KR20110080324A - Electrolyte for lithium-ion battery and lithium-ion battery comprising the same - Google Patents

Electrolyte for lithium-ion battery and lithium-ion battery comprising the same Download PDF

Info

Publication number
KR20110080324A
KR20110080324A KR1020100000495A KR20100000495A KR20110080324A KR 20110080324 A KR20110080324 A KR 20110080324A KR 1020100000495 A KR1020100000495 A KR 1020100000495A KR 20100000495 A KR20100000495 A KR 20100000495A KR 20110080324 A KR20110080324 A KR 20110080324A
Authority
KR
South Korea
Prior art keywords
electrolyte
lithium
ion battery
carbonate
lithium ion
Prior art date
Application number
KR1020100000495A
Other languages
Korean (ko)
Other versions
KR101130726B1 (en
Inventor
김정구
박인준
웬장남
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020100000495A priority Critical patent/KR101130726B1/en
Publication of KR20110080324A publication Critical patent/KR20110080324A/en
Application granted granted Critical
Publication of KR101130726B1 publication Critical patent/KR101130726B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: An electrolyte for a lithium-ion battery is provided to enhance thermal stability and electrochemical oxidation stability of electrolyte and to improve rate characteristics and cycleability. CONSTITUTION: An electrolyte for a lithium-ion battery comprises lithium salts, organic solvents and cyclohexyl diphenyl phosphate as additives. The cyclohexyl diphenyl phosphate is included in the amount of 0.1-5 parts by weight based on 100.0 parts by weight of electrolyte. The lithium-ion battery includes a positive electrode(4) including a positive electrode active material, a negative electrode(2) including a negative electrode active material, a separator which is combined between the positive and negative electrodes and prevents the short circuit, and the electrolyte.

Description

리튬이온전지용 전해액 및 그를 포함하는 리튬이온전지{ELECTROLYTE FOR LITHIUM-ION BATTERY AND LITHIUM-ION BATTERY COMPRISING THE SAME}ELECTROLYTE FOR LITHIUM-ION BATTERY AND LITHIUM-ION BATTERY COMPRISING THE SAME

리튬염; 유기용매; 및 첨가제로서 시클로헥실 디페닐 포스페이트(Cyclohexyl diphenyl phosphate)를 포함하는 리튬이온전지용 전해액 및 그를 포함하는 리튬이온전지에 관한 것이다. Lithium salts; Organic solvents; And it relates to a lithium ion battery electrolyte containing a cyclohexyl diphenyl phosphate as an additive and a lithium ion battery comprising the same.

리튬이온전지는 주로 휴대폰과 노트북에 사용되며, 디지털 카메라, 캠코더 등 휴대용 전자기기에도 사용되고 있다. 리튬이온전지는 3.6 V 이상의 높은 작동 전압과 높은 에너지밀도를 가지고 있어 그 사용이 급속하게 신장되고 있는 추세이다. 또한 대용량·고출력 리튬이온전지의 응용은 하이브리드 전기자동차, 전기자동차, 로봇 분야, 우주 및 항공분야 등으로 확대되고 있으며 이에 대한 활발한 연구가 진행 중에 있다. Li-ion batteries are mainly used in mobile phones and laptops, and are also used in portable electronic devices such as digital cameras and camcorders. Li-ion batteries have a high operating voltage and a high energy density of 3.6 V or higher, and their use is rapidly expanding. In addition, the application of large-capacity and high-output lithium-ion batteries has been expanded to hybrid electric vehicles, electric vehicles, robots, space and aviation, and active research is being conducted.

리튬이온전지는 리튬 이온(Li+)이 충전 시에는 양극에서 음극으로, 방전 시에는 음극에서 양극으로 이동하면서 전기를 생성하는 작동 원리를 가지고 있다. 리튬이온전지는 산화제인 양극활물질을 포함하는 양극(cathode), 환원제인 음극 활물질을 포함하는 음극(anode), 리튬 이온의 이온전도에 의해 산화/환원반응을 가능하게 하는 전해질(electrolyte), 이들 사이에 양극과 음극이 직접 접촉하는 것을 막는 세퍼레이터(separator)로 구성된다.Lithium ion batteries have an operating principle of generating electricity while lithium ions (Li + ) are charged from the anode to the cathode when charged and from the cathode to the cathode when discharged. A lithium ion battery includes a cathode including a cathode active material as an oxidizing agent, an anode including a cathode active material as a reducing agent, an electrolyte for enabling oxidation / reduction reaction by ion conduction of lithium ions, and a space between them. It consists of a separator which prevents the positive electrode and the negative electrode from directly contacting each other.

현재 리튬이온전지용 유기용매의 가장 큰 문제점 중 하나는 낮은 안전성이다. 리튬이온전지에 사용되는 유기용매는 가연성 물질이기 때문에 전해액의 발화점 이상의 높은 온도에서 보관되거나 과충전이 될 경우 폭발 또는 발화의 위험성을 가지고 있다. 리튬이온전지의 과충전 시 양극에서는 리튬이 과잉 탈리되고, 음극에서는 리튬이 과잉 삽입되어 양극 및 음극이 모두 열역학적으로 불안정해져 분해가 일어나며 급격하게 발열반응이 일어난다. 리튬이온전지의 발화메커니즘은 초기에 전극과 전해액 사이의 계면(solid-electrolyte interphase, SEI)의 분해로부터 시작하여 전해액의 분해, 음극의 분해, 양극의 분해가 연쇄적으로 일어나는 열폭주현상(thermal runaway)으로 나타나게 된다.Currently, one of the biggest problems of the organic solvent for lithium ion batteries is low safety. Since the organic solvent used in the lithium ion battery is a flammable material, there is a risk of explosion or ignition when stored at a high temperature above the ignition point of the electrolyte or overcharged. When the lithium ion battery is overcharged, lithium is excessively desorbed at the positive electrode, and lithium is excessively inserted at the negative electrode, so that both the positive electrode and the negative electrode are thermodynamically unstable, so that decomposition occurs and exothermic reactions occur rapidly. The ignition mechanism of Li-ion battery begins with the decomposition of the solid-electrolyte interphase (SEI) at the beginning, followed by thermal runaway in which the decomposition of the electrolyte, the decomposition of the cathode, and the decomposition of the anode occur in series. Will be displayed as).

플라스틱 난연제로 사용되어온 TMP(trimethyl phosphate), TEP(triethyl phosphate)가 리튬 이차전지에 초기 적용된 이래 TBP(tributhyl phosphate), HMPN(hexamethoxycyclotriphosphazene), TTFP{tris(2,2,2-trifluoroethyl) phosphite} 등 지속적인 리튬이온전지용 난연성 첨가제에 관한 연구가 문헌에 발표되고 있다. 하지만, 이들 난연성 첨가제는 TTFP 등 소수를 제외하고는 대부분 난연 효과를 제공하지만 전해질의 이온전도성 및 전지의 가역성 열화 등으로 인하여 충전-방전 사이클 특성 감축 등 전지의 성능 저하를 가져오는 문제점이 있다. TTFP 또한 많은 양의 첨가제(20 중량% 이상)를 부가해야 하는 문제점이 있다. Trimethyl phosphate (TMP), triethyl phosphate (TEP), which has been used as a plastic flame retardant, has been applied to lithium secondary batteries since its initial application. Ongoing studies on flame retardant additives for lithium ion batteries have been published in the literature. However, these flame retardant additives provide most flame retardant effects except for a few such as TTFP, but there is a problem that the performance of the battery is reduced, such as reduction of charge-discharge cycle characteristics due to ion conductivity of the electrolyte and reversible deterioration of the battery. TTFP also has the problem of adding a large amount of additives (20% by weight or more).

이러한 문제를 해결하기 위하여 전해액에 각종 첨가제를 부가하는 기술 개발이 진행되고 있다. 그 예로, 미국특허 US 2003/0157413A1에서 TPP(triphenyl phosphate) + DMP(diphenyl monobutyl phosphate) + VEC(vinyl ethylene carbonate)를 포함하는 전해액은 전지의 안전성 향상뿐만 아니라, 사이클 성능 향상 등 전지성능도 향상되는 방법을 제시하고 있다. 국내 등록특허 10-0693288에서는 naphtoyl chloride + divinyl adipate + ethoxy ethyl phosphate을 혼합 첨가하여 전지의 과충전을 억제시키는 방법을 제안하였다. 국내 등록특허 10-0585947에서는 trimethylsilyl borate와 trimethylsilyl phosphate를 혼합 첨가하여 고율(high C-rate)에서 전지성능을 향상시키는 방법을 제안하였다. 하지만 이들 첨가제를 포함한 전해액은 첨가제 성분이 2성분 또는 3성분을 포함하는 것으로서 전지의 난연 효과와 전지성능 향상을 제시하고 있다. 또한 전지성능 향상을 위하여 특정 화합물을 전해액에 첨가하는 경우에도 대부분 전지성능 중 일부 항목의 성능 향상은 기대할 수 있으나, 다른 항목의 성능을 오히려 감소시키게 되는 등의 문제점이 있다.In order to solve such a problem, the development of a technology for adding various additives to the electrolyte. For example, in US 2003 / 0157413A1, an electrolyte solution containing triphenyl phosphate (TPP) + diphenyl monobutyl phosphate (DMP) + vinyl ethylene carbonate (VEC) may not only improve battery safety but also improve battery performance such as cycle performance. Here's how. In Korean Patent Registration 10-0693288, a method of suppressing overcharging of a battery by adding a mixture of naphtoyl chloride + divinyl adipate + ethoxy ethyl phosphate was proposed. In Korea Patent Registration 10-0585947 trimethylsilyl borate and trimethylsilyl phosphate by adding a mixed method to improve the battery performance at a high (rate). However, the electrolyte solution containing these additives is an additive component containing two or three components, suggesting the flame retardant effect and battery performance improvement of the battery. In addition, even when a specific compound is added to the electrolyte to improve battery performance, most of the battery performance can be expected to improve the performance of some items, there is a problem such as to reduce the performance of other items rather.

이에 본 발명은 상기 종래 기술의 제반 문제점을 해결하기 위해, 전해질의 열적 안정성 및 전기화학적 산화 안정성이 증가되며, 또한 전지의 율특성, 사이클 특성 등의 전기화학적 특성도 우수한 리튬이온전지용 전해액을 제공하고자 한다. Accordingly, the present invention is to solve the problems of the prior art, to increase the thermal stability and electrochemical oxidation stability of the electrolyte, and also to provide an electrolyte solution for lithium ion battery excellent in electrochemical properties such as battery rate characteristics, cycle characteristics do.

본 발명은 리튬염; 유기용매; 및 첨가제로서 시클로헥실 디페닐 포스페이트(Cyclohexyl diphenyl phosphate)를 포함하는 리튬이온전지용 전해액 및 그를 포함하는 리튬이온전지를 제공한다. The present invention is a lithium salt; Organic solvents; And it provides a lithium ion battery electrolyte containing a cyclohexyl diphenyl phosphate (Cyclohexyl diphenyl phosphate) as an additive and a lithium ion battery comprising the same.

본 발명의 전해액에서 난연성 첨가제로서 사용된 시클로헥실 디페닐 포스페이트는 끓는점이 409.4℃이며 인화점이 214.9℃인 포스페이트 산 화합물이다. 하기 실시예에서 확인할 수 있는 바와 같이, 리튬염 및 유기용매를 포함하는 기본 전해액에 난연성 첨가제로서 시클로헥실 디페닐 포스페이트를 첨가하는 경우, 전해질의 열적 안정성 및 전기화학적 산화 안정성이 증가되며, 또한 전지의 율특성, 사이클 특성 등의 전기화학적 특성도 우수해진다. 특히, 종래의 난연성 첨가제로서 이용되었던 TPP(triphenyl phosphate)와 TTFP[tris(2,2,2-trifluoroethyl)phosphite]를 기본 전해액 100 중량부에 대해 각각 5 중량부와 20 중량부의 비율로 첨가한 전해액과 비교한 결과, 이들 전해액에 비해 소량의 첨가제를 사용하고도 전해질의 열적 안정성 및 전기화학적 산화 안정성이 증가하며, 전지의 전기화학적 특성 또한 우수해짐을 확인하였다.Cyclohexyl diphenyl phosphate used as flame retardant additive in the electrolyte of the present invention is a phosphate acid compound having a boiling point of 409.4 ° C. and a flash point of 214.9 ° C. As can be seen in the following examples, when cyclohexyl diphenyl phosphate is added as a flame retardant additive to a basic electrolyte solution containing a lithium salt and an organic solvent, the thermal stability and the electrochemical oxidation stability of the electrolyte are also increased. Electrochemical properties such as rate characteristics and cycle characteristics also become excellent. In particular, TPP (triphenyl phosphate) and TTFP [tris (2,2,2-trifluoroethyl) phosphite], which were used as a flame retardant additive, were added in an amount of 5 parts by weight and 20 parts by weight with respect to 100 parts by weight of the basic electrolyte, respectively. As a result, it was confirmed that the thermal stability and the electrochemical oxidation stability of the electrolyte were increased and the electrochemical characteristics of the battery were also improved even when using a small amount of additives compared to these electrolytes.

한 구체예에서, 상기 시클로헥실 디페닐 포스페이트는 이에 제한되는 것은 아니나, 전해액 100 중량부에 대하여 0.1 내지 5 중량부로 포함되는 것이 바람직하다. 시클로헥실 디페닐 포스페이트의 첨가량이 0.1 중량부 미만이면 전해액의 난연효과 및 열안정성을 부여할 수 없기 어렵고, 5중량부를 초과하는 경우에는 전해액의 난연 효과 및 열 안정성은 높아지나 전지성능이 저하될 수 있기 때문이다. 시클로헥실 디페닐 포스페이트는 리튬염을 포함하는 유기용매에 첨가된다. In one embodiment, the cyclohexyl diphenyl phosphate is not limited thereto, but is preferably included in 0.1 to 5 parts by weight based on 100 parts by weight of the electrolyte. If the added amount of cyclohexyl diphenyl phosphate is less than 0.1 part by weight, it is difficult to impart flame retardant effect and thermal stability of the electrolyte solution, and when it exceeds 5 parts by weight, the flame retardant effect and thermal stability of the electrolyte solution may be increased, but battery performance may be reduced. Because there is. Cyclohexyl diphenyl phosphate is added to the organic solvent containing the lithium salt.

본 발명의 전해액에 포함되는 리튬염은 리튬이온전지에서 사용되는 임의의 리튬염을 사용할 수 있으며, 이에 대해서는 당업계에 잘 알려져 있다. 이에 제한되는 것은 아니나, 한 구체예에서, 상기 리튬염은 LiPF6, LiBF4, LiClO4, LiCF3SO3, LiC(SO2CF3)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiAsF6, LiSiF6 및 LiCH(CF3SO2)2으로 구성된 군으로부터 선택되는 하나 이상의 리튬염일 수 있다. Lithium salt contained in the electrolyte of the present invention may be used any lithium salt used in the lithium ion battery, which is well known in the art. In one embodiment, the lithium salt is not limited to LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiN (CF 3 SO 2 ) 2, LiN (C At least one lithium salt selected from the group consisting of 2 F 5 SO 2 ) 2 , LiAsF 6 , LiSiF 6, and LiCH (CF 3 SO 2 ) 2 .

본 발명의 전해액에 포함되는 유기용매 또한 리튬이온전지에서 사용되는 것으로 공지된 유기용매라면 어떠한 것이든 사용가능하다. 한 구체예에서, 상기 유기용매는 카보네이트계, 에스테르계, 에테르계 및 케톤계로 구성된 군으로부터 선택되는 하나 이상의 용매 또는 이들의 혼합물일 수 있다. 예를 들어, 상기 유기용매는 에틸렌 카보네이트(EC), 에틸메틸카보네이트(EMC), 디메틸카보네이트(DMC), 트리에틸렌카보네이트(TEC), 이소부틸렌카보테이트(IBC), 프로필렌 카보네이트(PC), 디에틸카보네이트(DEC) 및 플루오르에틸렌 카보네이트(FEC)로 구성된 군으로부터 선택되는 하나 이상의 카보네이트계 유기용매 또는 이들의 혼합물일 수 있다. 예컨대, EC/EMC, EC/DMC/EMC, EC/EMC/DEC, EC/DMC/EMC/PC 등의 혼합물이 전해질 내에 포함되는 유기용매로서 사용될 수 있다. The organic solvent included in the electrolyte of the present invention may also be used as long as it is an organic solvent known to be used in a lithium ion battery. In one embodiment, the organic solvent may be one or more solvents or mixtures thereof selected from the group consisting of carbonate-based, ester-based, ether-based and ketone-based. For example, the organic solvent is ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), triethylene carbonate (TEC), isobutylene carbonate (IBC), propylene carbonate (PC), di One or more carbonate-based organic solvents selected from the group consisting of ethyl carbonate (DEC) and fluoroethylene carbonate (FEC) or mixtures thereof. For example, a mixture of EC / EMC, EC / DMC / EMC, EC / EMC / DEC, EC / DMC / EMC / PC and the like can be used as the organic solvent contained in the electrolyte.

본 발명은 또한 상기 리튬이온전지용 전해액을 포함하는 리튬이온전지를 제공한다. 본 발명의 리튬이온전지는 상기 리튬이온전지용 전해액을 사용하는 것 이외에는 당업계에 공지된 임의의 리튬이온전지의 구성을 취할 수 있다. The present invention also provides a lithium ion battery comprising the electrolyte solution for the lithium ion battery. The lithium ion battery of the present invention may take the configuration of any lithium ion battery known in the art, except for using the lithium ion battery electrolyte.

한 구체예에서, 상기 리튬이온전지는In one embodiment, the lithium ion battery

양극활물질을 포함하는 양극; 음극활물질을 포함하는 음극; 상기 양극 및 음극 사이에서 결합되어 단락을 방지하는 세퍼레이터; 및 상기 리튬이온전지용 전해액을 포함한다.A positive electrode including a positive electrode active material; A negative electrode including a negative electrode active material; A separator coupled between the positive electrode and the negative electrode to prevent a short circuit; And the electrolyte for the lithium ion battery.

한 구체예에서, 양극 내에 포함되는 상기 양극 활물질은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, V2O5, LiFePO4 및 LiNixCoyMnzO2로 구성된 군으로부터 선택되는 것일 수 있다(여기에서, x, y 및 z는 각각 0이상 1미만이며, x, y 및 z의 합은 1이다.In one embodiment, the positive electrode active material included in the positive electrode is selected from the group consisting of LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , V 2 O 5 , LiFePO 4 and LiNi x Co y Mn z O 2 Where x, y and z are each greater than 0 and less than 1, and the sum of x, y and z is 1.

한 구체예에서, 음극 내에 포함되는 상기 음극 활물질은 결정질 또는 비정질의 탄소, 탄소 복합체의 탄소계 음극 활물질, 탄소 섬유, 산화 주석 화합물, 리튬 금속 및 리튬 합금으로 구성된 군으로부터 선택되는 것일 수 있다. In one embodiment, the negative electrode active material included in the negative electrode may be selected from the group consisting of crystalline or amorphous carbon, carbon-based negative electrode active material of carbon composite, carbon fiber, tin oxide compound, lithium metal and lithium alloy.

또한, 한 구체예에서, 상기 세퍼레이터는 폴리에틸렌, 폴리프로필렌 또는 폴리올레핀의 고분자막 또는 이들의 다중막, 미세다공성 필름, 직포 또는 부직포일 수 있다. In addition, in one embodiment, the separator may be a polymer film of polyethylene, polypropylene or polyolefin or a multilayer film thereof, a microporous film, a woven fabric or a nonwoven fabric.

하기 실시예에서는, 에틸렌 카보네이트(EC)와 에틸 메틸 카보네이트(EMC)를 4:6의 부피 비율로 혼합한 용매에 전해질 염으로서 LiPF6를 1.15M 용해시킨 것을 기본 전해액으로 하고 이 기본 전해액 100 중량부에 대하여 난연성 첨가제로서 시클로헥실 디페닐 포스페이트를 1 중량부 첨가하여 본 발명에 따른 리튬이온전지용 전해액을 제조하였다. In the following example, 1.15 M of LiPF 6 dissolved as an electrolyte salt in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 4: 6 was used as a basic electrolyte solution. 1 part by weight of cyclohexyl diphenyl phosphate was added as a flame retardant additive to prepare a lithium ion battery electrolyte according to the present invention.

또한 상기 전해액을 포함하는 리튬이온전지의 제조를 위해, Li(Ni1/3, Mn1/3, Co1/3)O2를 양극활물질로, 결착제로는 PVDF (polyvinylidene difluoride)를 사용하였고, 도전제로는 Super P black을 사용하여 양극을 구성하였다. 음극활물질로는 MCMB(mesocarbon microbeads)를, 결착제로는 PVDF를 사용하였고, 도전제로는 Super P black을 사용하여 음극을 구성하였다. 양극과 음극 사이에 세퍼레이터를 삽입하여 전극 조립체를 만든 후, 제조된 전극 조립체를 케이스 안에 넣고, 본 발명의 리튬이온전지용 전해액을 주입함으로써 리튬이온전지를 제조하였다. In addition, in order to manufacture a lithium ion battery including the electrolyte, Li (Ni 1/3 , Mn 1/3 , Co 1/3 ) O 2 as a cathode active material, PVDF (polyvinylidene difluoride) was used as a binder, Super P black was used as the conductive material. MCMB (mesocarbon microbeads) was used as a negative electrode active material, PVDF was used as a binder, and Super P black was used as a conductive material. After inserting a separator between the positive electrode and the negative electrode to make an electrode assembly, the prepared electrode assembly was placed in a case, and a lithium ion battery was prepared by injecting the lithium ion battery electrolyte of the present invention.

본 발명의 전해액을 포함하는 리튬이온전지는 리튬염 및 유기용매를 포함하는 기본 전해액이나 다른 난연성 첨가제를 포함하는 전해액을 포함하는 기존의 리튬이온전지에 비해 전해질의 난연 특성, 열적 안정성, 전기화학적 산화 안정성이 증가되며, 전지의 초기 비가역 용량이 감소된다. 또한 전지의 내부저항이 감소되고 고율특성과 충-방전 사이클 특성이 향상되는 우수한 전지 특성을 나타낸다. Lithium ion battery comprising the electrolyte of the present invention is a flame retardant characteristics, thermal stability, electrochemical oxidation of the electrolyte compared to the conventional lithium ion battery containing a base electrolyte containing a lithium salt and an organic solvent or an electrolyte containing another flame retardant additive Stability is increased and the initial irreversible capacity of the cell is reduced. In addition, it exhibits excellent battery characteristics in which the internal resistance of the battery is reduced and the high rate characteristic and the charge-discharge cycle characteristics are improved.

도 1은 본 발명의 2032 코인형 전지의 단면도이다.
도 2는 제조예 1 및 비교예 1 내지 3에서 제조한 전해액의 자기 소화 시간 (Self Extinguishing Time, SET) 분석 결과를 도시한 그래프이다.
도 3은 제조예 1 과 비교예 1 내지 3에 따른 전해액의 시차열분석법(Differential Thermal Analysis, DTA) 분석 결과를 도시한 그래프이다.
도 4는 제조예 1 과 비교예 1 내지 3에 따라 제조된 리튬이온전지의 충-방전 사이클 수명 시험 결과를 도시한 그래프이다.
도 5는 제조예 1(A)과 비교예 1(B)에 따라 제조된 리튬이온전지의 사이클 수명시험 50회 동안의 전기화학적 임피던스 (Electrochemical Impedance Spectroscopy, EIS) 시험 결과를 도시한 그래프이다.
<도면의 주요 부분에 대한 부호의 설명>
1 : 스테인리스강 케이스 2 : 음극
3 : 세퍼레이터 4 : 양극
5 : 스페이서 6 : 스프링
7 : 스테인리스강 뚜껑
1 is a cross-sectional view of a 2032 coin-type battery of the present invention.
2 is a graph showing the results of the self extinguishing time (SET) analysis of the electrolyte solution prepared in Preparation Example 1 and Comparative Examples 1 to 3.
FIG. 3 is a graph illustrating differential thermal analysis (DTA) analysis results of electrolytes according to Preparation Example 1 and Comparative Examples 1 to 3. FIG.
Figure 4 is a graph showing the charge-discharge cycle life test results of the lithium ion battery prepared according to Preparation Example 1 and Comparative Examples 1 to 3.
FIG. 5 is a graph illustrating electrochemical impedance spectroscopy (EIS) test results for 50 cycle life tests of lithium ion batteries prepared according to Preparation Example 1 (A) and Comparative Example 1 (B).
<Explanation of symbols for the main parts of the drawings>
1: stainless steel case 2: cathode
3: separator 4: anode
5: spacer 6: spring
7: stainless steel lid

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예 및 도면을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments and drawings described below in detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and those skilled in the art to which the present invention pertains. It is provided to fully inform the scope of the invention, and the invention is defined only by the scope of the claims.

[실시예][Example]

<제조예><Production Example>

제조예 1: 첨가제로서 시클로헥실 디페닐 포스페이트(CDPP)를 사용한 전해액 및 이를 포함하는 전지의 제조Preparation Example 1 Preparation of Electrolyte Solution Using Cyclohexyl Diphenyl Phosphate (CDPP) as Additive and Battery Containing the Same

(1) 전해액의 제조(1) Preparation of Electrolyte

에틸렌 카보네이트(EC)와 에틸 메틸 카보네이트(EMC)를 4:6의 부피비율로 혼합한 용매에 전해질 염으로서 LiPF6를 1.15M 용해시킨 것을 기본 전해액으로 하고, 상기 기본 전해액 100 중량부에 대해 첨가제로서 시클로헥실 디페닐 포스페이트(CDPP)를 1 중량부를 첨가하여 본 발명에 따른 리튬이온전지용 전해액을 제조하였다. 1.15 M of LiPF 6 dissolved as an electrolyte salt in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 4: 6 was used as a base electrolyte, and was added as an additive to 100 parts by weight of the base electrolyte. 1 part by weight of cyclohexyl diphenyl phosphate (CDPP) was added to prepare an electrolyte solution for a lithium ion battery according to the present invention.

(2) 전지의 제조(2) production of batteries

캔 직경이 20 mm, 높이 3.2 mm인 2032 코인형 전지를 제조하였다. 양극활물질로서 Li(Ni1/3Mn1/3Co1/3)O2를 사용하였다. 95:2:3의 중량비의 활물질 : 결착제(PVDF, polyvinylidene difluoride) : 도전제(Super P black)를 n-methyl 2-pyrrolidinone(NMP) 용매에 첨가하여 슬러리를 제조하였다. 상기 슬러리를 알루미늄 호일 위에 도포하고 110℃에서 12시간 건조한 후 롤 프레스로 압연하여 양극(4)을 제조하였다. 음극활물질로서, MCMB(mesocarbon microbeads)를 사용하였다. 95:3:2의 중량비로서 활물질 : 결착제(PVDF) : 도전제(Super P black)를 NMP 용매에 녹여 슬러리를 제조하였다. 상기 슬러리를 구리 집전체에 도포하고 110℃에서 12시간 건조한 후, 롤 프레스로 압연하여 음극(2)을 제조하였다. 다공성 폴리프로필렌(polypropylene) 세퍼레이터(3)를 양극(4)과 음극(2) 사이에 넣고 전해액을 함침하였다. 양극(4)과 스테인리스강 뚜껑(7)사이에 스페이서(5), 스프링(6)을 삽입하였다. 그리고 스테인리스강 케이스(1), 스테인리스강 뚜껑(7)으로 완전히 밀폐하여 2032 타입 코인형 전지를 제조하였다 (도 1).
A 2032 coin-type battery having a can diameter of 20 mm and a height of 3.2 mm was prepared. Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 was used as the positive electrode active material. A slurry was prepared by adding an active material in a weight ratio of 95: 2: 3: binder (polyvinylidene difluoride): conductive material (Super P black) to a solvent of n-methyl 2-pyrrolidinone (NMP). The slurry was applied on an aluminum foil, dried at 110 ° C. for 12 hours, and rolled by a roll press to prepare a positive electrode 4. As the negative electrode active material, MCMB (mesocarbon microbeads) was used. A slurry was prepared by dissolving an active material: binder (PVDF): conducting agent (Super P black) in an NMP solvent in a weight ratio of 95: 3: 2. The slurry was applied to a copper current collector, dried at 110 ° C. for 12 hours, and then rolled by a roll press to prepare a negative electrode 2. A porous polypropylene separator 3 was placed between the positive electrode 4 and the negative electrode 2 to impregnate the electrolyte solution. A spacer 5 and a spring 6 were inserted between the anode 4 and the stainless steel lid 7. The stainless steel case 1 and the stainless steel lid 7 were completely sealed to prepare a 2032 type coin-type battery (FIG. 1).

비교예 1: 기본 전해액 및 이를 포함하는 전지의 제조Comparative Example 1: Preparation of Basic Electrolyte and Battery Containing the Same

에틸렌 카보네이트(EC)와 에틸 메틸 카보네이트(EMC)를 4:6의 부피비율로 혼합한 용매에 전해질 염으로서 LiPF6를 1.15M 용해시켜 기본 전해액을 제조하고, 이를 이용하여 상기 제조예 1과 동일하게 전지를 제조하였다.
A basic electrolyte solution was prepared by dissolving 1.15 M of LiPF 6 as an electrolyte salt in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 4: 6, using the same method as in Preparation Example 1 above. The battery was prepared.

비교예 2: 첨가제로서 트리페닐 포스페이트(TPP)를 사용한 전해액 및 이를 포함하는 전지의 제조Comparative Example 2: Preparation of Electrolyte Solution Using Triphenyl Phosphate (TPP) as Additive and Battery Comprising the Same

상기 기본 전해액 100 중량부에 대해 첨가제로서 트리페닐 포스페이트(TPP)를 5 중량부로 사용한 것을 제외하고는 상기 제조예 1과 동일하게 전해액 및 전지를 제조하였다.
An electrolyte solution and a battery were manufactured in the same manner as in Preparation Example 1, except that 5 parts by weight of triphenyl phosphate (TPP) was used as an additive based on 100 parts by weight of the basic electrolyte solution.

비교예 3: 첨가제로서 (2,2,2-트리플루오르에틸) 포스페이트(TTFP)를 사용한 전해액 및 이를 포함하는 전지의 제조Comparative Example 3: Preparation of Electrolyte Solution Using (2,2,2-Trifluoroethyl) Phosphate (TTFP) as Additive and Battery Comprising the Same

상기 기본 전해액 100 중량부에 대해 첨가제로서 트리스 (2,2,2-트리플루오르에틸) 포스페이트(TTFP)를 20 중량부로 사용한 것을 제외하고는 상기 제조예 1과 동일하게 전해액 및 전지를 제조하였다.
An electrolyte solution and a battery were manufactured in the same manner as in Preparation Example 1, except that 20 parts by weight of tris (2,2,2-trifluoroethyl) phosphate (TTFP) was used as an additive based on 100 parts by weight of the basic electrolyte solution.

<실험예>Experimental Example

실험예 1: 자기 소화 시간(Self Extinguishing Time, SET)의 측정Experimental Example 1 Measurement of Self Extinguishing Time (SET)

상기 제조예 1 및 비교예 1 내지 3에서 제조한 전해액에 대해 자기 소화 시간(SET)을 측정하고 그 결과를 도 2 에 나타냈다. The self-extinguishing time (SET) of the electrolyte solutions prepared in Preparation Example 1 and Comparative Examples 1 to 3 was measured, and the results are shown in FIG. 2.

자기 소화 시간은 발화하지 않는 유리섬유에 0.1~0.2 g의 전해액을 흡수시킨 후 연소시켜 스스로 소화되는 시간을 측정한 것으로, 단위 질량 당 시간으로 나타내어 표기하였다. 시험 결과 전해액 1 g 의 연소시간은 시클로헥실 디페닐 포스페이트 첨가제를 첨가하지 않은 기본 전해액으로 구성된 비교예 1 경우 111.56초로 나타났으며, 본 발명의 전해액으로 구성된 제조예 1의 경우 106.52초로 연소시간이 감소한 결과가 나타났다. 비교예 2는 107.38초, 비교예 3은 4.55초로 나타났다. 비교예 3의 경우는 제조예 1 및 비교예 2에 비해 많은 20중량부의 TTFP가 첨가되었으며, TTPF 분자에는 물질의 연소를 일으키는 산소 및 수소 라디칼을 흡착하는 라디칼 스케빈저 (Radical scavenger)가 phosphate 이외에 fluoride도 포함되어 있기 때문에 TTFP에서 가장 우수한 결과가 나타났다.
The self-extinguishing time was measured by extinguishing self-extinguishing by absorbing 0.1 to 0.2 g of electrolyte solution into a glass fiber that does not ignite, and expressed as time per unit mass. As a result of the test, the burning time of 1 g of electrolyte was 111.56 seconds in Comparative Example 1 consisting of the basic electrolyte solution without the cyclohexyl diphenyl phosphate additive, and the burning time was reduced to 106.52 seconds in Preparation Example 1 consisting of the electrolyte solution of the present invention. The results were shown. Comparative Example 2 was found to be 107.38 seconds and Comparative Example 3 was 4.55 seconds. In Comparative Example 3, 20 parts by weight of TTFP was added in comparison with Preparation Example 1 and Comparative Example 2, and a radical scavenger that adsorbs oxygen and hydrogen radicals causing combustion of materials was added to the TTPF molecule in addition to phosphate. Since fluoride is also included, TTFP has the best results.

실험예 2: 전해액의 열 분석Experimental Example 2: Thermal Analysis of Electrolyte

상기 제조예 1 과 비교예 1 내지 3 에서 제조한 전해액에 대해 시차열분석법 (DTA)을 이용하여 열분해 반응시험을 수행하고 그 결과를 하기 표 1 및 도 3에 나타냈다. Pyrolysis reaction tests were performed on the electrolyte solutions prepared in Preparation Example 1 and Comparative Examples 1 to 3 using differential thermal analysis (DTA), and the results are shown in Table 1 and FIG. 3.

제조예Manufacturing example 전해액Electrolyte 첨가제additive 반응온도(℃)Reaction temperature (℃) 산화전위(V)Oxidation potential (V) 제조예 1Preparation Example 1 1.15M LiPF6/EC:EMC (4:6부피%)1.15M LiPF 6 / EC: EMC (4: 6% by volume) CDPP 1 중량부CDPP 1 part by weight 230.90230.90 5.405.40 비교예 1Comparative Example 1 1.15M LiPF6/EC:EMC (4:6부피%)1.15M LiPF 6 / EC: EMC (4: 6% by volume) -- 211.05211.05 4.534.53 비교예 2Comparative Example 2 1.15M LiPF6/EC:EMC (4:6부피%)1.15M LiPF 6 / EC: EMC (4: 6% by volume) TPP 5 중량부TPP 5 parts by weight 210.63210.63 -- 비교예 3Comparative Example 3 1.15M LiPF6/EC:EMC (4:6부피%)1.15M LiPF 6 / EC: EMC (4: 6% by volume) TTFP 20 중량부TTFP 20 parts by weight 195.91195.91 --

표 1과 도 3에 나타난 바와 같이, 시클로헥실 디페닐 포스페이트 첨가제를 첨가하지 않은 기본 전해액으로 구성된 비교예 1의 경우 전해액의 반응 온도가 211.05℃로 나타났으며, 비교예 2는 210.63℃, 비교예 3은 195.91℃로 나타났다. 본 발명의 전해액으로 구성된 제조예 1의 경우 적은 양의 첨가제를 사용했음에도 불구하고 반응 온도가 230.90℃로 가장 높게 나타났다.
As shown in Table 1 and Figure 3, in Comparative Example 1 consisting of a basic electrolyte solution without the cyclohexyl diphenyl phosphate additive was added, the reaction temperature of the electrolyte was 211.05 ℃, Comparative Example 2 was 210.63 ℃, Comparative Example 3 was found to be 195.91 ° C. In the case of Preparation Example 1 consisting of the electrolytic solution of the present invention, the reaction temperature was the highest as 230.90 ° C. despite the use of a small amount of additives.

실험예 3: 전해액의 열 분석Experimental Example 3: Thermal Analysis of Electrolyte

상기 제조예 1 및 비교예 1에서 제조한 전해액에 대해 순환전류-전압법을 이용하여 전해질의 전기화학적 산화전위를 측정하고 그 결과를 표 1에 나타냈다. 표 1에 나타난 바와 같이, 시클로헥실 디페닐 포스페이트 첨가제를 첨가하지 않은 기본 전해액으로 구성된 비교예 1 경우 전해액의 산화전위가 4.53 V(Li/Li+)로 나타났으며, 본 발명의 전해액으로 구성된 제조예 1의 경우 산화전위가 5.40 V(Li/Li+)로 높게 나타났다.
The electrochemical oxidation potential of the electrolyte was measured using the circulating current-voltage method for the electrolyte solutions prepared in Preparation Example 1 and Comparative Example 1, and the results are shown in Table 1. As shown in Table 1, in Comparative Example 1 composed of a basic electrolyte solution without the cyclohexyl diphenyl phosphate additive, the oxidation potential of the electrolyte solution was found to be 4.53 V (Li / Li + ), and the electrolyte solution of the present invention was prepared. In Example 1, the oxidation potential was high as 5.40 V (Li / Li + ).

실험예 4: 초기 충·방전 용량 시험Experimental Example 4: Initial Charge / Discharge Capacity Test

상기 제조예 1 과 비교예 1 내지3에서 제조한 전지를 제조 후 첫 충-방전 시험을 수행하고 그 결과를 표 2에 나타냈다. 표 2에 나타난 바와 같이, 시클로헥실 디페닐 포스페이트 첨가제를 첨가하지 않은 비교예 1의 전지 경우 80.60% 의 초기 충방전 효율을 보였으나, 본 발명의 전해액을 포함하는 제조예 1의 전지 경우 82.58% 의 향상된 초기 충-방전 효율을 보였다. 반면, 비교예 1은 77.84%로 다소 낮은 값이 나타났으며, 비교예 2는 83.39%의 값을 나타냈다.The first charge-discharge test was performed after the batteries prepared in Preparation Example 1 and Comparative Examples 1 to 3, and the results are shown in Table 2. As shown in Table 2, the battery of Comparative Example 1 without the cyclohexyl diphenyl phosphate additive showed an initial charge / discharge efficiency of 80.60%, but 82.58% of the Battery of Preparation Example 1 containing the electrolyte solution of the present invention. Improved initial charge-discharge efficiency. On the other hand, Comparative Example 1 showed a somewhat low value of 77.84%, Comparative Example 2 showed a value of 83.39%.

제조예Manufacturing example 초기 충전용량
(mAh/g)
Initial charge capacity
(mAh / g)
초기 방전용량
(mAh/g)
Initial discharge capacity
(mAh / g)
초기 비가역 용량
(mAh/g)
Initial irreversible capacity
(mAh / g)
초기 충·방전효율
(%)
Initial charge and discharge efficiency
(%)
제조예 1Preparation Example 1 156.71156.71 129.41129.41 27.3027.30 82.5882.58 비교예 1Comparative Example 1 157.47157.47 126.93126.93 30.5430.54 80.6080.60 비교예 2Comparative Example 2 151.43151.43 117.88117.88 33.5533.55 77.8477.84 비교예 3Comparative Example 3 157.08157.08 130.99130.99 26.0926.09 83.3983.39

실험예 5: 율 특성 시험Experimental Example 5: Rate Characteristic Test

상기 제조예 1 과 비교예 1에서 제조한 전지에 대해 율별 방전용량 시험을 수행하고 그 결과를 표 3에 나타냈다. Rate discharge capacity tests were performed on the batteries prepared in Preparation Example 1 and Comparative Example 1, and the results are shown in Table 3.

Current rateCurrent rate Current drain(mA)Current drain (mA) 율성능(Rate performance)(%) Rate performance (%) 제조예 1Preparation Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 0.1C0.1C 0.450.45 100.00100.00 100.00100.00 100.00100.00 100.00100.00 0.5C0.5C 2.252.25 96.0996.09 85.1385.13 83.2483.24 79.8279.82 1.0C1.0C 4.504.50 91.8491.84 75.1875.18 70.5570.55 60.9360.93 2.0C2.0C 9.009.00 67.4967.49 45.6445.64 51.3551.35 24.2224.22

표 3에 나타난 바와 같이, 시클로헥실 디페닐 포스페이트 첨가제를 첨가하지 않은 비교예 1의 전지는 1.0C에서 0.1C 대비 75.18% 의 율 특성을 보였으며, 제조예 1의 전지의 경우 1.0C에서 0.1C 대비 91.84% 의 높은 율 특성을 보였다. 비교예 1의 전지는 70.55%, 비교예 2의 전지는 60.93%의 율 특성을 보였다.
As shown in Table 3, the battery of Comparative Example 1 without adding the cyclohexyl diphenyl phosphate additive showed a 75.18% rate characteristic compared to 0.1C at 1.0C, and the battery of Preparation Example 1 at 0.1C at 1.0C Compared with 91.84%. The battery of Comparative Example 1 showed a rate characteristic of 70.55%, the battery of Comparative Example 2 60.93%.

실험예 6: 사이클 수명 시험Experimental Example 6: Cycle Life Test

충-방전 사이클 수명 평가를 위한 시험으로, 전지를 상온에서 1.0C(4.5 mA)로 4.25 V까지 정전류-정전압 충전을, 2.75 V까지 정전류 방전을 수행하였다. 100사이클까지 충방전을 진행하였으며, 그 그래프와 각 사이클에서의 용량유지율을 각각 도 4와 표 4에 나타내었다. As a test for charge-discharge cycle life evaluation, the cells were subjected to constant current-constant voltage charging up to 4.25 V at 1.0 C (4.5 mA) at room temperature and constant current discharge up to 2.75 V. Charging and discharging were performed up to 100 cycles, and the graphs and capacity retention rates in each cycle are shown in FIGS. 4 and 4, respectively.

제조예Manufacturing example 용량유지율 (%)Capacity maintenance rate (%) 10 cycle 후10 cycles later 100 cycle 후After 100 cycles 제조예 1Preparation Example 1 97.2497.24 90.5390.53 비교예 1Comparative Example 1 88.1988.19 61.1461.14 비교예 2Comparative Example 2 90.3190.31 65.0565.05 비교예 3Comparative Example 3 85.5285.52 60.2860.28

표 4에서 나타낸 바와 같이, 난연성 첨가제를 사용하지 않은 비교예 1에 따라 제조된 리튬이온전지의 100 사이클 후 용량유지율이 61.14%로 나타났으며, 본 발명의 전해액으로 구성된 제조예 1의 경우는 90.53%의 용량유지율로서 향상된 전지수명 특성을 확인할 수 있었다. 이는 시클로헥실 디페닐 포스페이트에 의해 형성되는 고분자 층이 충-방전 시 리튬이온의 삽입 및 탈리 시 일어나는 음극의 박리를 방지하기 때문으로 사료된다. 또한 비교예 2의 경우 65.05%, 비교예 3의 경우 60.28%의 용량유지율을 나타내었다.
As shown in Table 4, after 100 cycles of the lithium ion battery prepared according to Comparative Example 1 without using a flame retardant additive, the capacity retention rate was 61.14%, and in the case of Preparation Example 1 consisting of the electrolyte solution of the present invention, 90.53 Improved battery life characteristics were confirmed with a capacity retention rate of%. It is believed that this is because the polymer layer formed by cyclohexyl diphenyl phosphate prevents the detachment of the negative electrode that occurs during the insertion and desorption of lithium ions during charge-discharge. In addition, in Comparative Example 2, the capacity retention rate was 65.05% and Comparative Example 3 was 60.28%.

실험예 7: 내부저항 특정Experimental Example 7: Internal Resistance

초기 50회 충-방전 사이클 수명평가 동안 EIS (electrochemical impedance spectroscopy) 측정을 통해 전지 내부저항의 변화를 비교하였다. 50회 사이클 동안의 임피던스를 10회 간격으로 도 5에 나타내었으며, 전지 전체 저항값(Rcell)을 표 5에 나타내었다. 50 사이클 후 전지 내부저항(Rcell)이 제조예 1의 경우 34.98 Ω·cm2로서 비교예 1의 57.15 Ω·cm2 보다 낮은 값을 나타내었다. 이는 시클로헥실 디페닐 포스페이트에 의해 양극 및 음극 계면에서 리튬이온의 확산 속도가 증가함을 의미하며, 이에 의해 향상된 율특성 및 사이클 성능을 나타내는 것으로 판단된다.Electrochemical impedance spectroscopy (EIS) measurements were used to compare changes in cell internal resistance during the initial 50 charge-discharge cycle life assessments. The impedance for 50 cycles is shown in FIG. 5 at 10 intervals, and the overall resistance value of the cell (R cell ) is shown in Table 5. After 50 cycles, the battery internal resistance (R cell ) was 34.98 Ω · cm 2 in Preparation Example 1, which was lower than 57.15 Ω · cm 2 in Comparative Example 1. This means that the diffusion rate of lithium ions at the positive and negative electrode interfaces is increased by cyclohexyl diphenyl phosphate, and thus it is judged to exhibit improved rate characteristics and cycle performance.

제조예Manufacturing example 전지 내부저항 (Ω·cm2)Battery internal resistance (Ωcm 2 ) 1 cycle 후After 1 cycle 10 cycle 후10 cycles later 30 cycle 후After 30 cycles 50 cycle 후After 50 cycles 제조예 1Preparation Example 1 34.9234.92 35.3535.35 32.1332.13 34.9834.98 비교예 1Comparative Example 1 58.1458.14 51.1151.11 54.4154.41 57.1557.15

Claims (9)

리튬염; 유기용매; 및 첨가제로서 시클로헥실 디페닐 포스페이트(Cyclohexyl diphenyl phosphate)를 포함하는 리튬이온전지용 전해액.
Lithium salts; Organic solvents; And cyclohexyl diphenyl phosphate as an additive.
제1항에 있어서,
상기 시클로헥실 디페닐 포스페이트는 전해액 100 중량부를 기준으로 0.1 내지 5 중량부로 포함되는 것인 리튬이온전지용 전해액.
The method of claim 1,
The cyclohexyl diphenyl phosphate is based on 100 parts by weight of the electrolyte solution for lithium ion batteries will be included in 0.1 to 5 parts by weight.
제1항 또는 제2항에 있어서,
상기 리튬염은 LiPF6, LiBF4, LiClO4, LiCF3SO3, LiC(SO2CF3)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiAsF6, LiSiF6 및 LiCH(CF3SO2)2으로 구성된 군으로부터 선택되는 하나 이상의 리튬염인 리튬이온전지용 전해액.
The method according to claim 1 or 2,
The lithium salt may be LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiN (CF 3 SO 2 ) 2, LiN (C 2 F 5 SO 2 ) 2 , LiAsF 6 , An electrolyte solution for a lithium ion battery, wherein the electrolyte is at least one lithium salt selected from the group consisting of LiSiF 6 and LiCH (CF 3 SO 2 ) 2 .
제1항 또는 제2항에 있어서,
상기 유기용매는 카보네이트계, 에스테르계, 에테르계 및 케톤계로 구성된 군으로부터 선택되는 하나 이상의 용매 또는 이들의 혼합물인 리튬이온전지용 전해액.
The method according to claim 1 or 2,
The organic solvent is at least one solvent selected from the group consisting of carbonate-based, ester-based, ether-based and ketone-based or a mixture thereof.
제1항 또는 제2항에 있어서,
상기 유기용매는 에틸렌 카보네이트(EC), 에틸메틸카보네이트(EMC), 디메틸카보네이트(DMC), 트리에틸렌카보네이트(TEC), 이소부틸렌카보테이트(IBC), 프로필렌 카보네이트(PC), 디에틸카보네이트(DEC) 및 플루오르에틸렌 카보네이트(FEC)로 구성된 군으로부터 선택되는 하나 이상의 카보네이트계 유기용매 또는 이들의 혼합물인 리튬이온전지용 전해액.
The method according to claim 1 or 2,
The organic solvent is ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), triethylene carbonate (TEC), isobutylene carbonate (IBC), propylene carbonate (PC), diethyl carbonate (DEC And at least one carbonate-based organic solvent selected from the group consisting of fluoroethylene carbonate (FEC) or a mixture thereof.
양극활물질을 포함하는 양극; 음극활물질을 포함하는 음극; 상기 양극 및 음극 사이에서 결합되어 단락을 방지하는 세퍼레이터; 및 제1항 내지 제5항 중의 어느 한 항에 따른 리튬이온전지용 전해액을 포함하는 것을 특징으로 하는 리튬이온전지.
A positive electrode including a positive electrode active material; A negative electrode including a negative electrode active material; A separator coupled between the positive electrode and the negative electrode to prevent a short circuit; And a lithium ion battery comprising a lithium ion battery electrolyte according to any one of claims 1 to 5.
제6항에 있어서,
상기 양극 활물질은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, V2O5, LiFePO4 및 LiNixCoyMnzO2로 구성된 군으로부터 선택되는 것인 리튬이온전지:
여기에서, x, y 및 z는 각각 0이상 1미만이며, x, y 및 z의 합은 1이다.
The method of claim 6,
The positive electrode active material is a lithium ion battery selected from the group consisting of LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , V 2 O 5 , LiFePO 4 and LiNi x Co y Mn z O 2 :
Here, x, y and z are each 0 or more and less than 1, and the sum of x, y and z is 1.
제6항에 있어서,
상기 음극 활물질은 결정질 또는 비정질의 탄소, 탄소 복합체의 탄소계 음극 활물질, 탄소 섬유, 산화 주석 화합물, 리튬 금속 및 리튬 합금으로 구성된 군으로부터 선택되는 것인 리튬이온전지.
The method of claim 6,
The negative electrode active material is selected from the group consisting of crystalline or amorphous carbon, carbon-based negative electrode active material of carbon composite, carbon fiber, tin oxide compound, lithium metal and lithium alloy.
제6항에 있어서,
상기 세퍼레이터는 폴리에틸렌, 폴리프로필렌 또는 폴리올레핀의 고분자막 또는 이들의 다중막, 미세다공성 필름, 직포 또는 부직포인 리튬이온전지.
The method of claim 6,
The separator is a polymer film of polyethylene, polypropylene or polyolefin or a multi-film, microporous film, woven or nonwoven fabric thereof.
KR1020100000495A 2010-01-05 2010-01-05 Electrolyte for lithium-ion battery and lithium-ion battery comprising the same KR101130726B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100000495A KR101130726B1 (en) 2010-01-05 2010-01-05 Electrolyte for lithium-ion battery and lithium-ion battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100000495A KR101130726B1 (en) 2010-01-05 2010-01-05 Electrolyte for lithium-ion battery and lithium-ion battery comprising the same

Publications (2)

Publication Number Publication Date
KR20110080324A true KR20110080324A (en) 2011-07-13
KR101130726B1 KR101130726B1 (en) 2012-03-28

Family

ID=44919256

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100000495A KR101130726B1 (en) 2010-01-05 2010-01-05 Electrolyte for lithium-ion battery and lithium-ion battery comprising the same

Country Status (1)

Country Link
KR (1) KR101130726B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496739A (en) * 2011-11-14 2012-06-13 中国海洋石油总公司 Non-aqueous electrolyte manufacturing method for high-magnification charge-discharge lithium power battery
KR20190105885A (en) * 2018-03-06 2019-09-18 주식회사 엘지화학 Nonaqueous electrolyte and lithium secondary battery comprising the same
CN114421008A (en) * 2020-10-28 2022-04-29 陕西泽邦环境科技有限公司 Wettability-enhanced lithium ion battery electrolyte and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2298792C (en) * 1999-06-02 2004-04-27 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable cells
KR100670448B1 (en) * 2004-05-31 2007-01-16 삼성에스디아이 주식회사 Electrolyte for lithium ion secondary battery and Lithium ion secondary battery comprising the same
KR100863887B1 (en) 2007-06-21 2008-10-15 성균관대학교산학협력단 Organic electrolyte for lithium-ion battery and lithium-ion battery comprising the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496739A (en) * 2011-11-14 2012-06-13 中国海洋石油总公司 Non-aqueous electrolyte manufacturing method for high-magnification charge-discharge lithium power battery
KR20190105885A (en) * 2018-03-06 2019-09-18 주식회사 엘지화학 Nonaqueous electrolyte and lithium secondary battery comprising the same
EP3706229A4 (en) * 2018-03-06 2020-12-30 Lg Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery comprising same
JP2022107791A (en) * 2018-03-06 2022-07-22 エルジー エナジー ソリューション リミテッド Nonaqueous electrolyte and lithium secondary battery including the same
US11658342B2 (en) 2018-03-06 2023-05-23 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution and lithium secondary battery including the same
JP7297372B2 (en) 2018-03-06 2023-06-26 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte and lithium secondary battery containing the same
CN114421008A (en) * 2020-10-28 2022-04-29 陕西泽邦环境科技有限公司 Wettability-enhanced lithium ion battery electrolyte and application thereof

Also Published As

Publication number Publication date
KR101130726B1 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP7232359B2 (en) SO2-based electrolyte for rechargeable battery cells and rechargeable battery cells
US11177507B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
US8313866B2 (en) Non-aqueous electrolytes and electrochemical devices including the same
KR100863887B1 (en) Organic electrolyte for lithium-ion battery and lithium-ion battery comprising the same
CN102104172A (en) Electrolyte solvent for improving safety of battery and lithium secondary battery comprising the same
KR101581780B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
US11502335B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
KR20070023451A (en) Organic electrolytic solution and lithium battery employing the same
KR101298868B1 (en) Nonaqueous electrolyte and lithium-ion secondary battery using thereof
WO2016068033A1 (en) Lithium-ion secondary cell
KR20150095248A (en) Electrolyte with additive for lithium secondary battery and lithium secondary battery
KR20150029569A (en) Electrolyte solution and lithium secondary battery comprising the same
KR20200041135A (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
KR101130726B1 (en) Electrolyte for lithium-ion battery and lithium-ion battery comprising the same
KR100853615B1 (en) Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising the same
KR101625848B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP7175161B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
KR20210108300A (en) Anode pole piece and electrochemical device and electronic device comprising same
KR20080112490A (en) Organic electrolyte for lithium-ion battery and lithium-ion battery comprising the same
KR101638001B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
KR101433662B1 (en) electrolyte for lithium secondary battery and lithium secondary battery using the same
KR102501253B1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
EP4213264A1 (en) Electrolyte, secondary battery, battery module, battery pack, and electric device
KR20090107794A (en) Organic electrolyte for lithium-ion battery and lithium-ion battery comprising the same
US20240154171A1 (en) Electrolytic solution and lithium metal secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150115

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160113

Year of fee payment: 5