KR20110085106A - Superhydrophilic metal tube manufacturing method using aluminum anodizing - Google Patents

Superhydrophilic metal tube manufacturing method using aluminum anodizing Download PDF

Info

Publication number
KR20110085106A
KR20110085106A KR1020100004718A KR20100004718A KR20110085106A KR 20110085106 A KR20110085106 A KR 20110085106A KR 1020100004718 A KR1020100004718 A KR 1020100004718A KR 20100004718 A KR20100004718 A KR 20100004718A KR 20110085106 A KR20110085106 A KR 20110085106A
Authority
KR
South Korea
Prior art keywords
metal tube
acid
anodization
metal
nanopores
Prior art date
Application number
KR1020100004718A
Other languages
Korean (ko)
Inventor
문학범
조진형
방석현
최면천
김철환
장윤형
황호준
Original Assignee
주식회사 넥스트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 넥스트론 filed Critical 주식회사 넥스트론
Priority to KR1020100004718A priority Critical patent/KR20110085106A/en
Publication of KR20110085106A publication Critical patent/KR20110085106A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies

Abstract

PURPOSE: A method of manufacturing ultra-hydrophilic metallic pipes using anodic oxidation is provided to enhance cooling efficiency by enhancing wettability of an ultra-hydrophilic metallic pipe with refrigerant and save energy. CONSTITUTION: A method of manufacturing ultra-hydrophilic metallic pipes using anodic oxidation is as follows. The surface of a metallic pipe is electro-polished. Nano pores irregularly engraved by a first anodic oxidation process are formed on the metallic pipe. The surface of the metallic pipe formed as nano pores is removed by an etching process. Nano pores regularly engraved by a second anodic oxidation process are formed on the surface of the metallic pipe.

Description

양극산화법을 이용한 초친수성 금속관 제조방법{superhydrophilic metal tube manufacturing method using aluminum anodizing}Superhydrophilic metal tube manufacturing method using aluminum anodizing}

본 발명은 양극산화법을 이용한 초친수성 금속관 제조방법에 관한 것으로, 양극산화법에 의해 나노크기의 기공들로 균일하게 배열된 다공성의 표면을 형성하여 초친수성 특성을 갖는 금속관의 제조방법에 관한 것이다.The present invention relates to a method for producing a superhydrophilic metal tube using anodization, and to a method for producing a metal tube having superhydrophilic properties by forming a porous surface uniformly arranged into nano-sized pores by anodization.

석탄, 석유, 가스와 같은 천연자원의 고갈과 더불어 에너지의 중요성이 더욱 중요시되는 시점에서 에너지를 절감하고자 하는 기술이 매우 중요하다. 대표적인 예로 에어컨의 경우 냉매와 배관의 젖음성을 들 수 있고, 젖음성의 특성에 따라 냉각 효율이 크게 좌우되게 된다.In addition to the depletion of natural resources such as coal, oil, and gas, the technology to save energy is very important when energy is more important. As a representative example, in the case of an air conditioner, wettability of a refrigerant and a pipe may be mentioned, and cooling efficiency is greatly influenced by wettability characteristics.

한편, 양극산화가 일어나는 물질의 경우 복잡한 형태의 표면일지라도 간단한 공정에 의해 표면 나노 다공성 구조를 만들면 초친수성을 얻을 수 있다. 이러한, 초친수성의 응용분야는 초젖음성 및 넓은 표면적을 이용하여 나노멤브레인의 필터링, 나노와이어의 도금, 에어컨이나 냉장고 등의 냉매 배관 효율 증대, 보일러, 온수기, 열교환기 등의 열교환 효율을 높일 수 있는 분야에 적용할 수 있다.On the other hand, in the case of a material in which anodization occurs, superhydrophilicity can be obtained by making a surface nanoporous structure by a simple process even for a complex surface. Such super-hydrophilic applications include ultra-wetting and large surface areas to filter nanomembrane, plate nanowires, increase refrigerant piping efficiency such as air conditioners and refrigerators, and improve heat exchange efficiency in boilers, water heaters, and heat exchangers. Applicable to the field.

종래에는 초친수성을 얻고자 자가정렬 단량체(Self-Assembled Monolayer, SAM), 이온빔, 플라즈마 처리 등의 방법이나, 친수성을 갖는 나노구조 형성 방법은 대부분 나노틀 내부에 씨앗(seed) 형태의 출발 물질에서 이를 성장시키는 공정으로 이루어지므로 공정이 복잡하고, 균일성 또한 매우 떨어지는 문제점이 있다.Conventionally, self-aligned monomer (SAM), ion beam, plasma treatment, etc. to obtain super hydrophilicity, but the method of forming a nanostructure having hydrophilicity is mostly in the seed material starting material in the nano-frame Since it is made of a process for growing it, there is a problem that the process is complicated, and uniformity is also very poor.

본 발명은 상기 문제점을 해결하기 위한 것으로서, 양극산화법에 의해 나노크기의 기공들로 균일하게 배열된 다공성의 표면을 형성하여 초친수성 특성을 갖는 금속관 제조방법의 제공을 그 목적으로 한다.The present invention is to solve the above problems, an object of the present invention is to provide a method for producing a metal tube having a super-hydrophilic property by forming a porous surface uniformly arranged with nano-sized pores by anodization.

상기 목적을 달성하기 위해 본 발명은, 금속관 표면을 전해연마하는 제1단계와; 상기 전해연마된 금속관에 1차 양극산화공정에 의한 불규칙한 음각의 나노기공을 형성하는 제2단계와; 상기 불규칙한 음각의 나노기공으로 형성된 금속관 표면을 식각공정으로 제거하는 제3단계와; 상기 금속관 표면에 2차 양극산화공정에 의한 규칙적인 음각의 나노기공을 형성시키는 제4단계;를 포함하여 이루어지는 것을 특징으로 하는 양극산화법을 이용한 초친수성 금속관 제조방법을 기술적 요지로 한다.The present invention to achieve the above object, the first step of electropolishing the surface of the metal tube; A second step of forming irregular negative nanopores in the electropolished metal tube by a first anodization process; A third step of removing the surface of the metal tube formed by the irregular negative nanopores by an etching process; The fourth step of forming a regular intaglio nanopores by the secondary anodization process on the surface of the metal tube; and a method of manufacturing a super-hydrophilic metal tube using anodizing method characterized in that it comprises a technical gist.

또한, 상기 제1단계의 금속관은, 벌크(bulk) 전체가 하나의 동일한 재질이거나, 세라믹이나 금속 재료 위에 양극산화를 하고자 하는 금속층이 형성되는 것이 바람직하며, 상기 금속관은 Al, Ti, Ta, Nb, V, Hf 및 W 중에 하나의 재질로 벌크로 형성되거나, 세라믹이나 금속 재료 위에 형성된 금속층이 Al, Ti, Ta, Nb, V, Hf 및 W 중에 하나의 재질로 형성되는 것이 바람직하다.In addition, the metal tube of the first step, the bulk is one of the same material, or preferably a metal layer to be anodized on a ceramic or metal material is formed, the metal tube is Al, Ti, Ta, Nb , V, Hf and W is preferably formed in bulk, or a metal layer formed on a ceramic or metal material is formed of one of Al, Ti, Ta, Nb, V, Hf and W.

또한, 상기 양극산화공정은 전해액에 의해 이루어지되, 상기 전해액은 황산(sulfuric acid, H2SO4), 인산(phosphoric acid, H3PO4), 옥살산(oxalic acid, C2H2O4), 크롬산(chromic acid), 불산(hydrofluoric acid), 인산수소칼륨(dipotassium phosphate, K2HPO4)중에 어느 하나를 사용하거나 이들의 혼합액 중 어느 하나를 사용하는 것이 바람직하다.In addition, the anodization process is made by the electrolyte, the electrolyte is sulfuric acid (sulfuric acid, H 2 SO 4 ), phosphoric acid (phosphoric acid, H 3 PO 4 ), oxalic acid (C 2 H 2 O 4 ) , Chromic acid, hydrofluoric acid, dipotassium phosphate (K 2 HPO 4 ), or any one of them is preferably used.

상기 과제 해결 수단에 의해 본 발명은, 간단한 제조공정 및 적은 비용으로 금속관 표면에 초친수성 특성을 얻을 수 있으며, 종래의 금속관의 형상에 상관없이 경제적으로 넓은 면적의 초친수성 표면을 제조할 수 있는 효과가 있다.According to the above problem solving means, the present invention can obtain superhydrophilic properties on the surface of a metal tube with a simple manufacturing process and low cost, and can produce a superhydrophilic surface of a large area economically regardless of the shape of a conventional metal tube. There is.

또한, 이러한 초친수성 금속관은 냉매가 통과하는 배관 등으로 사용시 냉매와 배관의 젖음성을 향상시켜 냉각효율을 개선시켜 에너지를 절약할 수 있는 효과가 있다.In addition, the super-hydrophilic metal tube has the effect of saving energy by improving the wettability of the refrigerant and the pipe when the refrigerant is passed through the pipe and the like to improve the cooling efficiency.

도 1 - 본 발명의 일실시예에 따라 제조된 알루미늄관 표면에 대한 확대 사진을 나타낸 도.
도 2 - 본 발명의 일실시예에 따라 제조된 알루미늄관 표면 위의 물방울 젖음 실험을 실시한 도.
1-an enlarged photograph of an aluminum tube surface manufactured according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a drop wetting experiment on the surface of an aluminum tube manufactured according to one embodiment of the present invention. FIG.

본 발명은 양극산화법을 이용하여 표면에 규칙적이고도 균일한 나노기공 구조를 갖도록 제조되어 초친수성 특성을 갖는 금속관의 제조방법에 관한 것이다.The present invention relates to a method for producing a metal tube having a super-hydrophilic property is prepared to have a regular and uniform nano-pore structure on the surface by using anodization.

먼저, 본 발명은 금속관 표면, 즉 내부 또는 외부를 산 용액에 의해 전해연마(electropolishing) 하여 표면을 매끄럽게 식각하는 전처리 공정을 수행한다. 상기 전해연마는 HClO4(perchloric acid)와 C2H5OH(ethanol)을 섞어 사용한다. 여기에서 금속관의 내부 또는 외부 중 어느 하나의 표면 만을 양극산화시키고자 하는 경우에는 고분자 코팅재 등을 어느 한쪽 면에 코팅하여 양극산화를 실시한다.First, the present invention performs a pretreatment step of smoothly etching the surface by electropolishing the surface of the metal tube, that is, the inside or the outside with an acid solution. The electropolishing is used by mixing HClO 4 (perchloric acid) and C 2 H 5 OH (ethanol). In this case, in order to anodize only one surface of the inside or the outside of the metal tube, a polymer coating or the like is coated on either side to perform anodization.

상기 금속관은 벌크(bulk) 전체가 하나의 동일한 재질이거나, 관 형태로 형성된 세라믹이나 금속 재료 위에 양극산화를 하고자 하는 금속층이 형성된 것이다. 즉, 양극산화되는 표면이 금속으로 형성되어 금속 표면에 양극산화가 이루어지게 된다.The metal tube is one bulk material of the same bulk, or a metal layer to be anodized on a ceramic or metal material formed in the form of a tube. That is, the surface to be anodized is formed of a metal to be anodized on the metal surface.

여기에서, 양극산화를 위한 상기 금속관은 Al, Ti, Ta, Nb, V, Hf 및 W 중에 하나의 재질로 벌크(bulk)로 형성되거나, 세라믹이나 금속 재료 위에 형성된 금속층이 Al, Ti, Ta, Nb, V, Hf 및 W 중에 하나의 재질로 형성된 것을 사용한다. 상기 금속층은 스퍼터링(sputtering), evaporation, PLD(pulsed laser deposition), CVD(chemical vapor deposition)법 등의 공지된 방법에 의해 형성한다.Here, the metal tube for anodization is formed of a bulk of one of Al, Ti, Ta, Nb, V, Hf and W, or a metal layer formed on a ceramic or metal material is Al, Ti, Ta, Nb, V, Hf and W formed of one material is used. The metal layer is formed by a known method such as sputtering, evaporation, pulsed laser deposition (PLD), and chemical vapor deposition (CVD).

그리고, 상기 전해연마된 금속관에 1차 양극산화공정에 의한 불규칙한 음각의 나노기공을 형성한다.In addition, irregularly engraved nanopores are formed in the electropolished metal tube by a first anodization process.

상기 1차 양극산화공정은 금속관 표면에 불규칙한 음각의 나노기공을 형성하는 것으로서, 양극산화공정은 전해액에 의해 이루어지되, 상기 전해액은 황산(sulfuric acid, H2SO4), 인산(phosphoric acid, H3PO4), 옥살산(oxalic acid, C2H2O4), 크롬산(chromic acid), 불산(hydrofluoric acid), 인산수소칼륨(dipotassium phosphate, K2HPO4) 중에 어느 하나를 사용하거나 이들의 혼합액 중 어느 하나를 사용할 수 있으며, 상기 전해액이 담긴 산화처리반응조에 소정의 금속관 또는 양극산화하고자 하는 금속층이 형성된 재료를 담그고, 양극을 걸어 준 다음 기준 전극으로 백금판 또는 카본 전극을 산화처리반응조에 담그고 음극을 걸어 주어서 산화시킨다.The first anodization process is to form an irregular intaglio nanopores on the surface of the metal tube, anodization process is made by the electrolyte, the electrolyte is sulfuric acid (sulfuric acid, H 2 SO 4 ), phosphoric acid (H) 3 PO 4 ), oxalic acid (C 2 H 2 O 4 ), chromic acid, hydrofluoric acid, potassium hydrogen phosphate (dipotassium phosphate, K 2 HPO 4 ) or any of these Any one of the mixed liquids may be used, and a predetermined metal tube or a material in which the metal layer to be anodized is formed is immersed in the oxidation treatment tank containing the electrolyte solution, the anode is placed, and a platinum plate or a carbon electrode is used as the reference electrode in the oxidation treatment tank. Dip and hang the cathode to oxidize.

이렇게 형성된 음각의 나노기공의 하단부는 규칙성을 가지고 있으므로 불규칙한 음각의 나노기공으로 형성된 금속관 표면을 에칭액을 이용하여 식각공정으로 제거하게 된다.Since the lower end of the intaglio nanopores thus formed has regularity, the surface of the metal tube formed by the irregular intaglio nanopores is removed by an etching process using an etching solution.

그 다음, 상기 금속관 표면에 2차 양극산화공정에 의한 규칙적인 음각의 나노기공을 형성하도록 하며, 양극산화공정은 상기와 동일하다. 상기와 같이 양극산화가 완료된 금속관의 표면에는 균일하고 규칙적인 나노기공이 형성되어 표면적을 넓히게 되어 내부에 흐르게 되는 냉매와 같은 유체 등과의 젖음성이 향상되게 된다.
Then, to form a regular negative indentation by the secondary anodization process on the surface of the metal tube, the anodization process is the same as above. As described above, uniform and regular nanopores are formed on the surface of the anodized metal tube to increase the surface area, thereby improving wettability with a fluid such as a refrigerant flowing therein.

이하에서는 본 발명의 바람직한 실시예에 대해 설명하고자 한다.Hereinafter will be described for the preferred embodiment of the present invention.

먼저, 양극산화하기 위한 금속관으로 알루미늄관을 선택하며, 알루미늄관 내부에만 양극산화를 실시하고자 포토레지스터를 외부에 코팅한다. 전해연마 조건은 실시예는 부피비 1: 4의 65 %과염소산(HClO4)과 99.5 % 에탄올(C2H5OH)을 혼합한 에칭액에서 에칭전압을 20V로 하였고, 3 분간 10℃에서 에칭하였다.First, an aluminum tube is selected as the metal tube for anodizing, and the photoresist is coated on the outside to perform anodization only inside the aluminum tube. In the electropolishing conditions of the examples, the etching voltage was set to 20 V in an etchant mixed with 65% perchloric acid (HClO 4 ) and 99.5% ethanol (C 2 H 5 OH) in a volume ratio of 1: 4, and was etched at 10 ° C. for 3 minutes.

그리고, 1차 양극산화공정을 수행한다. 양극산화공정 시 인가된 전압에 비례하여 1V 당 근접한 나노기공 사이의 산화물 벽의 두께는 26.0~27.4Å이 된다. 근접한 나노기공 사이 간격은 나노기공의 지름에 나노기공 사이의 산화물 벽의 두께를 더한 것이므로 양극산화 전압을 변화시킴으로서 근접한 나노기공 사이 간격을 정확하게 조절할 수 있다. 그리고, 알루미늄관을 양극으로 사용하고 전해액으로 0.3mol 옥살산을 이용하고 음극으로 카본전극을 이용하였으며, 정전압 모드로 40V의 전압을 인가하고, 전해액의 온도는 15℃, 양극산화 시간은 480분으로 하였다. 나노기공의 깊이는 양극산화 10분당 1㎛가 형성되므로 나노기공의 전체 깊이는 48㎛ 형성되었다.Then, a first anodization process is performed. The thickness of the oxide walls between adjacent nanopores per 1V is 26.0 ~ 27.4Å in proportion to the voltage applied during the anodization process. Since the spacing between adjacent nanopores is the diameter of the nanopores plus the thickness of the oxide walls between the nanopores, the spacing between adjacent nanopores can be precisely controlled by varying the anodization voltage. An aluminum tube was used as the anode, 0.3 mol oxalic acid was used as the electrolyte, and a carbon electrode was used as the cathode. A voltage of 40 V was applied in the constant voltage mode. The temperature of the electrolyte was 15 ° C. and the anodization time was 480 minutes. . Since the depth of the nanopores is formed 1㎛ per 10 minutes of anodization, the total depth of the nanopores was formed 48㎛.

그리고, 에칭액을 이용한 식각공정을 수행한다. 60℃, 1.4w% 크롬산(H2CrO4)용액과 6w% 인산(H3PO4) 용액을 혼합한 용액에서 300분 동안 에칭하였다.Then, an etching process using an etching solution is performed. The solution was etched for 300 minutes in a mixed solution of 60 ° C., a 1.4w% chromic acid (H 2 CrO 4 ) solution and a 6w% phosphoric acid (H 3 PO 4 ) solution.

그리고, 2차 양극산화공정을 1차 양극산화공정과 동일한 방법으로 100분 동안 수행한다. 이때의 나노기공의 전체 깊이는 10㎛가 형성되었다.Then, the second anodization process is performed for 100 minutes in the same manner as the first anodization process. At this time, the total depth of the nanopores was formed 10㎛.

도 1은 상기의 실시예에 의해 제조된 알루미늄관 표면에 대한 확대 사진을 나타낸 것으로 규칙적이고 균일한 나노기공이 형성된 것을 확인할 수 있었으며, 이에 의해 알루미늄관 표면적을 극대화할 수 있게 된다. 도 2는 상기의 실시예에 의해 제조된 알루미늄관 표면 위의 물방울 젖음 실험을 실시한 것으로, 물방울이 퍼지는 것으로 보아 초친수성을 나타냄을 확인할 수 있었으며, 이에 의해 양극산화된 금속관을 냉각을 위한 배관으로 사용할 시 내부에 흐르게 되는 냉매와의 젖음성의 향상으로 냉각효율을 극대화할 수 있게 되는 것이다.1 shows an enlarged photograph of the surface of the aluminum tube manufactured by the above embodiment, and it was confirmed that regular and uniform nanopores were formed, thereby maximizing the surface area of the aluminum tube. FIG. 2 shows that water droplets were wetted on the surface of the aluminum tube manufactured according to the above embodiment, and it was confirmed that the water droplets showed superhydrophilicity. By improving the wettability with the refrigerant flowing inside the city it will be possible to maximize the cooling efficiency.

Claims (5)

금속관 표면을 전해연마하는 제1단계와;
상기 전해연마된 금속관에 1차 양극산화공정에 의한 불규칙한 음각의 나노기공을 형성하는 제2단계와;
상기 불규칙한 음각의 나노기공으로 형성된 금속관 표면을 식각공정으로 제거하는 제3단계와;
상기 금속관 표면에 2차 양극산화공정에 의한 규칙적인 음각의 나노기공을 형성시키는 제4단계;를 포함하여 이루어지는 것을 특징으로 하는 양극산화법을 이용한 초친수성 금속관 제조방법.
A first step of electropolishing the surface of the metal tube;
A second step of forming irregular negative nanopores in the electropolished metal tube by a first anodization process;
A third step of removing the surface of the metal tube formed by the irregular negative nanopores by an etching process;
And a fourth step of forming regular intaglio nanopores on the surface of the metal tube by a secondary anodization process.
제 1항에 있어서, 상기 제1단계의 금속관은, 벌크(bulk) 전체가 하나의 동일한 재질이거나, 관 형태의 세라믹이나 금속 재료 위에 양극산화를 하고자 하는 금속층이 형성된 것을 특징으로 하는 양극산화법을 이용한 초친수성 금속관 제조방법.According to claim 1, wherein the metal tube of the first step, the bulk (bulk) is one of the same material, or a metal layer to be anodized on the ceramic or metal material in the form of a tube using an anodization method characterized in that Super hydrophilic metal tube manufacturing method. 제 2항에 있어서, 상기 금속관은 Al, Ti, Ta, Nb, V, Hf 및 W 중에 하나의 재질로 벌크로 형성되거나, 세라믹이나 금속 재료 위에 형성된 금속층이 Al, Ti, Ta, Nb, V, Hf 및 W 중에 하나의 재질로 형성된 것을 특징으로 하는 양극산화법을 이용한 초친수성 금속관 제조방법.The method of claim 2, wherein the metal tube is formed of bulk in one of Al, Ti, Ta, Nb, V, Hf and W, or the metal layer formed on a ceramic or metal material is Al, Ti, Ta, Nb, V, A method for producing a superhydrophilic metal tube using anodization, characterized in that formed of one of Hf and W. 제 1항에 있어서, 상기 양극산화공정은 전해액에 의해 이루어지되, 상기 전해액은 황산(sulfuric acid, H2SO4), 인산(phosphoric acid, H3PO4), 옥살산(oxalic acid, C2H2O4), 크롬산(chromic acid), 불산(hydrofluoric acid), 인산수소칼륨(dipotassium phosphate, K2HPO4)중에 어느 하나를 사용하거나 이들의 혼합액 중 어느 하나를 사용하는 것을 특징으로 하는 양극산화법을 이용한 초친수성 금속관 제조방법.The method of claim 1, wherein the anodization process is performed by an electrolyte solution, the electrolyte solution is sulfuric acid (sulfuric acid, H 2 SO 4 ), phosphoric acid (phosphoric acid, H 3 PO 4 ), oxalic acid, C 2 H 2 O 4 ), chromic acid, hydrofluoric acid, potassium hydrogen phosphate (dipotassium phosphate, K 2 HPO 4 ) using any one or a mixture thereof Superhydrophilic metal tube manufacturing method using. 제 1항에 있어서, 상기 양극산화공정은 전해액에 의해 이루어지되, 상기 전해액은 황산(sulfuric acid, H2SO4), 인산(phosphoric acid, H3PO4), 옥살산(oxalic acid, C2H2O4), 크롬산(chromic acid), 불산(hydrofluoric acid), 인산수소칼륨(dipotassium phosphate, K2HPO4)중에 어느 하나를 사용하거나 이들의 혼합액 중 어느 하나를 사용하는 것을 특징으로 하는 양극산화법을 이용한 초친수성 금속관 제조방법.The method of claim 1, wherein the anodization process is performed by an electrolyte solution, the electrolyte solution is sulfuric acid (sulfuric acid, H 2 SO 4 ), phosphoric acid (phosphoric acid, H 3 PO 4 ), oxalic acid, C 2 H 2 O 4 ), chromic acid, hydrofluoric acid, potassium hydrogen phosphate (dipotassium phosphate, K 2 HPO 4 ) using any one or a mixture thereof Superhydrophilic metal tube manufacturing method using.
KR1020100004718A 2010-01-19 2010-01-19 Superhydrophilic metal tube manufacturing method using aluminum anodizing KR20110085106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100004718A KR20110085106A (en) 2010-01-19 2010-01-19 Superhydrophilic metal tube manufacturing method using aluminum anodizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100004718A KR20110085106A (en) 2010-01-19 2010-01-19 Superhydrophilic metal tube manufacturing method using aluminum anodizing

Publications (1)

Publication Number Publication Date
KR20110085106A true KR20110085106A (en) 2011-07-27

Family

ID=44921949

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100004718A KR20110085106A (en) 2010-01-19 2010-01-19 Superhydrophilic metal tube manufacturing method using aluminum anodizing

Country Status (1)

Country Link
KR (1) KR20110085106A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109758789A (en) * 2019-03-05 2019-05-17 大连理工大学 A method of preparing super hydrophilic/underwater superoleophobic aluminium net
CN109913919A (en) * 2019-02-18 2019-06-21 江苏大学 A kind of processing method and device preparing micro-nano two-dimensional structure in workpiece surface
KR102176791B1 (en) * 2019-08-12 2020-11-09 동의대학교 산학협력단 Method for manufacturing aluminum anodic oxide film having pillar-on-pore structure using phosphoric acid
US10907258B1 (en) 2016-08-25 2021-02-02 Arrowhead Center, Inc. Surface modification of metals and alloys to alter wetting properties

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10907258B1 (en) 2016-08-25 2021-02-02 Arrowhead Center, Inc. Surface modification of metals and alloys to alter wetting properties
CN109913919A (en) * 2019-02-18 2019-06-21 江苏大学 A kind of processing method and device preparing micro-nano two-dimensional structure in workpiece surface
CN109913919B (en) * 2019-02-18 2020-11-20 江苏大学 Processing method and device for preparing micro-nano two-dimensional structure on surface of workpiece
CN109758789A (en) * 2019-03-05 2019-05-17 大连理工大学 A method of preparing super hydrophilic/underwater superoleophobic aluminium net
CN109758789B (en) * 2019-03-05 2021-12-03 大连理工大学 Method for preparing super-hydrophilic/underwater super-oleophobic aluminum net
KR102176791B1 (en) * 2019-08-12 2020-11-09 동의대학교 산학협력단 Method for manufacturing aluminum anodic oxide film having pillar-on-pore structure using phosphoric acid
WO2021029645A1 (en) * 2019-08-12 2021-02-18 동의대학교 산학협력단 Method for manufacturing aluminum anodized film having pillar-on-pore structure by using phosphoric acid

Similar Documents

Publication Publication Date Title
Gao et al. Diamond-based supercapacitors: realization and properties
Leontiev et al. Complex influence of temperature on oxalic acid anodizing of aluminium
Stępniowski et al. The influence of electrolyte composition on the growth of nanoporous anodic alumina
CN112609218B (en) Preparation method of super-hydrophobic micro-arc oxidation composite film
Voon et al. Effect of temperature of oxalic acid on the fabrication of porous anodic alumina from Al-Mn alloys
KR101896266B1 (en) Ionic diode membrane comprising tapered nanopore and method for preparing thereof
CN101838835A (en) Ordered porous alumina template capable of being directly applied to electrochemical deposition and preparation method thereof
CN101851771A (en) Ordered porous alumina template capable of being directly used in electrochemical deposition and production method
KR20110085106A (en) Superhydrophilic metal tube manufacturing method using aluminum anodizing
CN113026087B (en) Preparation method of nano-microporous structure aluminum electrode foil for automobile electronics
Lv et al. Heat transfer and fouling rate at boiling on superhydrophobic surface with TiO 2 nanotube-array structure
KR101149162B1 (en) nano cilia manufacturing method and nano cilia thereby
Yue et al. Electrochemical synthesis and hydrophilicity of micro-pored aluminum foil
CN101244462B (en) Method for generating multilevel size tiny/nanostructured layer on pure titanium surface
Arurault Pilling–Bedworth ratio of thick anodic aluminium porous films prepared at high voltages in H2SO4 based electrolyte
Yavaş et al. Growth of ZnO nanoflowers: effects of anodization time and substrate roughness on structural, morphological, and wetting properties
Ni et al. Quantitative analysis of the volume expansion of nanotubes during constant voltage anodization
Brzózka et al. Recent trends in synthesis of nanoporous anodic aluminum oxides
Wang et al. A controllable fabrication strategy of anodic oxides film with dense, nano-porous and open-top ordered porous arrays morphology on 304 stainless steel in fluoride-based ethylene glycol electrolyte
JP5534951B2 (en) Heat exchanger processing method and heat exchanger
Yang et al. Advances of the research evolution on aluminum electrochemical anodic oxidation technology
KR102179028B1 (en) Method for superhydrophobic surface of the outer panel or component for heat exchanger
Kim et al. Long-lasting superhydrophilic and instant hydrophobic micropatterned stainless steel surface by thermally-induced surface layers
Li et al. Fabrication of porous alumina templates with a large-scale tunable interpore distance in a H 2 C 2 O 4-C 2 H 5 OH-H 2 O solution
KR20180040743A (en) Ionic diode membrane comprising branched nanopore and method for preparing thereof

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application