KR20110079484A - Methods for production of hydroxymethylfurfural using starch or raw plant extract - Google Patents

Methods for production of hydroxymethylfurfural using starch or raw plant extract Download PDF

Info

Publication number
KR20110079484A
KR20110079484A KR1020100089710A KR20100089710A KR20110079484A KR 20110079484 A KR20110079484 A KR 20110079484A KR 1020100089710 A KR1020100089710 A KR 1020100089710A KR 20100089710 A KR20100089710 A KR 20100089710A KR 20110079484 A KR20110079484 A KR 20110079484A
Authority
KR
South Korea
Prior art keywords
chloride
chromium
methylimidazolium
starch
hydroxymethylfurfural
Prior art date
Application number
KR1020100089710A
Other languages
Korean (ko)
Other versions
KR101247639B1 (en
Inventor
정정한
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Publication of KR20110079484A publication Critical patent/KR20110079484A/en
Application granted granted Critical
Publication of KR101247639B1 publication Critical patent/KR101247639B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • C07D307/50Preparation from natural products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • C07D307/44Furfuryl alcohol
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: A method for preparing hydroxymethylfurfural is provided to lower production cost and to enhance production efficiency without a special chemical process. CONSTITUTION: A method for preparing hydroxymethylfurfural comprises: a step of mixing ionic liquid, organic solvent catalyst, and metal catalyst to form a first mixture; a step of reacting the first mixture at 100-150°C for 5-20 minutes; a step of adding acid catalyst and starch to form a reactant; and a step of heating the reactant at 100-120°C for 50-100 minutes. The starch is soluble starch, corn starch, wheat starch, rice starch, potato starch, sweet potato starch, or acorn starch. The acid catalyst is oxalic acid, phosphoric acid, sulpheric acid, or hydrochloric acid. The organic solvent catalyst is ethyl acetate or maleic acid.

Description

전분 또는 식물 생체 바이오매스로부터 하이드록시메틸푸르푸랄을 생산하는 방법{Methods for production of hydroxymethylfurfural using starch or raw plant extract}Methods for production of hydroxymethylfurfural using starch or raw plant extract}

본 발명은 하이드록시메틸푸르푸랄을 생산하는 방법에 관한 것이다.The present invention relates to a process for producing hydroxymethylfurfural.

하이드록시메틸푸르푸랄 (hydroxymethylfurfural, 5-hydroxymethyl-2-furaldehyde, HMF)은 주로 다른 유용 화합물의 전구물질로 사용되는 화합물로서, 예컨대. 의약용 화합물, 내열성 폴리머 (thermo-resistant polymers) 화합물 및 복합 거대고리화합물 (complex macrocycles) 등의 합성에 필요한 전구 화합물질로서 중요성이 높은 환상 화합물이다 (ARKRVOC 2001(10: 17-54). Hydroxymethylfurfural (5-hydroxymethyl-2-furaldehyde, HMF) is a compound mainly used as a precursor of other useful compounds, for example. It is a cyclic compound of high importance as a precursor compound for the synthesis of medicinal compounds, thermo-resistant polymers compounds and complex macrocycles (ARKRVOC 2001 (10: 17-54)).

최근의 보고에 의하면 하이드록시메틸푸르푸랄이 혈구성빈혈 (sickle cell disease) 치료제로 미국 식품의약청 (FDA;Food and Drug Administration)에 의해서 허가가 났으며, 현재 한 제약회사에서는 (Xechem International, Inc) 이 물질을 원료로 한 혈구성빈혈 치료제로 개발하여 시판을 예정하고 있기 때문에 앞으로 하이드록시메틸푸르푸랄의 수요는 증가될 것으로 예상된다. 이 뿐 아니라 HMF는 티로시나아제 활성을 억제하는 항티로시나아제 (anti-tyrosinase) 활성을 나타내어, 식품의 저장성을 증가시키는 무독성 식품 첨가물의 성분으로도 사용될 수 있으며 (Phytotherapy Research, 2004, 18: 841-844), 피부 미백 효능을 갖는 화장품 성분으로 사용 가능하고, 미래의 액체 바이오 연료 물질로서 에너지 효율성이 아주 높게 평가되는 디메칠푸란 (dimethylfuran; DMF)의 원료 물질로도 이용될 수 있을 뿐 아니라, 다양한 탄수화물 유도체의 원료 물질로도 이용될 수 있고, 최근의 논문에서는 (Analytical and Bioanalytical Chemistry, 2007, 387:2801-2814) 하이드록시메틸푸르푸랄은 항암제로 개발될 수 있다는 사실이 발표되었다. 따라서 하이드록시메틸푸르푸랄의 잠재적 가치는 아주 높다.Recent reports indicate that hydroxymethylfurfural has been approved by the Food and Drug Administration (FDA) for the treatment of sickle cell disease. Currently, a pharmaceutical company (Xechem International, Inc) The company is expected to develop hydroxymethylfurfural demand in the future as it plans to develop and market it as a drug for treating anemia. In addition, HMF exhibits anti-tyrosinase activity, which inhibits tyrosinase activity, and can be used as a non-toxic food additive to increase food shelf life (Phytotherapy Research, 2004, 18: 841). -844), which can be used as a cosmetic ingredient with skin whitening efficacy and as a raw material of dimethylfuran (DMF), which is highly regarded as energy efficiency as a future liquid biofuel material, It can also be used as a raw material for various carbohydrate derivatives, and a recent paper (Analytical and Bioanalytical Chemistry, 2007, 387: 2801-2814) reported that hydroxymethylfurfural can be developed as an anticancer agent. The potential value of hydroxymethylfurfural is therefore very high.

이와 같이 다양한 효능과 유용성으로 인해 하이드록시메틸푸르푸랄의 합성에 관한 연구는 상당히 오래전부터 진행되어 왔다. 하이드록시메틸푸르푸랄의 생산에는 글루코스와 프룩토스와 같은 정제된 탄수화물이 원료로 사용되는데, 이러한 탄수화물을 정제하는 전처리 공정이 복잡하고 비용도 비쌀 뿐 아니라, 비싼 원료비용에 비해 수득률이 아주 낮아서 효율적이지 못하기 때문에 현재 실험실에서 실험용으로만 주로 생산될 뿐 산업적으로 대량생산이 이루어지지 못하는 문제점이 있다.Due to such various efficacy and usefulness, researches on the synthesis of hydroxymethylfurfural have been conducted for a long time. For the production of hydroxymethylfurfural, refined carbohydrates such as glucose and fructose are used as raw materials. The pretreatment process for refining these carbohydrates is complicated and expensive, and the yield is very low and efficient compared to expensive raw material costs. There is a problem in that mass production is not achieved industrially, but mainly produced only for experiments in the current laboratory.

한편, 최근에 들어 물질을 합성하는 화학 공정에서 가장 중요하게 요구되고 있는 두 가지 현상이 있다. 첫 번째로 요구되는 현상은 지구 온난화의 방지를 위한 온실가스의 배출을 최대한 감소시키는 화학 공정이고, 두 번째로 요구되는 현상은 화석 연료의 고갈에 대비한 지속 가능한 신재생 자원을 개발하여 이 자원을 이용하여 물질을 합성할 수 있는 공정 기술을 개발하는 것이다. On the other hand, in recent years, there are two phenomena which are most importantly required in chemical processes for synthesizing materials. The first is a chemical process that minimizes greenhouse gas emissions to prevent global warming, and the second is to develop sustainable renewable resources for fossil fuel depletion. It is to develop process technology that can synthesize material by using.

이에, 본 발명에서는 종래의 하이드록시메틸푸르푸랄을 합성시 필수적으로 요구되었던 복잡한 공정 즉, 하이드록시메틸푸르푸랄의 원료물질을 생산하는 전처리 공정과 하이드록시메틸푸르푸랄을 합성하는 공정 과정을 보다 간소하게 하여 화학공정시 동반되던 온실가스 배출을 감소시키며, 하이드록시메틸푸르푸랄의 생산시 지속적으로 생산가능하고 가격경쟁력이 있는 새로운 원료물질을 찾아 신재생 자원을 개발하고자 하며, 아울러 공정의 간소화와 저렴한 원료생산비를 통한 하이드록시메틸푸르푸랄이 대량생산을 이루고자 한다.Therefore, in the present invention, a more complicated process, which is essential for synthesizing hydroxymethylfurfural, that is, a pretreatment process for producing a raw material of hydroxymethylfurfural and a process for synthesizing hydroxymethylfurfural, are simplified. This will reduce greenhouse gas emissions associated with chemical processes, develop new and renewable resources to produce hydroxymethylfurfural continuously and produce competitively priced products. Hydroxymethylfurfural through raw material production costs will achieve mass production.

본 발명자들은 원료의 고갈 없이 지속적으로 활용 가능한 신재생 자원으로서, 종래의 하이드록시메틸푸르푸랄의 합성 원료로 사용되는 값비싼 글루코스와 프룩토스와 같은 정제된 탄수화물이 아닌, 저렴한 탄수화물 자원을 원료로 이용할 수 있는 방법을 개발하고자 노력하던 중, 본 발명의 제조방법에 따르면 전분이나 식물 생체를 전처리 공정을 거치치 않고 원료로 사용하여 하이드록시메틸푸르푸랄을 대량 합성할 수 있음을 확인하고 본 발명을 완성하였다.The present inventors use renewable carbohydrate resources, which are not refined carbohydrates such as glucose and fructose, which are used as raw materials for the synthesis of hydroxymethylfurfural. While trying to develop a method that can be used, according to the production method of the present invention confirmed that it is possible to synthesize a large amount of hydroxymethylfurfural by using starch or plant biomass as a raw material without undergoing a pretreatment step, and completed the present invention. It was.

본 발명은 The present invention

전분, 이온성액체 (ionic liquid), 산 촉매제 및 유기용매 촉매제가 포함된 반응혼합물을 가열하는 단계를 포함하는 하이드록시메틸푸르푸랄의 생산방법을 제공한다.
It provides a method for producing hydroxymethylfurfural comprising heating a reaction mixture containing starch, an ionic liquid, an acid catalyst and an organic solvent catalyst.

또한 본 발명은Also,

이온성액체, 유기용매 촉매제 및 금속 촉매제를 혼합하여 1차 혼합물을 형성하는 단계;Mixing an ionic liquid, an organic solvent catalyst, and a metal catalyst to form a primary mixture;

상기 1차 혼합물을 100 내지 150℃에서 5 내지 20분간 반응시키는 단계;Reacting the primary mixture at 100 to 150 ° C. for 5 to 20 minutes;

상기 반응물에 산 촉매제 및 전분을 첨가하여 반응혼합물을 형성하는 단계; 및Adding an acid catalyst and starch to the reactants to form a reaction mixture; And

상기 반응혼합물을 가열하는 단계를 포함하는 하이드록시메틸푸르푸랄의 생산방법을 제공한다.
It provides a method for producing hydroxymethylfurfural comprising the step of heating the reaction mixture.

또한 본 발명은 Also,

식물 생체 추출물, 이온성액체 (ionic liquid) 및 유기용매 촉매제가 포함된 반응혼합물을 가열하는 단계를 포함하는 하이드록시메틸푸르푸랄의 생산방법을 제공한다.
It provides a method for producing hydroxymethylfurfural comprising heating a reaction mixture containing a plant biological extract, an ionic liquid and an organic solvent catalyst.

또한 본 발명은Also,

이온성액체 및 금속 촉매제를 혼합하여 1차 혼합물을 형성하는 단계;Mixing the ionic liquid and the metal catalyst to form a primary mixture;

상기 1차 혼합물을 100 내지 150℃에서 5 내지 20분간 반응시키는 단계;Reacting the primary mixture at 100 to 150 ° C. for 5 to 20 minutes;

상기 반응물에 식물 생체 추출물 및 유기용매 촉매제를 첨가하여 반응혼합물을 형성하는 단계; 및Adding a plant biological extract and an organic solvent catalyst to the reactants to form a reaction mixture; And

상기 반응혼합물을 가열하는 단계를 포함하는 하이드록시메틸푸르푸랄의 생산방법을 제공한다.It provides a method for producing hydroxymethylfurfural comprising the step of heating the reaction mixture.

본 발명의 하이드록시메틸푸르푸랄의 생산방법은 녹말 또는 식물 생체 바이오매스를 원재료로 사용하여 생산단가를 낮출 수 있고, 특별한 화학공정 없이 단순한 가열공정을 사용하므로 하이드록시메틸푸르푸랄의 생산 효율성을 높일 수 있을 뿐만 아니라, 화학공정 시 문제가 되고 있는 가스배출도 감소시킬 수 있으므로 산업적 및 경제적인 가치가 높게 평가되고 있는 하이드록시메틸푸르푸랄의 대량 생산에 유용하다. 또한 본 발명은, 산업적 및 경제적인 가치가 높게 평가되고 있는 하이드록시메틸푸르푸랄의 대량 생산을 위한 기반 기술을 제공하기에, 의약, 식품, 화장품 등의 관련 산업 분야뿐만 아니라 차세대 액체 바이오에너지용 DMF의 생산 원료로 본 발명이 활용될 수 있을 것이다.The production method of hydroxymethylfurfural of the present invention can reduce the production cost by using starch or plant biomass as a raw material, and increase the production efficiency of hydroxymethylfurfural because it uses a simple heating process without a special chemical process. In addition to reducing gas emissions, which is a problem in chemical processes, it is useful for the mass production of hydroxymethylfurfural, which has high industrial and economic value. In addition, the present invention provides a base technology for mass production of hydroxymethylfurfural, which is highly regarded for its industrial and economic value, and thus, DMF for next-generation liquid bioenergy as well as related industries such as medicine, food, and cosmetics. The present invention may be utilized as a raw material for producing.

도 1은 본 발명의 전분으로부터 HMF의 합성에 있어서 산 촉매제로 사용되는 염산용액의 농도 및 반응시간에 따른 HMF의 수득율을 나타낸 그래프이다.
도 2는 본 발명의 전분으로부터 HMF의 합성에 있어서 금속 촉매제로 사용되는 염화크롬의 첨가에 따른 HMF의 수득율을 나타낸 그래프이다.
도 3은 본 발명의 전분으로부터 HMF의 합성에 있어서 유기용매 촉매제로 사용되는 에틸아세테이트의 농도별 첨가에 따른 HMF의 수득율을 나타낸 그래프이다.
도 4는 본 발명의 식물 생체 추출물로부터 HMF의 합성에 있어서 반응시간에 따른 HMF의 수득율을 나타낸 그래프이다. (GR; 돼지감자, CR; 치커리, PT; 감자, SP; 고구마, AC; 도토리, KR; 칡뿌리, MR; 카사바)
도 5는 본 발명의 식물 생체 추출물로부터 HMF의 합성에 있어서 금속 촉매제 종류별 첨가에 따른 HMF의 수득율을 나타낸 그래프이다.
도 6은 본 발명의 타피오카 생체 추출물로부터 HMF의 합성에 있어서 CrF3의 농도별 첨가에 따른 HMF의 수득율을 나타낸 그래프이다.
도 7은 본 발명의 식물 생체 추출물로부터 HMF의 합성에 있어서 식물 생체 바이오매스 농도에 따른 HMF의 수득율을 나타낸 그래프이다.
도 8은 본 발명의 식물 생체 추출물로부터 HMF의 합성에 있어서 유기용매 촉매제로 사용되는 에틸아세테이트의 농도별 첨가에 따른 HMF의 수득율을 나타낸 그래프이다.
1 is a graph showing the yield of HMF according to the concentration and the reaction time of the hydrochloric acid solution used as an acid catalyst in the synthesis of HMF from the starch of the present invention.
Figure 2 is a graph showing the yield of HMF with the addition of chromium chloride used as a metal catalyst in the synthesis of HMF from the starch of the present invention.
3 is a graph showing the yield of HMF according to the concentration of ethyl acetate used as the organic solvent catalyst in the synthesis of HMF from the starch of the present invention.
Figure 4 is a graph showing the yield of HMF according to the reaction time in the synthesis of HMF from the plant biological extract of the present invention. (GR; Pork Potato, CR; Chicory, PT; Potato, SP; Sweet Potato, AC; Acorn, KR; Root Root, MR; Cassava)
5 is a graph showing the yield of HMF according to the addition of metal catalysts in the synthesis of HMF from the plant biological extract of the present invention.
Figure 6 is a graph showing the yield of HMF according to the addition of CrF 3 concentration in the synthesis of HMF from the tapioca biological extract of the present invention.
Figure 7 is a graph showing the yield of HMF according to the concentration of plant biomass in the synthesis of HMF from the plant biological extract of the present invention.
8 is a graph showing the yield of HMF according to the concentration of ethyl acetate used as the organic solvent catalyst in the synthesis of HMF from the plant biological extract of the present invention according to the concentration.

본 발명은 The present invention

전분, 이온성액체 (ionic liquid), 산 촉매제 및 유기용매 촉매제가 포함된 반응혼합물을 가열하는 단계를 포함하는 하이드록시메틸푸르푸랄의 생산방법을 제공한다.
It provides a method for producing hydroxymethylfurfural comprising heating a reaction mixture containing starch, an ionic liquid, an acid catalyst and an organic solvent catalyst.

또한 본 발명은Also,

이온성액체, 유기용매 촉매제 및 금속 촉매제를 혼합하여 1차 혼합물을 형성하는 단계;Mixing an ionic liquid, an organic solvent catalyst, and a metal catalyst to form a primary mixture;

상기 1차 혼합물을 100 내지 150℃에서 5 내지 20분간 반응시키는 단계;Reacting the primary mixture at 100 to 150 ° C. for 5 to 20 minutes;

상기 반응물에 산 촉매제 및 전분을 첨가하여 반응혼합물을 형성하는 단계; 및Adding an acid catalyst and starch to the reactants to form a reaction mixture; And

상기 반응혼합물을 가열하는 단계를 포함하는 하이드록시메틸푸르푸랄의 생산방법을 제공한다.
It provides a method for producing hydroxymethylfurfural comprising the step of heating the reaction mixture.

본 발명의 반응혼합물을 가열하는 단계에서는 상기 반응혼합물을 100 내지 150℃에서 30 내지 120분간 가열할 수 있으며, 더욱 바람직하게는 100 내지 120℃에서 50 내지 100분 동안 가열하는 것이 좋다.In the step of heating the reaction mixture of the present invention, the reaction mixture may be heated at 100 to 150 ° C. for 30 to 120 minutes, and more preferably at 100 to 120 ° C. for 50 to 100 minutes.

본 발명의 전분은 전분 그 자체로 사용하거나, 용액형태로 사용할 수 있다. 용액형태로 사용할 경우 용액의 농도는 1 내지 90% 농도일 수 있으며, 바람직하게는 5 내지 20% 농도일 수 있다.Starch of the present invention can be used as a starch itself or in the form of a solution. When used in the form of a solution, the concentration of the solution may be 1 to 90% concentration, preferably 5 to 20% concentration.

본 발명의 전분은 다양한 식물 종에서 분리된 전분일 수 있으며, 화학적 합성, 생물 공학적 합성 등 어떠한 유래의 전분이라도 사용가능하며 그 종류를 한정하지는 않는다.The starch of the present invention may be a starch separated from various plant species, and any starch derived from chemical synthesis, biotechnological synthesis, etc. may be used, and the type thereof is not limited.

본 발명의 일 구체예에서 상기 전분은 가용성 전분 (soluble starch), 옥수수 전분, 밀전분, 쌀전분, 감자전분, 고구마전분, 타피오카전분 (tapioca), 도토리전분 및 칡전분으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 타피오카전분일 수 있다.In one embodiment of the present invention, the starch is one selected from the group consisting of soluble starch, corn starch, wheat starch, rice starch, potato starch, sweet potato starch, tapioca starch, tapioca starch, acorn starch and starch starch. It may be more than, preferably tapioca starch.

상기 ‘가용성 전분’은 녹말풀에 산·알칼리 및 아밀라아제를 적용시킬 때 처음에 생기는 물질을 의미하며 따뜻한 물에 녹는 성질이 있다.The 'soluble starch' refers to a substance that is initially produced when acid, alkali and amylase are applied to starch grass, and has a property of being dissolved in warm water.

본 발명의 이온성액체는 1-에틸-3-메틸이미다졸리움 브로마이드 (1-ethyl-3-methylimidazolium bromide), 1-에틸-3-메칠이미다졸리움 테트라보레이트 (1-ethyl-3-methylimidazolium tetraborate), 1-에틸-3-메틸이미다졸리움 아세테이트 (1-ethyl-3-methylimidazolium acetate), 1-에틸-3-메틸이미다졸리움 클로라이드 (1-ethyl-3-methylimidazolium chloride), 1-부칠-3-메틸이미다졸리움 브로마이드 (1-butyl-3-methylimidazolium bromide), 1-부틸-3-메틸이미다졸리움 클로라이드 (1-butyl-3-methylimidazolium chloride), 1-헥실-3-메틸이미다졸리움 클로라이드 (1-hexyl-3-methylimidazolium chloride), 1-헥실-3-메틸이미다졸리움 브로마이드 (1-hexyl-3-methylimidazolium bromide), 1-옥틸-3-메틸이미다졸리움 클로라이드 (1-octyl-3-methylimidazolium chloride) 및 1-옥틸-3-메틸이미다졸리움 브로마이드 (1-octyl-3-methylimidazolium bromide)로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 1-옥틸-3-메틸이미다졸리움 클로라이드 (간략하게 ‘[OMIM]Cl’로 표기 함)일 수 있다.Ionic liquid of the present invention is 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium tetraborate (1-ethyl-3-methylimidazolium tetraborate ), 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methylimidazolium chloride, 1-butyl- 3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium 1-hexyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium bromide, 1-octyl-3-methylimidazolium chloride (1-octyl- 3-methylimidazolium chloride) and 1-octyl-3-methylimidazolium bromide (1-octyl-3-methylimidazolium bromide) It may be one or more, preferably 1-octyl-3-methylimidazolium chloride (abbreviated as '[OMIM] Cl').

본 발명의 산 촉매제는 옥살산 (Oxalic acid), 인산 (Phophoric acid), 황산 (Sulpheric acid) 및 염산 (Hydrochloric acid)으로 이루어진 군으로부터 선택된 1종 일 수 있으며, 바람직하게는 염산일 수 있다. 본 발명의 산 촉매제로 염산을 사용하는 경우 0.1M 내지 1M 농도로 사용할 수 있으며, 바람직하게는 0.3M 내지 0.5M 농도로 사용하는 것이 좋다. Acid catalyst of the present invention may be one selected from the group consisting of oxalic acid (Oxalic acid), phosphoric acid (Phophoric acid), sulfuric acid (Sulpheric acid) and hydrochloric acid (Hydrochloric acid), preferably may be hydrochloric acid. When hydrochloric acid is used as the acid catalyst of the present invention, it may be used at a concentration of 0.1M to 1M, preferably 0.3M to 0.5M.

본 발명의 유기용매 촉매제는 에틸아세테이트 (ethyl acetate) 또는 말릭산 (maleic acid)일 수 있으며, 바람직하게는 에틸아세테이트일 수 있다. 본 발명의 유기용매 촉매제로 에틸아세테이트를 사용하는 경우, 5 내지 30% 농도로 사용할 수 있으며, 바람직하게는 5 내지 20% 농도로 사용하는 것이 좋다.The organic solvent catalyst of the present invention may be ethyl acetate (male acetate) or maleic acid (maleic acid), preferably ethyl acetate. When ethyl acetate is used as the organic solvent catalyst of the present invention, it may be used at a concentration of 5 to 30%, preferably at a concentration of 5 to 20%.

본 발명의 금속 촉매제는 염화아연 (ZnCl2), 염화크롬Ⅱ (CrCl2), 염화크롬Ⅲ (CrCl3), 브롬화크롬 (CrBr3), 플루오르화크롬 (CrF3), 제오라이트 (Zeolite), 염화코발트(CoCl2), 염화니켈(NiCl2) 및 염화마그네슘(MgCl2)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The metal catalyst of the present invention is zinc chloride (ZnCl 2 ), chromium chloride (CrCl 2 ), chromium chloride (CrCl 3 ), chromium bromide (CrBr 3 ), chromium fluoride (CrF 3 ), zeolite, chloride It may be at least one selected from the group consisting of cobalt (CoCl 2 ), nickel chloride (NiCl 2 ) and magnesium chloride (MgCl 2 ).

또한 바람직하게는 염화크롬Ⅱ (CrCl2)의 단독 첨가, 플루오르화크롬 (CrF3)의 단독 첨가, 염화크롬Ⅱ (CrCl2)와 염화크롬Ⅲ (CrCl3)의 혼합 첨가, 염화크롬Ⅱ (CrCl2)와 브롬화크롬 (CrBr3)의 혼합 첨가, 염화크롬Ⅱ (CrCl2)와 브롬화크롬 (CrBr3)의 혼합 첨가, 염화크롬Ⅲ (CrCl3)와 플루오르화크롬 (CrF3)의 혼합 첨가 또는 브롬화크롬 (CrBr3)과 플루오르화크롬 (CrF3)의 혼합 첨가일 수 있다.Also preferably, chromium chloride (CrCl 2 ) is added alone, chromium fluoride (CrF 3 ) is added alone, chromium chloride (CrCl 2 ) and chromium chloride (CrCl 3 ) are added together, and chromium chloride (CrCl 3 ) is added. 2 ) mixed addition of chromium bromide (CrBr 3 ), mixed addition of chromium chloride II (CrCl 2 ) and chromium bromide (CrBr 3 ), mixed addition of chromium chloride III (CrCl 3 ) and chromium fluoride (CrF 3 ) or It may be a mixed addition of chromium bromide (CrBr 3 ) and chromium fluoride (CrF 3 ).

본 발명의 금속 촉매제는 본 발명의 반응혼합물 총 부피를 기준으로 1 내지 5% 농도로 첨가하는 것이 바람직하다.
The metal catalyst of the present invention is preferably added at a concentration of 1 to 5% based on the total volume of the reaction mixture of the present invention.

본 발명은 또한 The invention also

식물 생체 추출물, 이온성액체 (ionic liquid) 및 유기용매 촉매제가 포함된 반응 혼합물을 가열하는 단계를 포함하는 하이드록시메틸푸르푸랄의 생산방법을 제공한다.
It provides a method for producing hydroxymethylfurfural comprising heating a reaction mixture containing a plant biological extract, an ionic liquid and an organic solvent catalyst.

본 발명은 또한The invention also

이온성액체 및 금속 촉매제를 혼합하여 1차 혼합물을 형성하는 단계;Mixing the ionic liquid and the metal catalyst to form a primary mixture;

상기 1차 혼합물을 100 내지 150℃에서 5 내지 20분간 반응시키는 단계;Reacting the primary mixture at 100 to 150 ° C. for 5 to 20 minutes;

상기 반응물에 식물 생체 추출물 및 유기용매 촉매제를 첨가하여 반응혼합물을 형성하는 단계; 및Adding a plant biological extract and an organic solvent catalyst to the reactants to form a reaction mixture; And

상기 반응혼합물을 가열하는 단계를 포함하는 하이드록시메틸푸르푸랄의 생산방법을 제공한다.
It provides a method for producing hydroxymethylfurfural comprising the step of heating the reaction mixture.

상기 반응 혼합물가열은 바람직하게는 100 내지 150℃에서 30 내지 120분간 가열할 수 있으며, 더욱 바람직하게는 100 내지 120℃에서 50 내지 100분 동안 가열시키는 것이 좋다.The reaction mixture heating is preferably heated at 100 to 150 ℃ for 30 to 120 minutes, more preferably at 100 to 120 ℃ for 50 to 100 minutes.

본 발명에서 사용되는 식물 생체 추출물의 추출방법은 당업계에서 일반적으로 행해지는 추출법을 이용하여 추출할 수 있으며, 이러한 추출법으로는 열수추출법, 냉수추출법, 용매추출법, 초음파추출법, 초임계추출법 등이 있다.Extracting method of the plant biological extracts used in the present invention can be extracted using an extraction method that is generally performed in the art, such extraction methods include hot water extraction, cold water extraction, solvent extraction, ultrasonic extraction, supercritical extraction, etc. .

구체적으로 예를 들면, 식물 생체 추출물은 식물 생체를 건조시켜 분말형태로 제조한 후 여기에 열을 가하여 추출할 수 있으며, 또는 식물 생체를 건조시켜 분말형태로 제조한 후 추출용매를 가하여 추출물을 얻을 수 있다.Specifically, for example, the plant biological extract may be extracted by drying the plant living body in powder form and then applying heat thereto, or extracting the plant living body in powder form and adding the extraction solvent to obtain the extract. Can be.

본 발명의 일 구체예에서 상기 식물 생체 추출물은 식물 생체 바이오매스를 건조한 후 분쇄하여 건조분말화 한 후, 이렇게 분쇄된 건조분말을 산성 추출용매에 첨가한 후 반응시켜 추출물을 분리할 수 있다. 이때 상기 산성 추출용매는 옥살산 (Oxalic acid), 인산 (Phosphoric acid), 황산 (Sulpheric acid) 및 염산 (Hydrochloric acid)으로 이루어진 군으로부터 선택된 1종일 수 있으며, 바람직하게는 0.3M 내지 0.5M 농도의 염산이 좋다. 또한 추출온도는 60 내지는 100℃의 온도일 수 있으며, 바람직하게는 70 내지 80℃가 좋다. 추출시간은 60분 내지 180분일 수 있으며, 바람직하게는 100분 내지 150분이 좋다.In one embodiment of the present invention, the plant biological extract may be dried and pulverized and then dried to form a plant biomass, followed by adding the pulverized dry powder to an acidic extraction solvent and reacting to separate the extract. The acidic extraction solvent may be one selected from the group consisting of oxalic acid, phosphoric acid, sulfuric acid, and hydrochloric acid, preferably hydrochloric acid at a concentration of 0.3M to 0.5M. This is good. In addition, the extraction temperature may be a temperature of 60 to 100 ℃, preferably 70 to 80 ℃. The extraction time may be 60 minutes to 180 minutes, preferably 100 minutes to 150 minutes.

본 발명에서 ‘식물 생체 바이오매스’는 바이오매스로 사용할 수 있는 식물을 의미한다.In the present invention, the "plant biomass" refers to a plant that can be used as biomass.

본 발명에서 ‘식물 생체 추출물’은 식물 생체 바이오매스를 추출하여 얻은 추출물을 의미한다.In the present invention, the "plant biological extract" means an extract obtained by extracting the plant biomass.

본 발명에서 사용되는 식물 생체 바이오매스는 그 종류를 특별히 제한하는 것은 아니나, 돼지감자, 치커리, 감자, 고구마, 도토리, 칡뿌리 및 카사바 (manioc)로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 돼지감자일 수 있다.The plant biomass used in the present invention is not particularly limited in kind, but may be at least one selected from the group consisting of pork potatoes, chicory, potatoes, sweet potatoes, acorns, wild roots and cassava (manioc), preferably May be a pig potato.

본 발명의 이온성액체는 1-에틸-3-메틸이미다졸리움 브로마이드 (1-ethyl-3-methylimidazolium bromide), 1-에틸-3-메칠이미다졸리움 테트라보레이트 (1-ethyl-3-methylimidazolium tetraborate), 1-에틸-3-메틸이미다졸리움 아세테이트 (1-ethyl-3-methylimidazolium acetate), 1-에틸-3-메틸이미다졸리움 클로라이드 (1-ethyl-3-methylimidazolium chloride), 1-부칠-3-메틸이미다졸리움 브로마이드 (1-butyl-3-methylimidazolium bromide), 1-부틸-3-메틸이미다졸리움 클로라이드 (1-butyl-3-methylimidazolium chloride), 1-헥실-3-메틸이미다졸리움 클로라이드 (1-hexyl-3-methylimidazolium chloride), 1-헥실-3-메틸이미다졸리움 브로마이드 (1-hexyl-3-methylimidazolium bromide), 1-옥틸-3-메틸이미다졸리움 클로라이드 (1-octyl-3-methylimidazolium chloride) 및 1-옥틸-3-메틸이미다졸리움 브로마이드 (1-octyl-3-methylimidazolium bromide)로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 1-옥틸-3-메틸이미다졸리움 클로라이드 (간략하게 ‘[OMIM]Cl’로 표기 함)일 수 있다.Ionic liquid of the present invention is 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium tetraborate (1-ethyl-3-methylimidazolium tetraborate ), 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methylimidazolium chloride, 1-butyl- 3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium 1-hexyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium bromide, 1-octyl-3-methylimidazolium chloride (1-octyl- 3-methylimidazolium chloride) and 1-octyl-3-methylimidazolium bromide (1-octyl-3-methylimidazolium bromide) It may be one or more, preferably 1-octyl-3-methylimidazolium chloride (abbreviated as '[OMIM] Cl').

본 발명의 유기용매 촉매제는 에틸아세테이트 (ethyl acetate) 또는 말릭산 (maleic acid)일 수 있으며, 바람직하게는 에틸아세테이트일 수 있다. 본 발명의 유기용매 촉매제로 에틸아세테이트를 사용하는 경우 5 내지 30% 농도로 사용할 수 있으며, 바람직하게는 5 내지 20% 농도로 사용하는 것이 좋다.The organic solvent catalyst of the present invention may be ethyl acetate (male acetate) or maleic acid (maleic acid), preferably ethyl acetate. When ethyl acetate is used as the organic solvent catalyst of the present invention, it may be used at a concentration of 5 to 30%, preferably at a concentration of 5 to 20%.

본 발명의 금속 촉매제는 염화아연 (ZnCl2), 염화크롬Ⅱ (CrCl2), 염화크롬Ⅲ (CrCl3), 브롬화크롬 (CrBr3), 플루오르화크롬 (CrF3), 제오라이트 (Zeolite), 염화코발트(CoCl2), 염화니켈(NiCl2) 및 염화마그네슘(MgCl2)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The metal catalyst of the present invention is zinc chloride (ZnCl 2 ), chromium chloride (CrCl 2 ), chromium chloride (CrCl 3 ), chromium bromide (CrBr 3 ), chromium fluoride (CrF 3 ), zeolite, chloride It may be at least one selected from the group consisting of cobalt (CoCl 2 ), nickel chloride (NiCl 2 ) and magnesium chloride (MgCl 2 ).

또한 바람직하게는 염화크롬Ⅱ (CrCl2)의 단독 첨가, 플루오르화크롬 (CrF3)의 단독 첨가, 염화크롬Ⅱ (CrCl2)와 염화크롬Ⅲ (CrCl3)의 혼합 첨가, 염화크롬Ⅱ (CrCl2)와 브롬화크롬 (CrBr3)의 혼합 첨가, 염화크롬Ⅱ (CrCl2)와 브롬화크롬 (CrBr3)의 혼합 첨가, 염화크롬Ⅲ (CrCl3)와 플루오르화크롬 (CrF3)의 혼합 첨가, 브롬화크롬 (CrBr3)과 플루오르화크롬 (CrF3)의 혼합 첨가일 수 있다.Also preferably, chromium chloride (CrCl 2 ) is added alone, chromium fluoride (CrF 3 ) is added alone, chromium chloride (CrCl 2 ) and chromium chloride (CrCl 3 ) are added together, and chromium chloride (CrCl 3 ) is added. 2 ) mixed addition of chromium bromide (CrBr 3 ), mixed addition of chromium chloride II (CrCl 2 ) and chromium bromide (CrBr 3 ), mixed addition of chromium chloride III (CrCl 3 ) and chromium fluoride (CrF 3 ), It may be a mixed addition of chromium bromide (CrBr 3 ) and chromium fluoride (CrF 3 ).

본 발명의 금속 촉매제는 본 발명의 반응혼합물 총 부피를 기준으로 1 내지 5% 농도로 첨가하는 것이 바람직하다.The metal catalyst of the present invention is preferably added at a concentration of 1 to 5% based on the total volume of the reaction mixture of the present invention.

본 발명의 일 구체예에서 본 발명의 금속 촉매제는 총 반응혼합물 부피를 기준으로 1% 농도의 플루오르화크롬 (CrF3) 단독형태일 수 있다.
In one embodiment of the present invention, the metal catalyst of the present invention may be in the form of chromium fluoride (CrF3) alone at a concentration of 1% based on the total reaction mixture volume.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the technical field to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims.

<< 실시예Example >>

하이드록시메틸푸르푸랄Hydroxymethylfurfural ( ( HMFHMF ) 및 당의 분석) And sugar analysis

HMF 및 당의 분석은 HPLC (high performance liquid chromatograpy)로 정량하였다. 이들의 분석을 위해, 워터스 HPLC 시스템 (Waters HPLC system), 워터스 오토샘플러 (Waters autosampler) 및 워터스 굴절계 (Waters refractometer)가 이용되었다. HMF 정량은 워터스 엑스브리지 (Waters XBridge) C18 역상 칼럼 (4.6mm x 150mm, 5)을 이용하여 320nm에서 수행되었다. 구배 이동상을 이용하였고, 유속은 0.7mL/분으로 하였다. 구배 조건을 다음과 같다: 100% 물 상에서 2분간, 첫 번째 전이 상태 및 80% 물과 20% 메탄올의 구배 상에서 8분간, 두 번째 전이 상태 및 마지막으로 100% 물 상에서 20분간. 설탕의 정량을 위해, YMC-Pack Polyamine II column (4.6mm x 250mm, S-5, 12nm, Japan)을 이용하였고, 이동상 (75:25, 아세토니트릴:물)을 1ml/분의 유속으로 이용하였다.Analysis of HMF and sugars was quantified by high performance liquid chromatograpy (HPLC). For their analysis, the Waters HPLC system, Waters autosampler and Waters refractometer were used. HMF quantification was performed at 320 nm using a Waters XBridge C18 reversed phase column (4.6 mm x 150 mm, 5). A gradient mobile phase was used and the flow rate was 0.7 mL / min. Gradient conditions are as follows: 2 minutes on 100% water, first transition state and 8 minutes on gradient of 80% water and 20% methanol, second transition state and finally 20 minutes on 100% water. For quantification of sugar, YMC-Pack Polyamine II column (4.6mm x 250mm, S-5, 12nm, Japan) was used and mobile phase (75:25, acetonitrile: water) was used at a flow rate of 1ml / min. .

통계 처리Statistical processing

모든 측정값은 적어도 4번의 독립적인 반응의 평균값으로 계산되었고 표준 편차로 표현하였다. 상대적인 HMF 수득율과 관련하여, 1ml 에틸아세테이트 및 염화크롬 (CrCl2)이 더해진 4g [OMIM]Cl 및 0.3 M 염산용액 5ml을 함유하는 10% 가용성 전분을 포함하는 용매 혼합물에서 60분 동안 반응을 수행하여 수득된 HMF 수율이 대조군으로서 이용되었다.
All measurements were calculated as the average of at least 4 independent responses and expressed as standard deviation. Regarding the relative HMF yield, the reaction was carried out for 60 minutes in a solvent mixture containing 10 g soluble starch containing 4 g [OMIM] Cl and 5 ml of 0.3 M hydrochloric acid added with 1 ml ethyl acetate and chromium chloride (CrCl 2 ). The HMF yield obtained was used as a control.

실시예1 : 전분으로부터 하이드록시메틸푸르푸랄 (HMF)의 합성
Example 1 Synthesis of Hydroxymethylfurfural ( HMF) from Starch

실시예1Example 1 -1 : 염산농도와 반응시간의 영향-1: Effect of hydrochloric acid concentration and reaction time

가용성 전분을 [OMIM]Cl 용매가 존재하는 상태에서 염산과 반응시간이라는 두 가지 변수와 관련하여 조사하였다. (가용성 전분 (Yakuri Pure Chemicals Co. Ltd.), [OMIM]Cl (Merck), 염산 (Junsei Chemical Co. Ltd.))Soluble starch was investigated in relation to two variables, hydrochloric acid and reaction time in the presence of [OMIM] Cl solvent. (Soluble starch (Yakuri Pure Chemicals Co. Ltd.), [OMIM] Cl (Merck), hydrochloric acid (Junsei Chemical Co. Ltd.))

농도별 염산용액 (0.0M, 0.1M, 0.3M 및 0.5M) 5ml, 에틸아세테이트 (ethyl acetate) 1ml 및 [OMIM]Cl 4g을 포함하는 10ml 혼합물에 가용성 전분 1g을 첨가하여 히팅 맨틀 (heating mantle) 상에서 120℃에서 0분부터 120분 동안 교반하면서 반응시켰다. 반응 시간 30분마다 시료를 채취하여 하이드록시메틸푸르푸랄의 함량을 분석하였다. 1 g of soluble starch was added to a 10 ml mixture containing 5 ml of hydrochloric acid solution (0.0M, 0.1M, 0.3M and 0.5M), 1 ml of ethyl acetate, and 4 g of [OMIM] Cl, followed by a heating mantle. The reaction was stirred at 120 ° C. for 0 minutes to 120 minutes. Samples were taken every 30 minutes of reaction time to analyze the content of hydroxymethylfurfural.

그 결과 하기 도 1에 나타난 바와 같이, 염산 농도가 낮을수록 반응 시간이 길어지는 경향이 있었으며, 전반적으로 HMF의 합성에 유효한 반응 시간은 50분 내지 120분인 것으로 나타났고, 0.3M과 1M의 염산용액에서는 60분을 반응하였을 때 HMF 생산량이 가장 좋았으며, 특히 0.5M의 염산용액에서 90분을 반응시켰을 때 가장 높은 HMF 생산량이 측정되었다.
As a result, as shown in Figure 1, the lower the hydrochloric acid concentration tended to longer reaction time, the overall reaction time effective for the synthesis of HMF was found to be 50 minutes to 120 minutes, 0.3M and 1M hydrochloric acid solution The highest HMF yield was obtained when 60 minutes were reacted, especially when 90 minutes were reacted in 0.5M hydrochloric acid solution.

실시예1Example 1 -2 : 금속 촉매제의 영향 조사-2: Investigation of the influence of the metal catalyst

금속 촉매제 첨가에 따른 HMF의 수득율을 평가하기 위하여 2개의 그룹으로 나누어 수행하였다.In order to evaluate the yield of HMF with addition of the metal catalyst, it was carried out in two groups.

1그룹 (염화크롬 無첨가)은 농도별 염산용액 (0.0M, 0.3M, 0.5M 및 1.0M) 5ml, 에틸아세테이트 1ml 및 [OMIM]Cl 4g을 포함하는 10ml 혼합물에 가용성 전분 1g을 첨가한 후 히팅 맨틀 (heating mantle) 상에서 120℃에서 0분부터 120분 동안 교반하면서 반응시켰다. 반응 시간 30분마다 시료를 채취하여 HMF의 함량을 분석하였다. Group 1 (without chromium chloride) added 1 g of soluble starch to a 10 ml mixture containing 5 ml of hydrochloric acid solution (0.0M, 0.3M, 0.5M and 1.0M), 1 ml of ethyl acetate and 4 g of [OMIM] Cl. The reaction was stirred at 120 ° C. for 0 to 120 minutes on a heating mantle. Samples were taken every 30 minutes of reaction time to analyze the content of HMF.

2그룹은 (염화크롬 첨가)은 [OMIM]Cl 4g, 에틸아세테이트 1ml 및 염화크롬 (CrCl2) 0.2g이 혼합된 혼합물을 120에서 10분 동안 전반응시킨 후, 농도별 염산용액 (0.0M, 0.3M, 0.5M 및 1.0M) 5ml와 가용성 전분 1g을 첨가한 후 120℃에서 0분부터 120분 동안 교반하면서 반응시켰다. 반응 시간 30분마다 시료를 채취하여 HMF의 함량을 분석하였다. In the second group (adding chromium chloride), a mixture of 4 g of [OMIM] Cl, 1 ml of ethyl acetate and 0.2 g of chromium chloride (CrCl 2 ) was pre-reacted at 120 to 10 minutes, followed by hydrochloric acid solution (0.0M, 0.3M, 0.5M and 1.0M) 5ml and 1g of soluble starch were added and then reacted with stirring at 120 ° C. for 0 to 120 minutes. Samples were taken every 30 minutes of reaction time to analyze the content of HMF.

그 결과 하기 도 2에서 나타난 바와 같이, 전반적으로 염화크롬이 첨가된 처리군은 무첨가된 처리군에 비해서 약 두 배 이상의 HMF 수득율이 확인되었으며, 특히 염화크롬이 첨가된 처리군 중 0.3M과 0.5M의 염산용액을 사용한 실험에서 HMF 수득율이 월등히 높게 나타났다. 또한 반응 시간별로 분석한 결과에 의하면 0.3M의 염산용액에서는 60분과 90분 반응에서 거의 비슷한 HMF의 수득율이 측정되었으며, 0.5M의 염산용액에서는 60분의 반응 시간에서 가장 높은 HMF의 수득율이 관찰되었다. 따라서 본 실험 결과에서 보듯이 전분으로부터 HMF을 효율적으로 합성하기 위해서는 염산용액의 농도를 0.3M에서 0.5M로 조정하여 염화크롬을 첨가하는 것이 가장 효과적이라는 사실이 확인되었다.
As a result, as shown in Figure 2, the overall treatment of the addition of chromium chloride treatment group was confirmed that the yield of HMF about twice or more than the addition of the treatment group, in particular 0.3M and 0.5M of the chromium chloride addition treatment group In the experiment with hydrochloric acid solution of HMF yield was much higher. In addition, the results of analysis by reaction time showed that the yield of HMF was almost the same in 0.3 M hydrochloric acid solution at 60 and 90 minutes, and the highest yield of HMF was observed at 60 M reaction time in 0.5 M hydrochloric acid solution. . Therefore, in order to synthesize HMF from starch efficiently, it was confirmed that it is most effective to add chromium chloride by adjusting the concentration of hydrochloric acid solution from 0.3M to 0.5M.

실시예1Example 1 -3 : 유기용매 촉매제 농도별 영향 조사-3: Investigation of the influence of organic solvent catalyst concentration

유기용매 촉매제 첨가에 따른 HMF의 수득율을 평가하기 위하여 유기용매 촉매제로 에틸아세테이트 (etrhyl acetate)를 사용하였으며, 에틸아세테이트의 농도를 0%, 5%, 10%, 15%, 20%, 25% 및 30%로 하여 실험을 수행하였다. 가용성 전분 1g, 0.3M 염산용액 5ml, 염화크롬 및 [OMIM]Cl을 혼합한 혼합물이 사용되었고 [OMIM]Cl의 경우 5 g 무게 기준으로 에틸아세테이트가 첨가된 양만큼 적게 첨가되었다. In order to evaluate the yield of HMF according to the addition of the organic solvent catalyst, ethyl acetate (etrhyl acetate) was used as the organic solvent catalyst, the concentration of ethyl acetate was 0%, 5%, 10%, 15%, 20%, 25% and The experiment was performed at 30%. A mixture of 1 g of soluble starch, 5 ml of 0.3 M hydrochloric acid solution, chromium chloride and [OMIM] Cl was used, with as little as the amount of ethyl acetate added on a 5 g weight basis for [OMIM] Cl.

그 결과 하기 도 3에 나타난 바와 같이, 에틸아세테이트 10% 농도로 첨가된 처리군에서 가장 높은 HMF의 수득이 확인되었으며, 그 이상의 농도에서는 수득율이 점진적으로 감소하는 경향을 볼 수 있었다.
As a result, as shown in Figure 3, it was confirmed that the highest HMF obtained in the treated group added at 10% ethyl acetate concentration, the yield tends to gradually decrease at higher concentrations.

실시예1Example 1 -4 : 전분 농도의 영향 조사-4: investigation of the effect of starch concentration

전분 농도에 따른 HMF의 합성수율을 평가하기 위하여 4종의 상이한 전분 농도(5, 10, 15 및 20%)가 이용되었다. Four different starch concentrations (5, 10, 15 and 20%) were used to evaluate the synthetic yield of HMF according to the starch concentration.

먼저 0.3M 및 0.5M염산용액에 전분을 첨가하여 5%, 10%, 15% 및 20% (w/v) 각각의 농도별 전분용액을 제조하였다.First, starch was added to 0.3M and 0.5M hydrochloric acid solution to prepare starch solutions of each concentration of 5%, 10%, 15% and 20% (w / v).

이를 위해 염산용액의 몰농도에 따라 2개의 그룹으로 나누어 실시하였다.To this end, it was divided into two groups according to the molarity of the hydrochloric acid solution.

1그룹 (0.3M의 염산용액 사용)은 [OMIM]Cl 4g, 에틸아세테이트 1ml 및 0.2g 염화크롬 (CrCl2)이 혼합된 혼합물에, 0.3M의 염산용액을 용매로 사용하여 제조된 농도별 전분용액을 첨가한 후, 히팅 맨틀 (heating mantle) 상에서 120에서 0분부터 120분 동안 교반하면서 반응시켰다. 반응 시간 30분마다 시료를 채취하여 HMF의 함량을 분석하였다.Group 1 (using 0.3 M hydrochloric acid solution) is a starch solution prepared by using 0.3 M hydrochloric acid solution as a solvent in a mixture of [OMIM] Cl 4 g, ethyl acetate 1 ml, and 0.2 g chromium chloride (CrCl 2). After the addition, the reaction was stirred at 120 to 0 to 120 minutes on a heating mantle. Samples were taken every 30 minutes of reaction time to analyze the content of HMF.

2그룹 (0.5M 염산용액 사용)은 [OMIM]Cl 4g, 에틸아세테이트 1ml 및 0.2g 염화크롬 (CrCl2)이 혼합된 혼합물에, 0.5M의 염산용액을 용매로 사용하여 제조된 농도별 전분용액을 첨가한 후, 히팅 맨틀 (heating mantle) 상에서 120에서 0분부터 120분 동안 교반하면서 반응시켰다. 반응 시간 30분마다 시료를 채취하여 HMF의 함량을 분석하였다.
Group 2 (using 0.5 M hydrochloric acid solution) was prepared by mixing starch solution prepared using 0.5 M hydrochloric acid solution as a solvent in a mixture of 4 g of [OMIM] Cl, 1 ml of ethyl acetate, and 0.2 g of chromium chloride (CrCl2). After addition, the reaction was allowed to stir at 120 to 0 minutes for 120 minutes on a heating mantle. Samples were taken every 30 minutes of reaction time to analyze the content of HMF.

전분 농도 및 염산 농도에 따른 반응 시간대별 HMF의 생산 비교 (단위: 중량%)Comparison of production of HMF by reaction time according to starch concentration and hydrochloric acid concentration (unit: wt%) 0.3 M 염산 (HCl)0.3 M hydrochloric acid (HCl) 0.5 M 염산 (HCl)0.5 M hydrochloric acid (HCl) 전분Starch
(%)(%)
반응시간 (분)Response time (minutes) 반응시간 (분)Response time (minutes)
3030 6060 9090 120120 3030 6060 9090 120120 55 -- 64.0±2.264.0 ± 2.2 61.2±4.361.2 ± 4.3 46.1±8.646.1 ± 8.6 10.2±4.210.2 ± 4.2 64.0±3.764.0 ± 3.7 54.0±9.154.0 ± 9.1 39.2±8.139.2 ± 8.1 1010 19.4±4.719.4 ± 4.7 63.1±6.163.1 ± 6.1 58.0±2.358.0 ± 2.3 40.5±7.840.5 ± 7.8 13.5±5.713.5 ± 5.7 59.5±4.959.5 ± 4.9 56.2±2.856.2 ± 2.8 36.3±3.836.3 ± 3.8 1515 12.7±6.112.7 ± 6.1 55.2±4.155.2 ± 4.1 48.8±2.448.8 ± 2.4 46.3±3.846.3 ± 3.8 8.0±4.98.0 ± 4.9 50.5±3.450.5 ± 3.4 46.9±4.446.9 ± 4.4 41.7±5.741.7 ± 5.7 2020 7.3±3.97.3 ± 3.9 40.8±6.740.8 ± 6.7 48.1±3.448.1 ± 3.4 36.8±3.336.8 ± 3.3 8.8±4.18.8 ± 4.1 44.0±3.644.0 ± 3.6 38.3±3.838.3 ± 3.8 34.0±5.234.0 ± 5.2

그 결과 상기 표 1에 나타난 바와 같이, 모든 처리군 중에서 가장 높은 HMF의 수득율(64.0±3.7 및 64.0±2.2 중량%)은 5% 농도의 가용성 전분 (soluble starch)이 첨가된 혼합물에서 60분 동안 반응한 경우로 확인되었다. 전체적으로 볼 때 전분의 농도가 높을수록, 그리고 반응 시간이 60분 이상이 경과할수록 HMF의 수득율이 감소하는 경향이 있었다. 이 실험에서 보여주는 다른 한 가지 특징은 두 염산용액 농도 간 (0.3M과 0.5M)에는 HMF 수득율에 차이가 별로 나타나지 않은 반면에, 20% 전분이 첨가된 0.3M 처리군에서는 90분 동안의 반응시켰을 때 가장 높은 HMF의 수득율이 얻어졌다는 사실이다. 이러한 실험 결과로 볼 때 전분의 농도가 높을 경우 (20% 이상) 0.3M 염산용액 처리군에서는 반응 시간이 90분 이상으로 더 연장이 되어야 할 것으로 추정되었다.
As a result, as shown in Table 1, the yields of the highest HMF (64.0 ± 3.7 and 64.0 ± 2.2% by weight) of all treatment groups were reacted for 60 minutes in a mixture to which 5% soluble starch was added. One case was confirmed. Overall, the higher the starch concentration, and the longer the reaction time, the more the 60 minutes or more, the yield of HMF tended to decrease. Another characteristic of this experiment is that the difference in HMF yields between the two hydrochloric acid solution concentrations (0.3M and 0.5M) was not significantly different, whereas the 0.3M treatment group with 20% starch added allowed 90 minutes of reaction. When the highest yield of HMF was obtained. As a result of these experiments, it was estimated that the reaction time should be extended to 90 minutes or more in the 0.3M hydrochloric acid treatment group when the starch concentration was high (more than 20%).

실시예1Example 1 -5 : 전분 종류별 영향 조사-5: Investigation of starch type effect

전분의 종류별 HMF의 수득율을 비교하기 위하여 8 종의 식물 (옥수수, 밀, 쌀, 감자, 고구마, 타피오카, 도토리 및 칡뿌리)에서 유래된 전분을 사용하였으며, 방법은 상기 실시예1-4와 동일하고, 전분의 농도 대신 전분의 종류로 설정한 것만이 다르다. (옥수수 (Wako Pure Chemical Industries, Ltd.), 밀 (SIgma), 쌀 (Sigma), 감자 (Junsei Chemical Co. Ltd.), 고구마 (Wako Pure Chemical Industries, Ltd.), 타피오카 (국내 주정회사에서 분양받음), 도토리 (Ecoforest), 칡 (제천시농업기술연구소))Starch derived from 8 kinds of plants (corn, wheat, rice, potato, sweet potato, tapioca, acorn, and root root) was used to compare the yield of HMF according to the types of starch, and the method was the same as in Example 1-4. Only the type of starch is used instead of the concentration of starch. (Wako Pure Chemical Industries, Ltd.), Wheat (SIgma), Rice (Sigma), Potato (Junsei Chemical Co. Ltd.), Sweet Potato (Wako Pure Chemical Industries, Ltd.), Tapioca (Sold by a domestic alcohol company Acorn (Ecoforest), 칡 (Jecheon Institute of Agricultural Technology)

염산용액 5ml, 에틸아세테이트 (ethyl acetate) 1ml 및 [OMIM]Cl 4g을 포함하는 10ml 혼합물에 각각의 종류별 전분 1g을 첨가하여 히팅 맨틀 (heating mantle) 상에서 120℃에서 0분부터 120분 동안 교반하면서 반응시켰다. 반응 시간 30분마다 시료를 채취하여 하이드록시메틸푸르푸랄의 함량을 분석하였다.
To the 10 ml mixture containing 5 ml of hydrochloric acid solution, 1 ml of ethyl acetate and 4 g of [OMIM] Cl, 1 g of starch of each type was added, and the mixture was stirred on a heating mantle at 120 ° C. for 0 to 120 minutes. I was. Samples were taken every 30 minutes of reaction time to analyze the content of hydroxymethylfurfural.

염산 농도와 반응시간이 식물 종류별 전분으로부터 HMF 수득율에 미치는 영향 (단위: 중량%)Effect of Hydrochloric Acid Concentration and Reaction Time on HMF Yield from Starch by Plant Type (Unit: wt%) 0.3 M 염산 (HCl)0.3 M hydrochloric acid (HCl) 0.5 M 염산 (HCl)0.5 M hydrochloric acid (HCl) 전분 Starch
종류Kinds
반응시간 (분)Response time (minutes) 반응시간 (분)Response time (minutes)
3030 6060 9090 120120 3030 6060 9090 120120 옥수수corn -- 49.5±9.849.5 ± 9.8 47.0±4.547.0 ± 4.5 38.1±6.838.1 ± 6.8 13.0±5.813.0 ± 5.8 63.5±2.463.5 ± 2.4 54.0±3.654.0 ± 3.6 40.7±5.440.7 ± 5.4 wheat 19.0±4.419.0 ± 4.4 65.5±3.765.5 ± 3.7 57.0±3.157.0 ± 3.1 43.9±5.843.9 ± 5.8 9.5±3.99.5 ± 3.9 54.5±3.954.5 ± 3.9 53.1±2.253.1 ± 2.2 42.7±4.142.7 ± 4.1 rice -- 64.0±2.264.0 ± 2.2 62.0±2.862.0 ± 2.8 46.8±7.646.8 ± 7.6 12.0±4.612.0 ± 4.6 57.8±2.657.8 ± 2.6 52.0±3.452.0 ± 3.4 39.5±3.939.5 ± 3.9 감자potato 3.3±1.93.3 ± 1.9 52.1±3.952.1 ± 3.9 48.5±5.248.5 ± 5.2 36.2±6.836.2 ± 6.8 7.0±3.97.0 ± 3.9 62.0±3.262.0 ± 3.2 53.5±2.553.5 ± 2.5 39.8±7.139.8 ± 7.1 고구마sweet potato 6.2±3.26.2 ± 3.2 56.0±2.956.0 ± 2.9 50.5±4.650.5 ± 4.6 41.2±5.941.2 ± 5.9 12.5±3.912.5 ± 3.9 66.5±5.166.5 ± 5.1 51.5±6.751.5 ± 6.7 42.0±5.842.0 ± 5.8 타피오카tapioca 8.0±3.88.0 ± 3.8 62.5±2.762.5 ± 2.7 56.5±4.956.5 ± 4.9 42.1±8.142.1 ± 8.1 10.1±5.510.1 ± 5.5 73.0±3.873.0 ± 3.8 61.1±4.261.1 ± 4.2 44.5±6.844.5 ± 6.8 도토리Acorn 4.5±2.14.5 ± 2.1 54.5±3.154.5 ± 3.1 50.2±4.350.2 ± 4.3 36.3±3.336.3 ± 3.3 9.5±4.69.5 ± 4.6 58.5±3.258.5 ± 3.2 55.0±4.655.0 ± 4.6 39.5±8.239.5 ± 8.2 7.5±3.27.5 ± 3.2 55.2±2.855.2 ± 2.8 48.5±3.448.5 ± 3.4 38.8±4.638.8 ± 4.6 12.2±4.412.2 ± 4.4 63.5±3.663.5 ± 3.6 54.1±8.254.1 ± 8.2 38.8±6.138.8 ± 6.1

그 결과 상기 표 2에서 나타난 바와 같이, HMF의 수득율이 가장 높이 측정된 전분은 타피오카로서 73.0±3.8 무게%의 수득율을 (0.5M 염산 60분 반응 시간 처리군에서) 보여 주었다.
As a result, as shown in Table 2, the highest measured starch yield of HMF showed a yield of 73.0 ± 3.8% by weight as tapioca (in 0.5M hydrochloric acid 60 minutes reaction time treatment group).

실시예2 : 식물 생체 추출물로부터 하이드록시메틸푸르푸랄 (HMF)의 합성
Example 2 Synthesis of Hydroxymethylfurfural ( HMF) from Plant Biotic Extracts

실시예2Example 2 -1 : 식물 생체 -1: plant living body 바이오매스의Biomass 준비 Ready

사용된 식물의 생체 바이오매스는 돼지감자(girasol), 치커리 (chicory), 감자 (potato tuber), 고구마 (sweet potato), 도토리 (acorn), 칡뿌리 (kudzu) 및 카사바 (manioc)를 섭씨 60-65℃에서 건조시킨 후에 분쇄기로 분쇄하여 분말로 준비하였다.
The biomass of the plant used was 60-degree Celsius for pig, potato, chicory, potato (potato tuber), sweet potato, acorn (acorn), kudzu and cassava (manioc). After drying at 65 ° C., the mixture was pulverized with a grinder to prepare a powder.

실시예2Example 2 -2 : 식물 생체 추출물의 적정 추출온도 및 추출시간-2: proper extraction temperature and extraction time of plant biological extract

0.5M 염산용액에 식물 생체 분말가루 10% (w/v)를 첨가하여 섭씨 60℃와 80℃에서 0-3시간 동안 시간대 별로 반응시킨 후 13500×g로 60분간 원심분리하여 상층액을 추출하여 HMF의 합성에 사용하였다.
10% (w / v) of plant biopowder powder was added to 0.5M hydrochloric acid solution, followed by reaction at 60 ° C and 80 ° C for 0-3 hours, followed by centrifugation at 13500 × g for 60 minutes to extract the supernatant. It was used for the synthesis of HMF.

식물 생체 바이오매스의 종류별 추출온도와 추출시간에 따른 HMF 수득율의 비교 (단위: 중량%)Comparison of HMF Yield with Extraction Temperature and Extraction Time by Type of Plant Biomass (Unit: wt%) 60℃60 80℃80 ℃ 바이오매스 Biomass
종류Kinds
추출시간 (hour)Extraction time (hour) 추출시간 (hour)Extraction time (hour)
00 1One 22 33 00 1One 22 33 돼지감자Pork Potato -- 19.5±2.819.5 ± 2.8 24.0±4.524.0 ± 4.5 27.1±1.827.1 ± 1.8 -- 43.5±2.443.5 ± 2.4 44.0±5.644.0 ± 5.6 40.7±5.440.7 ± 5.4 치커리Chicory -- 16.5±3.716.5 ± 3.7 21.0±3.121.0 ± 3.1 23.9±3.823.9 ± 3.8 -- 36.5±3.936.5 ± 3.9 34.1±4.234.1 ± 4.2 32.7±4.132.7 ± 4.1 감자potato -- 10.0±2.210.0 ± 2.2 12.0±2.812.0 ± 2.8 14.8±2.614.8 ± 2.6 -- 17.8±2.617.8 ± 2.6 16.0±3.416.0 ± 3.4 14.5±1.914.5 ± 1.9 고구마sweet potato -- 12.1±3.912.1 ± 3.9 14.5±3.214.5 ± 3.2 15.2±1.815.2 ± 1.8 -- 15.0±3.215.0 ± 3.2 14.5±2.514.5 ± 2.5 13.8±3.113.8 ± 3.1 도토리Acorn -- 10.0±2.910.0 ± 2.9 14.5±1.614.5 ± 1.6 17.2±2.917.2 ± 2.9 -- 16.5±5.116.5 ± 5.1 16.5±3.716.5 ± 3.7 13.0±2.813.0 ± 2.8 칡뿌리Root Root -- 2.5±0.72.5 ± 0.7 6.5±2.96.5 ± 2.9 8.1±1.18.1 ± 1.1 -- 11.0±3.811.0 ± 3.8 11.1±1.211.1 ± 1.2 10.5±1.810.5 ± 1.8 카사바cassava -- 10.5±3.110.5 ± 3.1 15.2±3.315.2 ± 3.3 15.3±1.315.3 ± 1.3 -- 17.5±3.217.5 ± 3.2 16.0±1.616.0 ± 1.6 15.5±1.215.5 ± 1.2

그 결과 상기 표 3에 나타난 바와 같이, 섭씨 60℃의 추출에 비해서 섭씨 80℃에서 추출된 추출물이 훨씬 높은 HMF의 수득율이 측정되었다. 특히 감자돼지와 치커리의 경우에는 60℃에 비해서 거의 두 배 정도 수득율이 높게 나타났다. 그리고 추출물의 추출 시간대 별로 HMF의 수득율을 분석한 결과에 의하면 1시간에서 2시간의 추출 시간대에서 HMF의 수득율이 가장 높게 측정되었으며, 이는 이 추출 시간대가 본 실험에 사용된 모든 식물 생체 바이오매스의 적정 추출 시간이라는 사실을 뒷받침해 주었다.
As a result, as shown in Table 3, the yield of HMF was much higher than the extract extracted at 80 ℃ Celsius compared to the extraction of 60 ℃ Celsius. In particular, potato pigs and chicory yields were nearly twice as high as those at 60 ° C. According to the results of analyzing the yield of HMF by the extraction time of the extract, the highest yield of HMF was measured in the extraction time range of 1 to 2 hours, which is the titration of all plant biomass used in this experiment. It was supported by the fact that extraction time.

실시예2Example 2 -3: 적정 반응온도의 영향 조사-3: investigation of the influence of the appropriate reaction temperature

본 실험은 실험 재료로 사용된 식물의 생체 바이오매스 별로 적정 반응시간을 선별하기 위하여 수행되었다. This experiment was carried out to select the appropriate reaction time for each biobiomass of plants used as experimental materials.

[OMIM]Cl 4g, 에틸아세테이트 1ml 및 염화크롬 0.2g을 혼합한 혼합물에 각 식물 생체 바이오매스로부터 추출된, 각각의 식물 생체 추출물 5ml를 첨가하여 섭씨 120℃에서 30분에서 120분간 반응시켰다. [OMIM] Cl 4g, Ethyl Acetate 1ml And 5 ml of each plant biological extract, extracted from each plant biomass, was added to the mixture of 0.2 g of chromium chloride and reacted at 120 ° C. for 30 minutes to 120 minutes.

그 결과 하기 도 4에서 나타난 바와 같이, 60분의 반응 시간에서 대부분의 식물 생체 바이오매스 HMF의 수득율이 가장 높은 것을 알 수 있었다 (평균 약 22.4 mg/ml 각 추출물).
As a result, as shown in FIG. 4, it was found that the yield of most plant biomass HMF was the highest at a reaction time of 60 minutes (average of about 22.4 mg / ml of each extract).

실시예2Example 2 -4 : 염산농도 및 금속 촉매제의 영향 조사-4: Investigation of the influence of hydrochloric acid concentration and metal catalyst

식물 생체 바이오매스로부터 HMF의 합성에 미치는 염산 및 염화크롬의 영향을 비교하기 위하여 농도별 염산용액 (0.0M, 0.3M, 0.5M, 1.0M HCl)에 염화크롬 첨가 및 무첨가 처리군으로 2그룹을 나누어 실험을 수행하였다.In order to compare the effects of hydrochloric acid and chromium chloride on the synthesis of HMF from plant biomass, two groups were added: chromium chloride addition and no treatment in the hydrochloric acid solution (0.0M, 0.3M, 0.5M, 1.0M HCl). The experiment was carried out in portions.

1그룹 (염화크롬 無첨가)은 [OMIM]Cl 4g, 에틸아세테이트 1ml 및 각각의 식물 생체 추출물 5ml (7종류 각각의 식물 생체 바이오매스를 농도별 염산용액을 이용하여 추출함)가 혼합된 혼합물을 히팅 맨틀 (heating mantle) 상에서 120℃에서 60분 동안 교반하면서 반응시켰다. Group 1 (without chromium chloride) consists of a mixture of 4 g of [OMIM] Cl, 1 ml of ethyl acetate, and 5 ml of each plant biological extract (extracted from 7 different plant biomass using concentration hydrochloric acid solution). The reaction was stirred at 120 ° C. for 60 minutes on a heating mantle.

2그룹 (염화크롬 첨가)은 [OMIM]Cl 4g 및 염화크롬 (CrCl2) 0.2g을 혼합하여 120℃에서 15분 동안 전반응시킨 후, 각각의 식물 생체 추출물 5ml (7종류 각각의 식물 생체 바이오매스를 농도별 염산용액을 이용하여 추출함) 및 에틸아세테이트 1ml를 첨가한 후 120℃에서 60분 동안 교반하면서 반응시켰다. Group 2 (with chromium chloride) consists of 4 g of [OMIM] Cl and chromium chloride (CrCl 2 ) After 0.2 g of the mixture was pre-reacted at 120 ° C. for 15 minutes, 5 ml of each plant bio extract (extracted from 7 kinds of plant biomass using concentration hydrochloric acid solution) and 1 ml of ethyl acetate were added. The reaction was stirred at 120 ° C. for 60 minutes.

염산 농도와 염화크롬이 식물 생체 바이오매스 종류별 HMF 수득율에 미치는 영향 (단위: mg/ml 추출물)Effect of Hydrochloric Acid Concentration and Chromium Chloride on HMF Yield by Type of Plant Biomass (Unit: mg / ml Extract) 금속 metal
촉매제Catalyst
바이오매스Biomass
종류Kinds
염산 농도 (M)Hydrochloric Acid Concentration (M)
0.00.0 0.30.3 0.50.5 1.01.0 염화크롬Chromium chloride
無첨가No addition
돼지감자Pork Potato -- 37.9±3.537.9 ± 3.5 40.6±4.140.6 ± 4.1 25.6±3.825.6 ± 3.8
치커리Chicory -- 28.1±3.828.1 ± 3.8 31.5±3.731.5 ± 3.7 28.6±4.128.6 ± 4.1 감자potato -- 15.3±2.915.3 ± 2.9 16.0±4.016.0 ± 4.0 13.8±1.813.8 ± 1.8 고구마sweet potato -- 14.3±8.114.3 ± 8.1 14.7±2.714.7 ± 2.7 12.5±3.912.5 ± 3.9 도토리Acorn -- 11.6±4.811.6 ± 4.8 12.6±3.912.6 ± 3.9 11.6±2.411.6 ± 2.4 칡뿌리Root Root -- -- -- 5.7±2.85.7 ± 2.8 카사바cassava -- 15.4±3.815.4 ± 3.8 14.0±6.114.0 ± 6.1 13.2±2.813.2 ± 2.8 염화크롬Chromium chloride
첨가adding
돼지감자Pork Potato 8.4±5.88.4 ± 5.8 49.1±5.449.1 ± 5.4 64.5±3.564.5 ± 3.5 49.4±3.949.4 ± 3.9
치커리Chicory 7.5±3.67.5 ± 3.6 46.0±4.846.0 ± 4.8 50.2±5.150.2 ± 5.1 39.4±3.339.4 ± 3.3 감자potato -- 40.6±2.940.6 ± 2.9 61.4±5.861.4 ± 5.8 37.6±4.137.6 ± 4.1 고구마sweet potato -- 42.0±3.542.0 ± 3.5 61.4±4.461.4 ± 4.4 35.0±3.735.0 ± 3.7 도토리Acorn -- 45.4±4.245.4 ± 4.2 63.6±7.263.6 ± 7.2 34.6±2.834.6 ± 2.8 칡뿌리Root Root -- 10.5±2.310.5 ± 2.3 11.4±3.811.4 ± 3.8 9.8±3.39.8 ± 3.3 카사바cassava -- 46.7±6.846.7 ± 6.8 55.3±6.355.3 ± 6.3 42.7±5.842.7 ± 5.8

그 결과 상기 표4에 나타난 바와 같이, 염화크롬의 첨가 처리군에서 HMF의 합성이 거의 세배 이상 높다는 것이 확인되었다. 특히 염산용액의 농도별로 볼 때 0.5M의 처리군에서 HMF의 합성이 가장 높게 나타났으며, 1.0M에서는 HMF의 수득이 거의 절반 정도로 감소하였다. 이 실험에서 얻어진 결과로 볼 때 식물의 생체 바이오매스는 식물의 종류에 따라서 다소 차이가 있기는 염화크롬 첨가 및 0.5M의 염산용액 사용이 HMF 합성 효율을 높이는 조건임을 알 수 있었다.
As a result, as shown in Table 4, it was confirmed that the synthesis of HMF in the chromium chloride addition treatment group is almost three times higher. Particularly, the concentration of HMF was the highest in the 0.5 M treatment group, and the yield of HMF decreased by about half. From the results obtained in this experiment, it was found that the addition of chromium chloride and the use of 0.5 M hydrochloric acid solution increased the HMF synthesis efficiency, depending on the type of plant.

실시예2Example 2 -5 : -5: 할로겐크롬Halogen chrome 금속 촉매제 종류별 영향 조사 Investigation of the Effect of Metal Catalysts

할로겐크롬 금속 촉매제의 종류에 따른 HMF의 합성에 미치는 영향을 비교하기 위하여 금속 촉매제 종류별 (CrCl2, CrCl3, CrBr3, CrF3, CrCl2+CrCl3, CrCl2+CrBr3, CrCl2+CrF3, CrCl3+CrBr3, CrCl3+CrF3, CrBr3+CrF3) 첨가에 따른 실험을 수행하였다. 상기 사용된 CrCl2 (97% anhydrous), CrCl3 (99.5%, 6H2O), CrBr3 (crystalline, 6H2O) 및 CrF3 (98%, hydrate)은 알파아이샤 (Alfa Aesar, Mass., USA)에서 구입하여 사용하였다.In order to compare the effects on the synthesis of HMF according to the type of halogen chrome metal catalysts, the types of metal catalysts (CrCl 2 , CrCl 3 , CrBr 3 , CrF 3 , CrCl 2 + CrCl 3 , CrCl 2 + CrBr 3 , CrCl 2 + CrF 3 , CrCl 3 + CrBr 3 , CrCl 3 + CrF 3 , CrBr 3 + CrF 3 ) was performed according to the addition. CrCl 2 (97% anhydrous), CrCl 3 (99.5%, 6H2O), CrBr 3 (crystalline, 6H2O) and CrF 3 (98%, hydrate) used above were purchased from Alfa Aesar, Mass., USA. Was used.

먼저 0.3M 염산용액에 건조된 도토리 생체 분말가루 10% (w/v)를 첨가하여 섭씨 80에서 2시간 동안 반응시킨 후에 13500×g로 60분간 원심분리하여 상층액을 추출하였다.First, 10% (w / v) dried acorn biopowder powder was added to 0.3 M hydrochloric acid solution and reacted at 80 degrees Celsius for 2 hours, followed by centrifugation at 13500 × g for 60 minutes to extract the supernatant.

[OMIM]Cl 4g과 각각의 종류별 할로겐크롬 금속 촉매제 0.2g을 혼합 (금속 촉매제가 2가지 혼합 형태인 경우 각각의 촉매제 0.1g씩 사용)하여 120에서 15분 동안 전반응시킨 후, 상기 추출한 도토리 생체 추출물 5ml 및 에틸아세테이트 1ml를 첨가한 후 교반하면서 반응시켰다. 이렇게 반응시킨 후 60분 및 90분에 시료를 채취하여 HMF의 함량을 분석하였다. [OMIM] Cl 4g and 0.2g of the halogen chromium metal catalysts of each type were mixed (0.1g of each catalyst in the case of two mixed metal catalysts), pre-reacted for 120 to 15 minutes, and then the acorn biomass was extracted. 5 ml of extract and 1 ml of ethyl acetate were added, followed by reaction with stirring. After the reaction, samples were taken at 60 and 90 minutes to analyze the content of HMF.

그 결과 하기 도 5에서 나타난 바와 같이, 전체적으로 CrCl2와 CrCl3의 혼합 촉매제 또는 CrBr3와 CrF3의 혼합 촉매제를 첨가하여 90분간 반응시킨 경우 가장 높은 HMF 수득율 (58.7+1.3dwt%)이 관찰되었다. 또한 단일 촉매제로는 CrCl2가 가장 높은 HMF 수득율을 보였으며, 이에 반해 CrF3를 단독으로 첨가한 경우 가장 낮은 HMF 수득율이 나타남을 알 수 있었다.
As a result, as shown in FIG. 5, the highest HMF yield (58.7 + 1.3dwt%) was observed when the overall reaction was carried out by adding a mixed catalyst of CrCl 2 and CrCl 3 or a mixed catalyst of CrBr 3 and CrF 3 for 90 minutes. . In addition, CrCl 2 showed the highest HMF yield as a single catalyst, whereas CrF 3 alone showed the lowest HMF yield.

실시예2Example 2 -6 : -6: CrFCrF 33 의 농도별 영향 조사Investigation of the effects of different concentrations of

할로겐크롬 금속 촉매제의 종류 중 CrF3 촉매제의 농도별 첨가에 따른 HMF의 합성에 미치는 영향을 비교하기 위하여 타피오카(카사바) 생체 분말이 사용되었으며, 총 반응혼합물 부피대비 질량비율로 0.05% 부터 2%의 CrF3를 첨가하여 실험을 수행하였다. 상기 사용된 CrF3 (98%, hydrate)는 알파아이샤 (Alfa Aesar, Mass., USA)에서 구입하여 사용하였다. To compare the effect of HF on the synthesis of CrF 3 catalyst by the concentration of CrF 3 catalyst, tapioca (cassava) biopowder was used, and the mass ratio of the reaction mixture volume was 0.05% to 2%. The experiment was performed by adding CrF 3 . The CrF 3 (98%, hydrate) used was purchased from Alfa Aesar, Mass., USA.

먼저 0.3M 염산용액에 건조된 타피오카 생체 분말가루 10% (w/v)를 첨가하여 섭씨 80에서 2시간 동안 반응시킨 후에 13500×g로 60분간 원심분리하여 상층액을 추출하였다.First, 10% (w / v) dried tapioca biopowder powder was added to 0.3 M hydrochloric acid solution and reacted at 80 degrees Celsius for 2 hours, followed by centrifugation at 13500 × g for 60 minutes to extract the supernatant.

[OMIM]Cl 4g과 농도별 CrF3 (0.05g, 0.1g, 0.15g, 2g)를 혼합하여 120에서 15분 동안 전반응시킨 후, 상기 추출한 타피오카 생체 추출물 5ml 및 에틸아세테이트 1ml를 첨가한 후 교반하면서 반응시켰다. 이렇게 반응시킨 후 60분 및 90분에 시료를 채취하여 HMF의 함량을 분석하였다. (CrF3의 농도는 총 반응혼합물 부피를 기준으로 혼합되는 CrF3 질량을 기준으로 함)[OMIM] Cl 4g and CrF 3 (0.05g, 0.1g, 0.15g, 2g) were mixed and pre-reacted at 120 to 15 minutes, and then 5ml of the extracted tapioca extract and 1ml of ethyl acetate were added and stirred. Reacted. After the reaction, samples were taken at 60 and 90 minutes to analyze the content of HMF. (The concentration of CrF 3 is CrF 3 to be mixed, based on the total reaction mixture volume Based on mass)

그 결과 하기 도 6에서 나타난 바와 같이, CrF3를 1% 농도로 첨가하여 90분간 반응시킨 경우 가장 높은 HMF 수득율 (64.5 + 2.3 dwt %)이 관찰되었다. 상기 실시예2-5에서 CrF3를 총 반응혼합물을 기준으로 2% 농도로 첨가한 경우 다른 금속 촉매제와 비교하여 가장 낮은 HMF 수득율을 보였으나, 이를 1%의 농도로 첨가하여 반응시킨 경우 다른 금속 촉매제와 비교하여 가장 높은 HMF 수득율 (다른 촉매제에 비해 수득율이 10%정도 높음)을 보이는 것을 알 수 있었다. 금속 촉매제로 CrF3의 경우 다른 금속 촉매제에 비해 가격이 싸기 때문에 산업적으로 본 금속 촉매제의 1%의 농도의 사용으로 높은 HMF 수득율을 얻는 것은 의미가 있다 하겠다.
As a result, as shown in FIG. 6, the highest HMF yield (64.5 + 2.3 dwt%) was observed when reacting for 90 minutes by adding CrF 3 at a concentration of 1%. In Example 2-5, when CrF 3 was added at a concentration of 2% based on the total reaction mixture, it showed the lowest HMF yield compared to other metal catalysts. It was found that the highest HMF yield was obtained (about 10% higher than other catalysts) compared to the catalyst. Since CrF 3 as a metal catalyst is cheaper than other metal catalysts, it is meaningful to obtain a high yield of HMF industrially by using a concentration of 1% of the present metal catalyst.

실시예2Example 2 -7 : 식물 생체 -7: plant living body 바이오매스Biomass 농도별 영향 조사 Investigate impact by concentration

식물 생체 바이오매스 농도에 따른 HMF의 수득율을 평가하기 위하여 식물 바이오매스로 도토리를 사용하였으며, 0.3M 염산용액에 건조된 도토리 생체 분말가루를 첨가하여 10%, 15%, 20%, 25%, 30%, 40%, 45% 및 50% (w/v)의 각각의 농도별 HMF의 수득에 미치는 영향을 평가하였다. Acorn was used as a plant biomass to evaluate the yield of HMF according to the plant biomass concentration, and 10%, 15%, 20%, 25%, 30 was added by adding dried acorn biopowder to 0.3M hydrochloric acid solution. The effect on the yield of HMF at each concentration of%, 40%, 45% and 50% (w / v) was evaluated.

먼저 0.3M 염산용액에 도토리 건조분말을 첨가하여 10%, 15%, 20%, 25%, 30%, 40%, 45% 및 50% (w/v)의 농도별 도토리 생체 용액을 제조한 후, 상기 농도별 도토리 생체 용액을 섭씨 80℃에서 2시간 동안 반응시킨 후 원심분리하여 상층액을 추출하여 농도별 도토리 추출물을 준비하였다. First, acorn dry powder was added to 0.3M hydrochloric acid solution to prepare 10%, 15%, 20%, 25%, 30%, 40%, 45%, and 50% (w / v) acorn biological solution. The acorn biological solution for each concentration was reacted at 80 ° C. for 2 hours, followed by centrifugation to extract the supernatant, thereby preparing acorn extract for each concentration.

[OMIM]Cl 4g, CrBr3 0.1g 및 CrF3 0.1g을 혼합하여 120℃에서 15분 동안 전반응시킨 후, 상기 추출한 농도별 도토리 생체 추출물 5ml 및 에틸아세테이트 1ml를 첨가한 후 교반하면서 반응시켰다. 이렇게 반응시킨 후 90분 지난 후에 시료를 채취하여 HMF의 함량을 분석하였다. 상대적인 HMF 수득율을 비교하기 위해 10% (w/v)의 농도의 도토리 생체 용액을 이용하여 추출된 도토리 생체 추출물의 HMF 수득율을 1로 기준으로 하여 평가하였다. [OMIM] Cl 4g, CrBr3 0.1g and CrF3 0.1g were mixed and pre-reacted at 120 ° C. for 15 minutes, and then 5 ml of acorn extracts and 1 ml of ethyl acetate for each concentration were added and reacted with stirring. 90 minutes after the reaction, a sample was taken and analyzed for HMF content. In order to compare relative HMF yield, the acorn bioextract extracted with acorn solution at a concentration of 10% (w / v) was evaluated based on the HMF yield of 1 as a reference.

그 결과 하기 도 7에서 나타난 바와 같이, 15% (w/v)의 농도의 용액을 이용하여 추출한 도토리 생체 추출물의 경우 상대적으로 가장 높은 HMF 수득율을 나타냈다.
As a result, as shown in Figure 7, the acorn extract extracted using a solution of a concentration of 15% (w / v) showed a relatively high HMF yield.

실시예2Example 2 -8 : 유기용매 촉매제 농도별 영향 조사-8: Investigation of the influence of organic solvent catalyst concentration

유기용매 촉매제 첨가에 따른 HMF의 수득율을 평가하기 위하여 유기용매 촉매제로 에틸아세테이트 (etrhyl acetate)를 사용하였으며, 에틸아세테이트의 농도를 0%, 5%, 10%, 15%, 20%, 25% 및 30%로 하여 실험을 수행하였다. In order to evaluate the yield of HMF according to the addition of the organic solvent catalyst, ethyl acetate (etrhyl acetate) was used as the organic solvent catalyst, the concentration of ethyl acetate was 0%, 5%, 10%, 15%, 20%, 25% and The experiment was performed at 30%.

도토리 생체 추출물 5ml, 염화크롬 및 [OMIM]Cl을 혼합한 혼합물이 사용되었고 [OMIM]Cl의 경우 5 g 무게 기준으로 에틸아세테이트가 첨가된 양만큼 적게 첨가되었다. A mixture of 5 ml of acorn biological extract, chromium chloride and [OMIM] Cl was used, and in the case of [OMIM] Cl, as little as the amount of ethyl acetate added based on the weight of 5 g.

그 결과 하기 도 8에 나타난 바와 같이, 에틸아세테이트 10% 농도가 첨가된 처리군에서 가장 높은 HMF의 수득이 확인되었다.As a result, as shown in Figure 8, it was confirmed that the highest HMF obtained in the treatment group added 10% ethyl acetate concentration.

GR; 돼지감자, CR; 치커리, PT; 감자, SP; 고구마, AC; 도토리, KR; 칡뿌리, MR; 카사바GR; Pork Potato, CR; Chicory, PT; Potato, SP; Sweet potato, AC; Acorns, KR; Rootroot, MR; cassava

Claims (24)

전분, 이온성액체 (ionic liquid), 산 촉매제 및 유기용매 촉매제가 포함된 반응혼합물을 가열하는 단계를 포함하는 하이드록시메틸푸르푸랄의 생산방법.
A method for producing hydroxymethylfurfural comprising heating a reaction mixture containing starch, an ionic liquid, an acid catalyst and an organic solvent catalyst.
이온성액체, 유기용매 촉매제 및 금속 촉매제를 혼합하여 1차 혼합물을 형성하는 단계;
상기 1차 혼합물을 100 내지 150℃에서 5 내지 20분간 반응시키는 단계;
상기 반응물에 산 촉매제 및 전분을 첨가하여 반응혼합물을 형성하는 단계; 및
상기 반응혼합물을 가열하는 단계를 포함하는 하이드록시메틸푸르푸랄의 생산방법.
Mixing an ionic liquid, an organic solvent catalyst, and a metal catalyst to form a primary mixture;
Reacting the primary mixture at 100 to 150 ° C. for 5 to 20 minutes;
Adding an acid catalyst and starch to the reactants to form a reaction mixture; And
Method for producing hydroxymethylfurfural comprising the step of heating the reaction mixture.
제1항 또는 제2항에 있어서,
상기 반응혼합물의 가열은 100 내지 120℃에서 50 내지 100분을 가열하는 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method according to claim 1 or 2,
Heating the reaction mixture is a method for producing hydroxymethylfurfural, characterized in that for heating 50 to 100 minutes at 100 to 120 ℃.
제1항 또는 제2항에 있어서,
상기 전분은 가용성 전분 (soluble starch), 옥수수전분, 밀전분, 쌀전분, 감자전분, 고구마전분, 타피오카 (카사바전분), 도토리전분 및 칡전분으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method according to claim 1 or 2,
The starch is hydroxy starch, corn starch, wheat starch, rice starch, potato starch, sweet potato starch, tapioca (cassava starch), acorn starch and hydroxy starch, characterized in that at least one selected from the group consisting of Method of producing methylfurfural.
제1항 또는 제2항에 있어서,
상기 이온성액체는 1-에틸-3-메틸이미다졸리움 브로마이드 (1-ethyl-3-methylimidazolium bromide), 1-에틸-3-메칠이미다졸리움 테트라보레이트 (1-ethyl-3-methylimidazolium tetraborate), 1-에틸-3-메틸이미다졸리움 아세테이트 (1-ethyl-3-methylimidazolium acetate), 1-에틸-3-메틸이미다졸리움 클로라이드 (1-ethyl-3-methylimidazolium chloride), 1-부칠-3-메틸이미다졸리움 브로마이드 (1-butyl-3-methylimidazolium bromide), 1-부틸-3-메틸이미다졸리움 클로라이드 (1-butyl-3-methylimidazolium chloride), 1-헥실-3-메틸이미다졸리움 클로라이드 (1-hexyl-3-methylimidazolium chloride), 1-헥실-3-메틸이미다졸리움 브로마이드 (1-hexyl-3-methylimidazolium bromide), 1-옥틸-3-메틸이미다졸리움 클로라이드 (1-octyl-3-methylimidazolium chloride) 및 1-옥틸-3-메틸이미다졸리움 브로마이드 (1-octyl-3-methylimidazolium bromide)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method according to claim 1 or 2,
The ionic liquid is 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium tetraborate, 1-ethyl-3-methylimidazolium tetraborate, 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methylimidazolium chloride, 1-butyl-3- Methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride (1-butyl-3-methylimidazolium bromide) 1-hexyl-3-methylimidazolium chloride), 1-hexyl-3-methylimidazolium bromide, 1-octyl-3-methylimidazolium chloride (1-octyl-3- methylimidazolium chloride) and 1-octyl-3-methylimidazolium bromide (1-octyl-3-methylimidazolium bromide) Method of hydroxymethyl furfural, characterized in that the merchant production.
제1항 또는 제2항에 있어서,
상기 산 촉매제는 옥살산 (Oxalic acid), 인산 (Phophoric acid), 황산 (Sulpheric acid) 및 염산 (Hydrochloric acid)으로 이루어진 군으로부터 선택된 1종인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method according to claim 1 or 2,
The acid catalyst is oxalic acid (Oxalic acid), phosphoric acid (Phophoric acid), sulfuric acid (Sulpheric acid) and hydrochloric acid (Hydrochloric acid) is a production method of hydroxymethylfurfural, characterized in that one selected from the group consisting of.
제1항 또는 제2항에 있어서,
상기 산 촉매제는 0.3M 내지 0.5M 농도의 염산인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method according to claim 1 or 2,
The acid catalyst is a method for producing hydroxymethylfurfural, characterized in that the hydrochloric acid of 0.3M to 0.5M concentration.
제1항 또는 제2항에 있어서,
상기 유기용매 촉매제는 에틸아세테이트 또는 말릭산 (maleic acid)인 것은 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method according to claim 1 or 2,
Wherein the organic solvent catalyst is ethyl acetate or maleic acid.
제1항 또는 제2항에 있어서,
상기 유기용매 촉매제는 총 반응혼합물 부피를 기준으로 5 내지 20% 농도의 에틸아세테이트인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method according to claim 1 or 2,
The organic solvent catalyst is hydroxymethylfurfural production method, characterized in that the ethyl acetate of 5 to 20% concentration based on the total reaction mixture volume.
제2항에 있어서,
상기 금속 촉매제는 염화아연 (ZnCl2), 염화크롬Ⅱ (CrCl2), 염화크롬Ⅲ (CrCl3), 브롬화크롬 (CrBr3), 플루오르화크롬 (CrF3), 제오라이트 (Zeolite), 염화코발트(CoCl2), 염화니켈 (NiCl2) 및 염화마그네슘 (MgCl2)으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method of claim 2,
The metal catalyst is zinc chloride (ZnCl 2 ), chromium chloride II (CrCl 2 ), chromium chloride (CrCl 3 ), chromium bromide (CrBr 3 ), chromium fluoride (CrF 3 ), zeolite, cobalt chloride ( CoCl 2 ), nickel chloride (NiCl 2 ) and magnesium chloride (MgCl 2 ) The production method of hydroxymethylfurfural, characterized in that at least one selected from the group consisting of.
제2항에 있어서,
상기 금속 촉매제는 염화크롬Ⅱ (CrCl2) 단독형태, 플루오르화크롬 (CrF3) 단독형태, 염화크롬Ⅱ (CrCl2) 및 염화크롬Ⅲ (CrCl3)의 혼합형태, 염화크롬Ⅱ (CrCl2) 및 브롬화크롬 (CrBr3)의 혼합형태, 염화크롬Ⅱ (CrCl2) 및 브롬화크롬 (CrBr3)의 혼합형태, 염화크롬Ⅲ (CrCl3) 및 플루오르화크롬 (CrF3)의 혼합형태 또는 브롬화크롬 (CrBr3) 및 플루오르화크롬 (CrF3)의 혼합형태인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method of claim 2,
The metal catalyst is chromium chloride (CrCl 2 ) alone, chromium fluoride (CrF 3 ) alone, chromium chloride (CrCl 2 ) and chromium chloride (CrCl 3 ) mixed form, chromium chloride (CrCl 2 ) And mixed forms of chromium bromide (CrBr 3 ), mixed forms of chromium chloride II (CrCl 2 ) and chromium bromide (CrBr 3 ), mixed forms of chromium chloride (CrCl 3 ) and chromium fluoride (CrF 3 ) or chromium bromide A process for producing hydroxymethylfurfural, characterized in that it is a mixed form of (CrBr 3 ) and chromium fluoride (CrF 3 ).
식물 생체 추출물, 이온성액체 (ionic liquid) 및 유기용매 촉매제가 포함된 반응 혼합물을 가열하는 단계를 포함하는 하이드록시메틸푸르푸랄의 생산방법.
A method for producing hydroxymethylfurfural comprising heating a reaction mixture containing a plant biological extract, an ionic liquid and an organic solvent catalyst.
이온성액체 및 금속 촉매제를 혼합하여 1차 혼합물을 형성하는 단계;
상기 1차 혼합물을 100 내지 150℃에서 5 내지 20분간 반응시키는 단계;
상기 반응물에 식물 생체 추출물 및 유기용매 촉매제를 첨가하여 반응혼합물을 형성하는 단계; 및
상기 반응혼합물을 가열하는 단계를 포함하는 하이드록시메틸푸르푸랄의 생산방법.
Mixing the ionic liquid and the metal catalyst to form a primary mixture;
Reacting the primary mixture at 100 to 150 ° C. for 5 to 20 minutes;
Adding a plant biological extract and an organic solvent catalyst to the reactants to form a reaction mixture; And
Method for producing hydroxymethylfurfural comprising the step of heating the reaction mixture.
제12항 또는 제13항에 있어서,
상기 반응혼합물의 가열은 100 내지 120℃에서 50 내지 100분을 가열하는 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method according to claim 12 or 13,
Heating the reaction mixture is a method for producing hydroxymethylfurfural, characterized in that for heating 50 to 100 minutes at 100 to 120 ℃.
제12항 또는 제13항에 있어서,
상기 식물 생체 추출물은 산성 추출용매에 식물 생체 바이오매스 건조분말을 첨가한 후 섭씨 60 내지 80℃에서 30분 내지 3시간 동안 반응시킨 다음 원심분리하여 상층액을 추출하는 방법으로 얻어지는 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method according to claim 12 or 13,
The plant bio extract is obtained by adding a plant biobiomass dry powder to an acidic extraction solvent and reacting at 60 to 80 ° C. for 30 minutes to 3 hours, followed by centrifugation to extract the supernatant. Process for the production of oxymethylfurfural.
제15항에 있어서,
상기 식물 생체 바이오매스는 돼지감자, 치커리, 감자, 고구마, 도토리, 칡뿌리 및 카사바 (manioc)로 이루어진 군으로부터 선택된 1종인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
16. The method of claim 15,
The plant biomass is a method of producing hydroxymethylfurfural, characterized in that one species selected from the group consisting of pork potato, chicory, potatoes, sweet potatoes, acorns, chopped root and cassava (manioc).
제15항에 있어서,
상기 산성 추출용매는 옥살산 (Oxalic acid), 인산 (Phophoric acid), 황산 (Sulpheric acid) 및 염산 (Hydrochloric acid)으로 이루어진 군으로부터 선택된 1종인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
16. The method of claim 15,
The acidic extraction solvent is oxalic acid (Oxalic acid), phosphoric acid (Phophoric acid), sulfuric acid (Sulpheric acid) and hydrochloric acid (Hydrochloric acid) production method of hydroxymethylfurfural, characterized in that one selected from the group consisting of.
제15항에 있어서,
상기 산성 추출용매는 0.3M 내지 0.5M 농도의 염산인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
16. The method of claim 15,
The acidic extraction solvent is a method for producing hydroxymethylfurfural, characterized in that the hydrochloric acid of 0.3M to 0.5M concentration.
제12항 또는 제13항에 있어서,
상기 이온성액체는 1-에틸-3-메틸이미다졸리움 브로마이드 (1-ethyl-3-methylimidazolium bromide), 1-에틸-3-메칠이미다졸리움 테트라보레이트 (1-ethyl-3-methylimidazolium tetraborate), 1-에틸-3-메틸이미다졸리움 아세테이트 (1-ethyl-3-methylimidazolium acetate), 1-에틸-3-메틸이미다졸리움 클로라이드 (1-ethyl-3-methylimidazolium chloride), 1-부칠-3-메틸이미다졸리움 브로마이드 (1-butyl-3-methylimidazolium bromide), 1-부틸-3-메틸이미다졸리움 클로라이드 (1-butyl-3-methylimidazolium chloride), 1-헥실-3-메틸이미다졸리움 클로라이드 (1-hexyl-3-methylimidazolium chloride), 1-헥실-3-메틸이미다졸리움 브로마이드 (1-hexyl-3-methylimidazolium bromide), 1-옥틸-3-메틸이미다졸리움 클로라이드 (1-octyl-3-methylimidazolium chloride) 및 1-옥틸-3-메틸이미다졸리움 브로마이드 (1-octyl-3-methylimidazolium bromide)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method according to claim 12 or 13,
The ionic liquid is 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium tetraborate, 1-ethyl-3-methylimidazolium tetraborate, 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methylimidazolium chloride, 1-butyl-3- Methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride (1-butyl-3-methylimidazolium bromide) 1-hexyl-3-methylimidazolium chloride), 1-hexyl-3-methylimidazolium bromide, 1-octyl-3-methylimidazolium chloride (1-octyl-3- methylimidazolium chloride) and 1-octyl-3-methylimidazolium bromide (1-octyl-3-methylimidazolium bromide) Method of hydroxymethyl furfural, characterized in that the merchant production.
제12항 또는 제13항에 있어서,
상기 유기용매 촉매제는 에틸아세테이트 또는 말릭산 (maleic acid)인 것은 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method according to claim 12 or 13,
The organic solvent catalyst is ethyl acetate or maleic acid (maleic acid), characterized in that the production method of hydroxymethylfurfural.
제12항 또는 제13항에 있어서,
상기 유기용매 촉매제는 총 반응혼합물 부피를 기준으로 5 내지 20% 농도의 에틸아세테이트인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method according to claim 12 or 13,
The organic solvent catalyst is hydroxymethylfurfural production method, characterized in that the ethyl acetate of 5 to 20% concentration based on the total reaction mixture volume.
제13항에 있어서,
상기 금속 촉매제는 염화아연 (ZnCl2), 염화크롬Ⅱ (CrCl2), 염화크롬Ⅲ (CrCl3), 브롬화크롬 (CrBr3), 플루오르화크롬 (CrF3), 제오라이트 (Zeolite), 염화코발트(CoCl2), 염화니켈 (NiCl2) 및 염화마그네슘 (MgCl2)으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method of claim 13,
The metal catalyst is zinc chloride (ZnCl 2 ), chromium chloride (CrCl 2 ), chromium chloride (CrCl 3 ), chromium bromide (CrBr 3 ), chromium fluoride (CrF 3 ), zeolite, cobalt chloride ( CoCl 2 ), nickel chloride (NiCl 2 ) and magnesium chloride (MgCl 2 ) The production method of hydroxymethylfurfural, characterized in that at least one selected from the group consisting of.
제13항에 있어서,
상기 금속 촉매제는 염화크롬Ⅱ (CrCl2) 단독형태, 플루오르화크롬 (CrF3) 단독형태, 염화크롬Ⅱ (CrCl2) 및 염화크롬Ⅲ (CrCl3)의 혼합형태, 염화크롬Ⅱ (CrCl2) 및 브롬화크롬 (CrBr3)의 혼합형태, 염화크롬Ⅱ (CrCl2) 및 브롬화크롬 (CrBr3)의 혼합형태, 염화크롬Ⅲ (CrCl3) 및 플루오르화크롬 (CrF3)의 혼합형태 또는 브롬화크롬 (CrBr3) 및 플루오르화크롬 (CrF3)의 혼합형태인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.
The method of claim 13,
The metal catalyst is chromium chloride (CrCl 2 ) alone, chromium fluoride (CrF 3 ) alone, chromium chloride (CrCl 2 ) and chromium chloride (CrCl 3 ) mixed form, chromium chloride (CrCl 2 ) And mixed forms of chromium bromide (CrBr 3 ), mixed forms of chromium chloride II (CrCl 2 ) and chromium bromide (CrBr 3 ), mixed forms of chromium chloride (CrCl 3 ) and chromium fluoride (CrF 3 ) or chromium bromide A process for producing hydroxymethylfurfural, characterized in that it is a mixed form of (CrBr 3 ) and chromium fluoride (CrF 3 ).
제13항에 있어서,
상기 금속 촉매제는 총 반응혼합물 부피를 기준으로 1% 농도의 플루오르화크롬 (CrF3) 단독형태인 것을 특징으로 하는 하이드록시메틸푸르푸랄의 생산방법.

The method of claim 13,
The metal catalyst is a method of producing hydroxymethylfurfural, characterized in that the chromium fluoride (CrF3) in the form of 1% based on the total reaction mixture volume.

KR1020100089710A 2009-12-31 2010-09-13 Methods for production of hydroxymethylfurfural using starch or raw plant extract KR101247639B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090136249 2009-12-31
KR1020090136249 2009-12-31

Publications (2)

Publication Number Publication Date
KR20110079484A true KR20110079484A (en) 2011-07-07
KR101247639B1 KR101247639B1 (en) 2013-03-29

Family

ID=44918851

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100089710A KR101247639B1 (en) 2009-12-31 2010-09-13 Methods for production of hydroxymethylfurfural using starch or raw plant extract

Country Status (1)

Country Link
KR (1) KR101247639B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101349482B1 (en) * 2011-10-21 2014-01-10 부경대학교 산학협력단 Method for Preparing 5-Hydroxymethylfurfural Directly from Cellulose
KR101375247B1 (en) * 2012-04-03 2014-03-17 대한민국(농촌진흥청장) Method for producing hydroxymethylfurfural using citrus peel waste
WO2015030505A1 (en) * 2013-08-29 2015-03-05 한국생산기술연구원 Method for preparing 5-hydroxymethyl-2-furfural using acid catalyst in presence of ethylene glycol-based compound solvent derived from biomass
WO2017076942A1 (en) * 2015-11-04 2017-05-11 Basf Se A process for preparing a mixture comprising 5-(hydroxymethyl)furfural and specific hmf esters
JP2021134160A (en) * 2020-02-26 2021-09-13 八幡物産株式会社 Melanogenesis inhibitor, skin-whitening agent, topical skin preparation for skin whitening, method for producing hydroxymethyl furfural, and device for producing hydroxyl furfural
KR20230059611A (en) * 2021-10-26 2023-05-03 한국화학연구원 Method for producing 5-chloromethylfurfural from and system therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8429519D0 (en) * 1984-11-22 1985-01-03 Bp Chem Int Ltd Pressure sensitive adhesives
US4685342A (en) * 1985-05-15 1987-08-11 Brackett Douglas C Device for converting linear motion to rotary motion or vice versa

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101349482B1 (en) * 2011-10-21 2014-01-10 부경대학교 산학협력단 Method for Preparing 5-Hydroxymethylfurfural Directly from Cellulose
KR101375247B1 (en) * 2012-04-03 2014-03-17 대한민국(농촌진흥청장) Method for producing hydroxymethylfurfural using citrus peel waste
WO2015030505A1 (en) * 2013-08-29 2015-03-05 한국생산기술연구원 Method for preparing 5-hydroxymethyl-2-furfural using acid catalyst in presence of ethylene glycol-based compound solvent derived from biomass
US9802910B2 (en) 2013-08-29 2017-10-31 Korea Institute Of Industrial Technology Method for preparing 5-hydroxymethyl-2-furfural using acid catalyst in presence of ethylene glycol-based compound solvent derived from biomass
WO2017076942A1 (en) * 2015-11-04 2017-05-11 Basf Se A process for preparing a mixture comprising 5-(hydroxymethyl)furfural and specific hmf esters
US10259797B2 (en) 2015-11-04 2019-04-16 Basf Se Process for preparing a mixture comprising 5-(hydroxymethyl) furfural and specific HMF esters
JP2021134160A (en) * 2020-02-26 2021-09-13 八幡物産株式会社 Melanogenesis inhibitor, skin-whitening agent, topical skin preparation for skin whitening, method for producing hydroxymethyl furfural, and device for producing hydroxyl furfural
KR20230059611A (en) * 2021-10-26 2023-05-03 한국화학연구원 Method for producing 5-chloromethylfurfural from and system therefor
WO2023075288A1 (en) * 2021-10-26 2023-05-04 한국화학연구원 Method for producing 5-halomethylfurfural and system therefor

Also Published As

Publication number Publication date
KR101247639B1 (en) 2013-03-29

Similar Documents

Publication Publication Date Title
KR101247639B1 (en) Methods for production of hydroxymethylfurfural using starch or raw plant extract
Chen et al. Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment
Kalhor et al. Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste
Tang et al. Mechanistic study of glucose-to-fructose isomerization in water catalyzed by [Al (OH) 2 (aq)]+
Rico et al. Valorization of peanut shells: Manufacture of bioactive oligosaccharides
Tao et al. Catalytic hydrolysis of cellulose into furans in MnCl2–ionic liquid system
Yi et al. Acid-mediated production of hydroxymethylfurfural from raw plant biomass with high inulin in an ionic liquid
Allison et al. The effect of ionic liquid pretreatment on the bioconversion of tomato processing waste to fermentable sugars and biogas
Chun et al. Catalytic production of hydroxymethylfurfural from sucrose using 1-methyl-3-octylimidazolium chloride ionic liquid
CN104311411B (en) The method of levulinic acid is prepared in multistage acid hydrolysis
Klein et al. Bioethanol production from Ficus religiosa leaves using microwave irradiation
CN102617287B (en) Method for preparing hexitol or hydroxy-acetone
Sganzerla et al. Recovery of sugars and amino acids from brewers' spent grains using subcritical water hydrolysis in a single and two sequential semi-continuous flow-through reactors
US10081823B2 (en) Treatment method for biomass to maximize sugar yield, and additive used in same
Overton et al. Molecular dynamics simulations and experimental verification to determine mechanism of cosolvents on increased 5-hydroxymethylfurfural yield from glucose
Kanzler et al. High-resolution mass spectrometry analysis of melanoidins and their precursors formed in a model study of the maillard reaction of methylglyoxal with L-alanine or L-lysine
Peng et al. Effect of metal salts existence during the acid-catalyzed conversion of glucose in methanol medium
EP2534123B1 (en) Method for processing a lignocellulose or cellulose biomass by means of solid tungsten-based lewis acids
CN103275096A (en) Method for preparing isosorbide based on cellulose
KR20140111702A (en) Process for making levulinic acid
Salzano de Luna et al. Pine needles as a biomass resource for phenolic compounds: Trade-off between efficiency and sustainability of the extraction methods by life cycle assessment
Offei et al. Cellulase and acid-catalysed hydrolysis of Ulva fasciata, Hydropuntia dentata and Sargassum vulgare for bioethanol production
KR101130215B1 (en) Production process of 5-hydroxymethyl-2-furaldehyde from raw biomass using the same
CN111187236A (en) Process for the preparation of 5-hydroxymethylfurfural from a glucose-containing feedstock
Chen et al. Conversion of Chitin to Nitrogen‐containing Chemicals

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee