1020100009962A
Other languages
Korean (ko)
Inventor
김종순
남기우
정희록
양성봉
유미선
Original Assignee
(주)엔지텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엔지텍 filed Critical (주)엔지텍
Priority to KR1020100009962A priority Critical patent/KR20110090271A/en
Publication of KR20110090271A publication Critical patent/KR20110090271A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/70Non-metallic catalysts, additives or dopants

Abstract

PURPOSE: Activated carbon coated with nano-metal/photocatalytic sol is provided to increase the absorbing capability of the activated carbon with respect to volatile organic compounds. CONSTITUTION: A nano-metal/photocatalytic coating layer, which is a nano-metal/photocatalytic slurry composition, is formed by coating nano-metal/photocatalytic sol on activated carbon. 50 to 70 parts by weight of water as an aqueous solvent, 5 to 15 parts by weight of a titanium precursor, 0.5 to 10 parts by weight of transition metal as a metal precursor, 0.5 to 5 parts by weight of nitric acid as a catalyst, and 0.1 to 5 parts by weight of a chelate stabilizer are mixed in a reactor. A stirring process is implemented with respect to the mixture at temperature between 60 and 90 degrees Celsius to obtain the nano-metal/photocatalytic slurry composition.

Description

엘이디 램프에 반응하는 나노금속/광촉매 졸이 코팅된 활성탄{activated carbon coated nanometal/photocatalyst sol}Activated carbon coated nanometal / photocatalyst sol}

본 발명은 본 발명은 나노금속/광촉매 졸이 코팅된 활성탄 및 그 제조방법에 관한 것으로, 더욱 상세하게는, 395~400㎚ 파장대의 엘이디(LED) 램프에 반응하여 광활성되어 오염물질을 분해시키는 엘이디 램프에 반응하는 나노금속/광촉매 졸이 코팅된 활성탄에 관한 것이다. The present invention relates to an activated carbon coated with a nano-metal / photocatalyst sol and a method for manufacturing the same, and more particularly, LEDs that are photoactive in response to LED lamps in the wavelength range of 395 ~ 400nm to decompose pollutants The present invention relates to activated carbon coated with a nanometal / photocatalyst sol that reacts to a lamp.

일반적으로, 일반적으로 도장, 건조, 인쇄, 접착공정 혹은 드라이크리닝, 휘발유 및 경유의 주유과정에서는 다량의 휘발성 유기화합물이 배출되며, 법적으로 이러한 공정 혹은 시설에 대해 휘발성 유기화합물이 대기 중으로 방출되지 않도록 규제를 하고 있다. Generally, large amounts of volatile organic compounds are emitted during painting, drying, printing, bonding, or dry cleaning, gasoline and diesel, and legally to ensure that no volatile organic compounds are released into the atmosphere for these processes or facilities. It is regulated.

휘발성 유기화합물은 대기 중에 다량으로 배출되면, 악취의 원인이 될 뿐 아니라 햇빛과 산화질소 화합물(NOx)과 함께 반응하여 광화학 스모그를 형성하여, 인간에게는 눈을 따갑게 하고 심할 경우 호흡기 질병을 일으키기도 한다. 또한 식물에도 나쁜 영향을 주는 것으로 알려져 있다. Volatile organic compounds are not only a source of odor when they are released into the atmosphere, but also react with sunlight and nitric oxide compounds (NOx) to form photochemical smog, which can cause eye irritation in humans and, in severe cases, respiratory illness. . It is also known to adversely affect plants.

특히, 인쇄소, 가구제작, 기계 및 선박 제조, 자동차 수리 등에 있어서 발생되는 휘발성 유기화합물은 흡착탑을 이용하여 처리하도록 대기환경보전법의 도장시설에 대한 THC(Total Hydrocarbon Concentration, 총탄화수소농도) 규제에 명시하고 있다. In particular, volatile organic compounds generated in printing shops, furniture manufacturing, machinery and ship manufacturing, and automobile repairs are specified in the THC (Total Hydrocarbon Concentration) regulation for coating facilities under the Atmospheric Environment Conservation Act. have.

현재 국내의 휘발성 유기화합물 배출시설에 의무적으로 설치하도록 되어 있는 활성탄 흡착탑은 활성탄을 담을 수 있도록 철 구조물로 되어 있는 용기로, 그 속에 주로 입자상으로 되어 있는 활성탄을 채우고, 옆 쪽 혹은 아래쪽에서 휘발성 유기화합물이 함유된 공기를 주입하여, 활성탄에 의해 휘발성 유기화합물을 흡착시킴으로써 정화된 공기가 위쪽에서 빠져나올 수 있도록 제작된 장치이다. Currently, activated carbon adsorption tower, which is mandatory to be installed in domestic volatile organic compound discharge facility, is a container made of steel structure to hold activated carbon, filled with activated carbon mainly in the form of particles, and volatile organic compound from the side or the bottom. It is an apparatus manufactured so that the purified air can escape from the upper part by injecting this containing air and adsorbing a volatile organic compound with activated carbon.

현재 시중에서 판매되고 있는 활성탄 흡착탑은 구조가 단순하고 또한 사용되는 활성탄 역시 값이 싸다는 장점이 있지만, 휘발성 유기화합물의 배출량이 많을 경우 단시간에 활성탄의 흡착능이 포화되어 휘발성 유기화합물의 농도가 저감되지 않은 상태에서 그대로 대기 중에 배출되기도 한다. 실제로 대부분의 흡착탑의 경우 정기적으로 활성탄을 교체하고 있지만, 일부 사업장의 경우 활성탄이 포화되어 있는 채 흡착탑이 사용되고 있는 상황이다. The activated carbon adsorption tower currently on the market has the advantage of simple structure and low cost of activated carbon. However, if the emission of volatile organic compounds is high, the adsorption capacity of activated carbon is saturated and the concentration of volatile organic compounds is not reduced. If not, it may be released to the atmosphere as it is. In fact, most of the adsorption towers are regularly replaced with activated carbon, but some of them are using activated carbons with saturated activated carbon.

흡착탑의 충진물인 활성탄과 이를 수납하는 흡착탑은, 휘발성 유기화합물의 처리 비용으로 볼 때, 소각법, 축열식 소각법, 미생물 처리법 등 다른 처리장치에 비해 저렴하지만, 활성탄을 교체할 때 발생하는 비용은 사업장 측에 많은 부담이 되고 있다. Activated carbon, which is the filler of the adsorption column, and the adsorption tower that accommodates it are cheaper than other treatment devices such as incineration, regenerative incineration, and microbial treatment, considering the cost of treating volatile organic compounds. There is much burden on the side.

따라서 흡착탑에 있어서 활성탄의 처리용량을 증가시켜 활성탄의 사용기간을 늘리도록 함으로써 활성탄 교체비용을 삭감할 필요가 있다. Therefore, it is necessary to reduce the cost of replacing activated carbon by increasing the processing capacity of activated carbon in the adsorption column so as to increase the service life of activated carbon.

활성탄의 수명을 늘려주는 방법으로는 주기적으로 열풍이나 스팀을 활성탄에 불어주어 흡착된 휘발성 유기화합물 내보내는 방법, 활성탄을 전기적인 방법으로 가열하여 흡착된 휘발성 물질을 내보내는 방법, 활성탄에 촉매를 도포하여 흡착된 휘발성 유기화합물을 천천히 산화분해시키는 방법, 광촉매를 활성탄에 도포하고 자외선 등을 비추어 활성탄에 흡착된 휘발성 유기화합물을 산화시켜 제거하는 방법이 알려져 있다. 그러나 이러한 방법은 전열선이나, 스팀을 생성하는 장치를 장착하게 됨으로써 흡착탑의 가격을 올릴 뿐 아니라 스팀이나 열을 발생시키기 위해 많은 에너지가 소비되는 단점이 있다. 또한 저온촉매는 휘발성 유기화합물를 산화시켜 제거하는 반응속도가 낮기 때문에 활성탄의 흡착능을 재생하기에는 많은 시간이 걸린다는 점, 또한 광촉매의 경우 자외선 램프의 사용이 따라야 한다는 단점이 있었다. In order to extend the life of activated carbon, hot air or steam is blown out to activated carbon periodically to release the adsorbed volatile organic compounds, the activated carbon is heated electrically to release the adsorbed volatile substances, and the activated carbon is coated with adsorption A method of slowly oxidatively decomposing volatile organic compounds and a method of applying a photocatalyst to activated carbon and irradiating ultraviolet rays or the like to oxidize and remove volatile organic compounds adsorbed on activated carbon are known. However, this method has a disadvantage in that a heating wire or a device for generating steam not only raises the price of the adsorption tower but also consumes a lot of energy to generate steam or heat. In addition, the low-temperature catalyst has a low reaction rate for oxidizing and removing volatile organic compounds, and thus, it takes a long time to regenerate the adsorption capacity of activated carbon, and in the case of the photocatalyst, the use of an ultraviolet lamp has a disadvantage.

따라서 사용이 간편하고 경제적인 파장이 395~400nm 인 LED를 이용하고, 단파장 LED의 빛에 잘 활성화되는 광촉매를 도포한 입상 활성탄을 개발하여 흡착제인 활성탄의 흡착수명을 크게 증가시킴으로서 활성탄의 교체주기를 늘려줄 수 있는 방법이 개발되어야 한다. Therefore, it is easy to use and economical wavelength of 395 ~ 400nm LED, developed granular activated carbon coated with a photocatalyst that is well activated in the light of short wavelength LED to increase the adsorption life of the activated carbon as an adsorbent to increase the replacement cycle of activated carbon Ways to increase should be developed.

따라서, 본 발명은 상기한 종래기술들의 문제점을 해결하기 위해 안출된 것으로, 엘이디(LED) 램프의 빛에 휘발성 유기화합물 등을 효과적으로 분해시켜 주는 나노금속/광촉매 졸을 활성탄 표면에 도포하여, 활성탄의 휘발성 유기화합물 등에 대한 흡착능을 증가되도록 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸이 코팅된 활성탄을 제공하는 것을 목적으로 한다.Accordingly, the present invention has been made to solve the above problems of the prior art, by applying a nano-metal / photocatalyst sol that effectively decomposes volatile organic compounds and the like to the light of the LED (LED) on the surface of the activated carbon, An object of the present invention is to provide an activated carbon coated with a nanometal / photocatalyst sol that reacts with an LED lamp to increase adsorption capacity for volatile organic compounds and the like.

상기한 목적을 달성하기 위한 본 발명은, 엘이디 램프에 반응하는 나노금속/광촉매 졸이 활성탄에 코팅되어 나노금속/광촉매 코팅층을 형성시키되, 상기 나노금속/광촉매 코팅층은, 알콜계 유기용제 10~30 중량부와, 수성용매로서 물 50~70 중량부와, 티타늄 전구체 5~15 중량부와, 금속 전구체로서는 전이금속 0.5~10 중량부와, 촉매로서 질산 0.5~5 중량부 및 킬레이트 안정제 0.1~5 중량부를 반응기에서 혼합하고, 60℃~90℃의 온도에서 교반시킴에 의해 형성된 나노금속/광촉매 슬러리 조성물인 엘이디 램프에 반응하는 나노금속/광촉매 졸이 코팅된 활성탄을 기술적 요지로 한다.The present invention for achieving the above object, the nano-metal / photocatalyst sol in response to the LED lamp is coated on the activated carbon to form a nano-metal / photocatalyst coating layer, the nano-metal / photocatalyst coating layer, alcohol-based organic solvent 10-30 Parts by weight, 50 to 70 parts by weight of water as an aqueous solvent, 5 to 15 parts by weight of titanium precursor, 0.5 to 10 parts by weight of transition metal as metal precursor, 0.5 to 5 parts by weight of nitric acid as catalyst and 0.1 to 5 chelate stabilizer The technical gist of the present invention is a nanometal / photocatalyst sol-coated activated carbon which reacts to an LED lamp, which is a nanometal / photocatalyst slurry composition formed by mixing in parts by weight in a reactor and stirring at a temperature of 60 ° C to 90 ° C.

여기서, 상기 코팅층은 스프레이 코팅에 의해 형성되는 것이 바람직하다.Here, the coating layer is preferably formed by spray coating.

상기 활성탄은 입상 활성탄인 것이 바람직하다.It is preferable that the said activated carbon is granular activated carbon.

상기 코팅층은 입상 활성탄 100중량부에 대하여 나노금속/광촉매 졸 5~15중량부가 되도록 도포되어 형성되는 것이 바람직하다.The coating layer is preferably formed by applying so that 5 to 15 parts by weight of the nano-metal / photocatalyst sol with respect to 100 parts by weight of granular activated carbon.

상기 티타늄 전구체는 TTIP(Titanium Tetraisopropoxide)인 것이 바람직하다.The titanium precursor is preferably TTIP (Titanium Tetraisopropoxide).

이에 따라, 395~400㎚ 파장대의 엘이디(LED) 램프에 반응하여 광활성되어 오염물질을 분해시키는 나노금속/광촉매 졸이 코팅된 활성탄을 형성시켜 공기정화장치 등의 필터로 사용가능하다는 이점이 있다. Accordingly, there is an advantage that it can be used as a filter such as an air purifier by forming activated carbon coated with a nano metal / photocatalyst sol which is photoactive and decomposes pollutants in response to an LED lamp having a wavelength of 395 to 400 nm.

상기의 구성에 의한 본 발명은 395~400㎚ 파장대의 엘이디(LED) 램프에 반응하여 광활성되어 오염물질을 분해시키는 나노금속/광촉매 졸이 코팅된 활성탄을 형성시킴에 의해 활성탄의 휘발성 유기화합물 등에 대한 흡착능을 증가시며, 공기정화장치 등의 필터로 사용가능하다는 효과가 있다. According to the present invention, the activated carbon coated with a nano metal / photocatalyst sol which is photoactive and decomposes pollutants in response to an LED lamp in the wavelength range of 395 to 400 nm may be used for volatile organic compounds of activated carbon. Increasing the adsorption capacity, there is an effect that can be used as a filter, such as an air purifier.

도 1은 본 발명의 제9실시예에 따라 제조된 나노금속/광촉매의 TEM 사진을 나타낸 도이고,
도 2는 본 발명의 제3실시예, 제6실시예, 제9실시예들에 따라 제조된 나노금속/광촉매에 대한 XRD 측정결과를 나타낸 도이고,
도 3은 본 발명의 제9실시예에 따라 제조된 나노금속/광촉매의 오염물질 제거효율을 나타낸 도이고,
도 4는 나노금속/광촉매가 도포된 입상 활성탄에 대해 휘발성 유기화합물인 톨루엔에 대한 흡착ㆍ제거 성능을 측정하기 위한 장치 개략도이고,
도 5는 본 발명의 제6실시예의 나노금속/광촉매(Ag/TiO2) 졸이 코팅된 활성탄을 이용한 경우의 톨루엔 제거성능을 나타낸 도이다.
1 is a view showing a TEM photograph of a nanometal / photocatalyst prepared according to the ninth embodiment of the present invention,
FIG. 2 is a diagram showing XRD measurement results for nanometals / photocatalysts prepared according to Examples 3, 6, and 9 of the present invention.
3 is a view showing a contaminant removal efficiency of the nanometal / photocatalyst prepared according to the ninth embodiment of the present invention,
4 is a schematic diagram of an apparatus for measuring the adsorption / removal performance of toluene, a volatile organic compound, on granular activated carbon coated with a nanometal / photocatalyst,
5 is a view showing toluene removal performance when using the activated carbon coated nano metal / photocatalyst (Ag / TiO 2 ) sol of the sixth embodiment of the present invention.

이하 본 발명의 바람직한 실시예 들을 도면을 참조로 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

본 발명에 따른 엘이디 램프에 반응하는 나노금속/광촉매 졸을 이용한 공기정화장치의 핵심은 흡착제인 활성탄의 표면에 코팅된 나노금속/광촉매 졸인바, 먼저 나노금속/광촉매 졸에 대해 살펴 보기로 한다.
The core of the air purifier using a nanometal / photocatalyst sol reacting to the LED lamp according to the present invention is a nanometal / photocatalyst sol coated on the surface of the activated carbon as an adsorbent, first, the nanometal / photocatalyst sol.

Ⅰ. 엘이디 램프에 반응하는 나노금속/광촉매 졸의 제조 방법Ⅰ. Method for preparing nanometal / photocatalyst sol reacting to LED lamp

나노금속/ 광촉매 졸은 아래의 10가지 실시예에 따라 각각 제조하였다.Nanometal / photocatalyst sols were prepared according to the following ten examples.

< 제1실시예 >First Embodiment

본 발명의 제1실시예는, The first embodiment of the present invention,

유기용매로서 에틸알콜 14중량부 및 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 12중량부, 수성용매로서는 이온화처리된 순수(純水) 62중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 아연(Zn) 1중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 14 parts by weight of ethyl alcohol as an organic solvent and 12 parts by weight of isopropyl alcohol (hereinafter referred to as IPA), 62 parts by weight of pure ionized water as an aqueous solvent, and TTIP (Titanium Tetraisopropoxide) as a Ti precursor of a photocatalyst. 10 parts by weight, 1 part by weight of zinc (Zn) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelate stabilizer, It stirred at the speed of 500 rpm. At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다.
The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제2실시예 >Second Embodiment

본 발명의 제2실시예는, The second embodiment of the present invention,

유기용매로서 에틸알콜 24중량부, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 아연(Zn) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 24 parts by weight of ethyl alcohol as an organic solvent, 60 parts by weight of pure ionized water as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, and zinc (Zn) in a transition metal as a metal precursor. 5 parts by weight, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a speed of about 500 rpm in the reactor. At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다.
The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제3실시예 >Third Embodiment

본 발명의 제3실시예는, The third embodiment of the present invention,

유기용매로서 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 24중량부, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 아연(Zn) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 양 4시간 정도로 교반하였다. 24 parts by weight of isopropyl alcohol (hereinafter referred to as IPA) as an organic solvent, 60 parts by weight of pure ionized water as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, 5 parts by weight of zinc (Zn) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a rate of about 500 rpm in the reactor. . At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred for about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다.
The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제4실시예 >Fourth Embodiment

본 발명의 제4실시예는, The fourth embodiment of the present invention,

유기용매로서 에틸알콜 14중량부 및 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 12중량부, 수성용매로서는 이온화처리된 순수(純水) 62중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 은(Ag) 1중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 14 parts by weight of ethyl alcohol as an organic solvent and 12 parts by weight of isopropyl alcohol (hereinafter referred to as IPA), 62 parts by weight of pure ionized water as an aqueous solvent, and TTIP (Titanium Tetraisopropoxide) as a Ti precursor of a photocatalyst. 10 parts by weight, 1 part by weight of silver (Ag) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer, It stirred at the speed of 500 rpm. At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다.
The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제5실시예 > Fifth Embodiment

본 발명의 제5실시예는, The fifth embodiment of the present invention,

유기용매로서 에틸알콜 24중량부, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 은(Ag) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 24 parts by weight of ethyl alcohol as an organic solvent, 60 parts by weight of pure ionized water as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, and silver (Ag) in transition metal as a metal precursor. 5 parts by weight, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a speed of about 500 rpm in the reactor. At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다.
The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제6실시예 >Sixth Embodiment

본 발명의 제6실시예는, In a sixth embodiment of the present invention,

유기용매로서 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 24중량부, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 은(Ag) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 양 4시간 정도로 교반하였다. 24 parts by weight of isopropyl alcohol (hereinafter referred to as IPA) as an organic solvent, 60 parts by weight of pure ionized water as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, 5 parts by weight of silver (Ag) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a speed of about 500 rpm in the reactor. . At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred for about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다.
The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제7실시예 >Seventh Embodiment

본 발명의 제7실시예는, The seventh embodiment of the present invention,

유기용매로서 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 26중량부, 수성용매로서는 이온화처리된 순수(純水) 62중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 구리(Cu) 1중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 26 parts by weight of isopropyl alcohol (hereinafter referred to as IPA) as an organic solvent, 62 parts by weight of pure ionized water as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, 1 part by weight of copper (Cu) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a rate of about 500 rpm in the reactor. . At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다.
The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제8실시예 >Eighth Embodiment

본 발명의 제8실시예는, An eighth embodiment of the present invention,

유기용매로서 에틸알콜 24중량부와, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 구리(Cu) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 24 parts by weight of ethyl alcohol as an organic solvent, 60 parts by weight of pure water ionized as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, and copper (Cu) in a transition metal as a metal precursor. 5 parts by weight, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a rate of about 500 rpm in the reactor. At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다.
The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제9실시예 ><Ninth Embodiment>

본 발명의 제9실시예는, In a ninth embodiment of the present invention,

유기용매로서 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 24중량부, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 구리(Cu) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~81℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 24 parts by weight of isopropyl alcohol (hereinafter referred to as IPA) as an organic solvent, 60 parts by weight of pure ionized water as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, 5 parts by weight of copper (Cu) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a speed of about 500 rpm in the reactor. . At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 81 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다.
The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제10실시예 >Tenth Embodiment

본 발명의 제10실시예는, In a tenth embodiment of the present invention,

유기용매로서 에틸알콜 12중량부 및 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 12중량부, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 구리(Cu) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 12 parts by weight of ethyl alcohol and 12 parts by weight of isopropyl alcohol (hereinafter referred to as IPA) as an organic solvent, 60 parts by weight of pure ionized water as an aqueous solvent, and TTIP (Titanium Tetraisopropoxide) as a Ti precursor of the photocatalyst. 10 parts by weight, 5 parts by weight of copper (Cu) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 parts by weight of acetyl acetone as a chelating stabilizer, It stirred at the speed of 500 rpm. At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다.
The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

상기 실시예들의 첨가량 성분 물성표를 아래의 표 1에 나타내었으며 첨가량은 중량단위이다.
Table 1 below shows the physical properties of the additive amounts of the above examples, and the amount is in weight units.

Figure pat00001
Figure pat00001

상기의 실시예들에 의해 제조된 1차입자들에 대한 TEM 사진에 의하면 나노사이즈 크기로 나타났다. 특히 실시예 9의 1차 입자로 형성된 Cu/TiO2 는 입자사이즈가 도 1에 나타난 바와 같이 3~5㎚사이즈로 나타남을 알 수 있다.
TEM photographs of the primary particles prepared by the above examples showed nano-size. In particular Cu / TiO 2 formed from the primary particles of Example 9 It can be seen that the particle size is shown in 3 ~ 5nm size as shown in FIG.

다음은 상기 실시예들에 대한 XRD 측정을 하였으며, 상기 실시예 들 중 제3실시예, 제6실시예, 제9실시예들에 대한 XRD 측정결과를 도 2에 나타내었다. 상기 도 2에 나타나 바와 같이, 제3, 제6, 제9실시예에 의한 조성물은 도 2에 나타난 아나타제 타입의 TiO2의 XRD 패턴과 유사한바, 제3, 제6, 제9실시예에 의한 조성물은 아나타제 타입의 광촉매가 형성되었음을 알 수 있다. 나머지도 이와 유사한 결과가 나타났다.
Next, the XRD measurement was performed for the above embodiments, and the XRD measurement results for the third, sixth, and ninth embodiments of the examples are shown in FIG. 2. As shown in FIG. 2, the composition according to the third, sixth, and ninth embodiments is similar to the XRD pattern of the anatase type TiO 2 shown in FIG. 2, and according to the third, sixth, and ninth embodiments The composition can be seen that anatase type photocatalyst was formed. The rest was similar.

다음은 상기 실시예들에 대한 엘이디램프에 대한 광활성 분해실험을 하였으며 광활성 분해 효율이 우수한 것을 알 수 있었다.Next, the photoactive decomposition experiments were carried out on the LED lamps for the above embodiments, and the photoactive decomposition efficiency was found to be excellent.

도 3은 나노금속/광촉매 졸의 오염물질 제거효율을 나타낸 도로서, 상기 제9실시예의 나노금속/광촉매 졸을 사용하였으며, 나머지도 유사한 결과가 나타났다. 3 is a view showing the removal efficiency of the contaminants of the nanometal / photocatalyst sol, the nanometal / photocatalyst sol of the ninth embodiment was used, the rest was similar results.

상기 제9실시예의 나노금속/광촉매(Cu/TiO2)를 STS(7cm×7cm) 표면에 0.3g을 코팅하였으며, 오염물질로서 TCE(Trichloroehtylene)을 분해 제거하였다.0.3g of the nanometal / photocatalyst (Cu / TiO 2 ) of the ninth embodiment was coated on the surface of STS (7cm × 7cm), and TCE (Trichloroehtylene) was decomposed and removed as a contaminant.

반응용기는 HDPE 3.4L용기에 초기 농도를 98ppm으로 하였다. The reaction vessel had an initial concentration of 98 ppm in a 3.4 L HDPE container.

엘이디(LED) 0.068W 4개를 광촉매 표면과의 거리를 4㎝로 두고서 분해 반응을 실시하였다. 분석기기로서는 ppb RAE 3000(USA) 분석기기를 사용하였다.Four 0.068 W of LEDs (LED) were subjected to decomposition reaction at a distance of 4 cm from the photocatalyst surface. As an analyzer, ppb RAE 3000 (USA) analyzer was used.

비교예로서 아무런 코팅을 하지 않은 것을 사용하였다.As a comparative example, no coating was used.

상기의 실험결과를 도 3에 나타내었으며, 도 3에 나타난 바와 같이, 결과적으로 395~400㎚에 광활성을 나타내어 TCE가 분해되는 것을 확인할 수 있었다.
The results of the experiment are shown in FIG. 3, and as shown in FIG. 3, it was confirmed that TCE was decomposed by showing photoactivity at 395-400 nm.

상기에서 본 바와 같이 본 발명의 나노금속/광촉매 졸은 요염물질인 TCE(Trichloroehtylene) 등을 효율적으로 분해 제거시킴을 확인하였다. 따라서, 상기 나노금속/광촉매 졸을 흡착능력이 탁월한 활성탄에 코팅시켜 활성탄의 수명을 늘려주고자 하는 발명을 착안하게 된 것이다. 상기에서 제조된 나노금속/광촉매 졸을 활성탄에 코팅한바, 코팅방법은 아래와 같다.
As described above, it was confirmed that the nanometal / photocatalyst sol of the present invention efficiently decomposes and removes TCE (Trichloroehtylene), which is a contaminant. Accordingly, the present invention has been conceived of an invention for increasing the life of activated carbon by coating the nanometal / photocatalyst sol on activated carbon having excellent adsorption ability. When the nano-metal / photocatalyst sol prepared above is coated on activated carbon, the coating method is as follows.

Ⅱ. 나노금속/광촉매 졸의 활성탄 코팅II. Activated Carbon Coating of Nanometal / Photocatalyst Sol

상기 실시예에서 제조된 나노금속/광촉매 졸을 흡착제인 활성탄에 코팅한바, 코팅방법은 아래와 같다. The nanometal / photocatalyst sol prepared in Example was coated on activated carbon as an adsorbent, and the coating method is as follows.

먼저 활성탄은 공기용 입상 활성탄(입경 ~2mm, 길이 ~5mm의 원통모양)을 사용하였으며, 나노금속/광촉매 스러리(혼합용액, slurry)를 스프레이(분무, spray)에 의하여 활성탄의 표면에 도포(코팅, coating)하는 방법에 의해 제조하였으며, 입상 활성탄 100g당 10g의 나노금속/광촉매가 도포되도록 도포하였다. 에멀젼(유액, 현탁액, emulsion) 상태의 나노금속/광촉매가 도포된 입상 활성탄은 건조기(전기 oven) 속에서 200℃, 1시간 동안 건조된다. First, activated carbon was used as granular activated carbon (cylindrical shape of particle size ~ 2mm, length ~ 5mm), and nanometal / photocatalyst slurry (mixture, slurry) was applied to the surface of activated carbon by spraying (spraying) Coating, coating) was applied so that 10g of nano-metal / photocatalyst per 100g of granular activated carbon was applied. The granular activated carbon coated with the nanometal / photocatalyst in emulsion (emulsion, suspension, emulsion) is dried at 200 ° C. for 1 hour in an electric oven.

입상 활성탄(activated charcoal chip)의 광촉매 도포 방법은 Photocatalyst application method of activated charcoal chip

1) 넓은 접시에 활성탄 칩을 1단으로 하여 넓게 300g 펼쳐 놓는다.1) Spread 300 g of activated carbon chips in a wide dish.

2) 나노금속/광촉매 30g을 스프레이 코팅법으로 적당한 분사압력으로 코팅한다.2) Coat 30g of nano metal / photocatalyst with proper spray pressure by spray coating method.

3) 코팅시 골고루 코팅될 수 있도록 활성탄 칩을 흔들어 준다.3) Shake the activated carbon chip so that it can be evenly coated.

4) 열처리는 200℃에서 1시간 건조처리하며, 식은 후 완전히 밀봉한다.
4) Heat treatment is dried for 1 hour at 200 ℃, and completely sealed after cooling.

상기의 과정을 통하여 나노금속/광촉매가 코팅된 활성탄 칩이 완성되었다.Through the above process, the activated carbon chip coated with the nanometal / photocatalyst was completed.

상기 완성된 나노금속/광촉매 졸이 도포된 입상 활성탄에 대해 휘발성 유기화합물인 톨루엔에 대한 흡착ㆍ제거 성능을 측정하기 위해 도 4와 같은 장치를 꾸며 실험을 하였다. In order to measure the adsorption / removal performance of toluene, which is a volatile organic compound, on the granular activated carbon coated with the completed nanometal / photocatalyst sol, experiments were carried out with the apparatus shown in FIG. 4.

상기 도면에서 톨루엔 가스를 공급하는 가스공급기(82, 표준가스발생기, permeator, 일본 Gstek사 PD-1B)는 유입구(72)로부터 공기가 들어가며, 공기유량을 조절시키는 유량조정기(73), 플로우메터(74, flow meter), 히터(75), 항온조(76), 액체 톨루엔을 담는 유리병(78), 톨루엔 가스 발생실(77) 및 톨루엔 가스의 발생량을 조절하는 조정기(80)로 구성된다. In the drawing, the gas supply unit 82 (standard gas generator, permeator, PD-1B of Japan Gstek Co., Ltd.) supplying toluene gas enters air from the inlet port 72, and adjusts the flow rate of the flow regulator 73 and the flow meter ( 74, a flow meter, a heater 75, a thermostat 76, a glass bottle 78 containing liquid toluene, a toluene gas generating chamber 77 and a regulator 80 for adjusting the amount of toluene gas generated.

상기와 같이 구성되어 가스공급기(82)의 유출구(81)에서 일정한 농도의 톨루엔 가스가 혼합된 공기가 나오게 된다. It is configured as described above and the air in which the toluene gas of a constant concentration is mixed comes out from the outlet 81 of the gas supplier 82.

혼합된 기체는 이송관(83)을 통하여 활성탄(86) 및 엘이디램프(85)가 설치된 유리실린더(84)의 하단부로 유입되고 활성탄(86)에서 정화된 후 유리실린더(84)의 상단부를 통하여 외부로 배출된 후 가스크로마토그래프(87)로 유입된다,The mixed gas enters the lower end of the glass cylinder 84 in which the activated carbon 86 and the LED lamp 85 are installed through the transfer pipe 83, and is purified in the activated carbon 86, and then through the upper end of the glass cylinder 84. After discharged to the outside it is introduced into the gas chromatograph 87,

가스크로마토그래프(87)는 기체 중 톨루엔의 잔류농도를 측정하는 역할을 하고 있으며, 가스크로마토그래프(87)의 검출기부분은 톨루엔의 잔류농도를 측정하기 위해 검지관(Kitagawa 124SA range 10-500ppm, 124SB range 2-100ppm) 및 Perkin Elmer Photovac사가 제작한 총탄화수소 농도측정기인 휴대용 GC/FID(MicroFID I/S)를 이용하였다. The gas chromatograph 87 serves to measure the residual concentration of toluene in the gas, and the detector portion of the gas chromatograph 87 is a detector tube (Kitagawa 124SA range 10-500 ppm, 124SB to measure the residual concentration of toluene). range 2-100 ppm) and a portable GC / FID (MicroFID I / S), a total hydrocarbon concentration meter manufactured by Perkin Elmer Photovac.

상기의 장치를 이용하여 본 발명의 실시예에 따른 나노금속/광촉매가 코팅된 활성탄을 상기 장치의 활성탄(86)에 위치시킨 경우의 톨루엔 제거 성능을 측정하였다. Toluene removal performance was measured when the activated carbon coated with the nanometal / photocatalyst according to the embodiment of the present invention was placed on the activated carbon 86 of the apparatus.

도5는 본 발명의 제6실시예의 나노금속/광촉매(Ag/TiO2) 졸이 코팅된 활성탄을 이용한 경우의 톨루엔 제거성능을 나타낸 도이며, 비교예로서 산화티탄 광촉매만 코팅된 활성탄을 사용하였다. FIG. 5 is a diagram showing toluene removal performance when the activated carbon coated with the nanometal / photocatalyst (Ag / TiO 2 ) sol of the sixth embodiment of the present invention is used. As a comparative example, activated carbon coated with only a titanium oxide photocatalyst was used. .

도5에 나타난 바와 같이 본 발명에 따른 나노금속/광촉매(Ag/TiO2)가 코팅된 활성탄을 사용하는 경우, 산화티탄 광촉매만 코팅된 활성탄을 사용하는 경우보다 오염물질의 포화흡착효율이 증가 됨을 알 수 있다. As shown in FIG. 5, when the activated carbon coated with the nanometal / photocatalyst (Ag / TiO 2 ) according to the present invention is used, the saturation adsorption efficiency of contaminants is increased compared to the case of using the activated carbon coated only with the titanium oxide photocatalyst. Able to know.

72 : 유입구 73 : 유량조절기
74 : 플로우메타 75 : 히터
76 : 항온조 77 : 가스발생실
78 : 유리병 80 : 조정기
81 : 유출구 82 : 가스공급기
83 : 이송관 84 : 유리실린더
85 : 엘이디램프 86 : 활성탄
87 : 가스크로마토그래프
72: inlet 73: flow regulator
74: flow meter 75: heater
76: thermostat 77: gas generating chamber
78: glass bottle 80: regulator
81: outlet 82: gas supply
83: transfer pipe 84: glass cylinder
85: LED lamp 86: activated carbon
87: gas chromatograph

Claims (5)

엘이디 램프에 반응하는 나노금속/광촉매 졸이 활성탄에 코팅되어 나노금속/광촉매 코팅층을 형성시키되,
상기 나노금속/광촉매 코팅층은,
알콜계 유기용제 10~30 중량부와, 수성용매로서 물 50~70 중량부와, 티타늄 전구체 5~15 중량부와, 금속 전구체로서는 전이금속 0.5~10 중량부와, 촉매로서 질산 0.5~5 중량부 및 킬레이트 안정제 0.1~5 중량부를 반응기에서 혼합하고, 60℃~90℃의 온도에서 교반시킴에 의해 형성된 나노금속/광촉매 슬러리 조성물임을 특징으로 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸이 코팅된 활성탄.
The nanometal / photocatalyst sol reacting to the LED lamp is coated on the activated carbon to form a nanometal / photocatalyst coating layer,
The nano metal / photocatalyst coating layer,
10 to 30 parts by weight of an alcohol-based organic solvent, 50 to 70 parts by weight of water as an aqueous solvent, 5 to 15 parts by weight of a titanium precursor, 0.5 to 10 parts by weight of a transition metal as a metal precursor, and 0.5 to 5 parts by weight of nitric acid as a catalyst. Parts and 0.1-5 parts by weight of a chelate stabilizer are nanometal / photocatalyst sol coated with an LED lamp characterized in that the nanometal / photocatalyst slurry composition is formed by mixing in a reactor and stirring at a temperature of 60 ° C-90 ° C. Activated carbon.
제1항에 있어서, 상기 코팅층은 스프레이 코팅에 의해 형성됨을 특징으로 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸이 코팅된 활성탄.The activated carbon coated with a nanometal / photocatalyst sol according to claim 1, wherein the coating layer is formed by spray coating. 제1항에 있어서, 상기 활성탄은 입상 활성탄임을 특징으로 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸이 코팅된 활성탄.The activated carbon coated with a nanometal / photocatalyst sol according to claim 1, wherein the activated carbon is granular activated carbon. 제1항 내지 제3항 중 어느 하나의 항에 있어서, 상기 코팅층은 입상 활성탄 100중량부에 대하여 나노금속/광촉매 졸 5~15중량부가 되도록 도포되어 형성됨을 특징으로 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸이 코팅된 활성탄.The nanometal reacting to an LED lamp according to any one of claims 1 to 3, wherein the coating layer is formed by coating 5 to 15 parts by weight of the nanometal / photocatalyst sol with respect to 100 parts by weight of granular activated carbon. Activated carbon coated with photocatalyst sol. 제4항에 있어서, 상기 티타늄 전구체는 TTIP(Titanium Tetraisopropoxide) 임을 특징으로 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸이 코팅된 활성탄.The activated carbon coated with a nanometal / photocatalyst sol according to claim 4, wherein the titanium precursor is titanium tetraisopropoxide (TTIP).
KR1020100009962A 2010-02-03 2010-02-03 Activated carbon coated nanometal/photocatalyst sol KR20110090271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100009962A KR20110090271A (en) 2010-02-03 2010-02-03 Activated carbon coated nanometal/photocatalyst sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100009962A KR20110090271A (en) 2010-02-03 2010-02-03 Activated carbon coated nanometal/photocatalyst sol

Publications (1)

Publication Number Publication Date
KR20110090271A true KR20110090271A (en) 2011-08-10

Family

ID=44928085

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100009962A KR20110090271A (en) 2010-02-03 2010-02-03 Activated carbon coated nanometal/photocatalyst sol

Country Status (1)

Country Link
KR (1) KR20110090271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647300B1 (en) * 2015-02-04 2016-08-10 대한민국 Manufacturing method of photo-catalyst carbonized board having excellent removal ability of volatile aromatic compounds
KR20160104823A (en) * 2015-02-26 2016-09-06 (주)엘지하우시스 Visible light active photocatalyst coating composition and filter for air cleaning

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647300B1 (en) * 2015-02-04 2016-08-10 대한민국 Manufacturing method of photo-catalyst carbonized board having excellent removal ability of volatile aromatic compounds
KR20160104823A (en) * 2015-02-26 2016-09-06 (주)엘지하우시스 Visible light active photocatalyst coating composition and filter for air cleaning
US10449519B2 (en) 2015-02-26 2019-10-22 Lg Hausys, Ltd. Visible light-activated photocatalytic coating composition and air purification filter
US10898879B2 (en) 2015-02-26 2021-01-26 Lg Hausys, Ltd. Visible light-activated photocatalytic coating composition and air purification filter

Similar Documents

Publication Publication Date Title
Aram et al. Metronidazole and Cephalexin degradation by using of Urea/TiO2/ZnFe2O4/Clinoptiloite catalyst under visible-light irradiation and ozone injection
Shen et al. The enhancement of photo-oxidation efficiency of elemental mercury by immobilized WO3/TiO2 at high temperatures
Sun et al. Photocatalytic degradation and kinetics of Orange G using nano-sized Sn (IV)/TiO2/AC photocatalyst
Huang et al. Enhanced degradation of gaseous benzene under vacuum ultraviolet (VUV) irradiation over TiO2 modified by transition metals
Santos et al. Saturated activated carbon regeneration by UV-light, H2O2 and Fenton reaction
Luévano-Hipólito et al. Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible light irradiation
CN101298024A (en) Catalyst for purifying volatile organic pollutant and ozone in air under normal temperature as well as preparation and use thereof
Tasbihi et al. A short review on photocatalytic degradation of formaldehyde
Muangmora et al. Titanium dioxide and its modified forms as photocatalysts for air treatment
Muniandy et al. Carbon modified anatase TiO2 for the rapid photo degradation of methylene blue: A comparative study
Mahjoub et al. Low temperature one-pot synthesis of Cu-doped ZnO/Al2O3 composite by a facile rout for rapid methyl orange degradation
CN109011868A (en) A kind of catalyst system and its application and purification method and purification system
CN103285799B (en) Photocatalytic reactor for increasing photocatalytic degradation rate of methane and application of photocatalytic reactor
Nakano et al. Performance of TiO2 photocatalyst supported on silica beads for purification of wastewater after absorption of reflow exhaust gas
KR101153362B1 (en) air purification apparatus using nanometal/photocatalyst sol
Lin et al. Simultaneous removal of volatile organic compounds from cooking oil fumes by using gas-phase ozonation over Fe (OH) 3 nanoparticles
CN111603929A (en) System and method for treating VOCs by excimer light coupling catalysis means
Mojir Shaibani et al. Photocatalytic BiFeO 3 nanofibrous mats for effective water treatment
KR20110090271A (en) Activated carbon coated nanometal/photocatalyst sol
JP5090787B2 (en) Titanium oxide composite particle aqueous dispersion and production method thereof
JP5571939B2 (en) Decomposition apparatus and decomposition method for volatile organic compounds
Horikoshi et al. Use of microwave discharge electrodeless lamps (MDEL): II. Photodegradation of acetaldehyde over TiO2 pellets
CN111871438B (en) Pt/TiN efficient photo-thermal synergistic catalyst and preparation method and application thereof
Lin et al. Applying surface charge attraction to synthesizing TiO2/Ag composition for VOCs photodegradation
CN208372827U (en) Volatide organic waste gas treating system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application