KR20110075629A - Wire rod for miniblock spring and method for manufacturing the wire rod - Google Patents

Wire rod for miniblock spring and method for manufacturing the wire rod Download PDF

Info

Publication number
KR20110075629A
KR20110075629A KR1020090132128A KR20090132128A KR20110075629A KR 20110075629 A KR20110075629 A KR 20110075629A KR 1020090132128 A KR1020090132128 A KR 1020090132128A KR 20090132128 A KR20090132128 A KR 20090132128A KR 20110075629 A KR20110075629 A KR 20110075629A
Authority
KR
South Korea
Prior art keywords
wire rod
cooling
spring steel
less
rolling
Prior art date
Application number
KR1020090132128A
Other languages
Korean (ko)
Other versions
KR101316324B1 (en
Inventor
이환희
정회영
현영준
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020090132128A priority Critical patent/KR101316324B1/en
Publication of KR20110075629A publication Critical patent/KR20110075629A/en
Application granted granted Critical
Publication of KR101316324B1 publication Critical patent/KR101316324B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium

Abstract

PURPOSE: A mini-block spring steel wire rod and a manufacturing method thereof are provided to manufacture a spring without heat treatment, thereby reducing costs and improving productivity. CONSTITUTION: A billet is heated at 1000°C or higher and subject to rough rolling, intermediate finish rolling, final finish rolling, and reduction/size control rolling. The rolled billet is wound on a laying head at a temperature of 880-920°C. The billet is cooled in a cooling zone comprising a conveyor and one or more slow-cooling covers so that a wire rod is produced.

Description

미니블럭 스프링강 선재 및 그 제조방법{Wire Rod for Miniblock Spring and Method for Manufacturing the Wire Rod}Wire rod for miniblock spring and method for manufacturing the wire rod

본 발명은 자동차 현가장치에 주로 사용되는 미니블럭 스프링강 선재를 제조하는 방법에 관한 것으로서, 보다 상세하게는, 필링(Peeling)가공성이 우수한 미니블럭 스프링강 선재 및 그 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a mini-block spring steel wire mainly used in automobile suspensions, and more particularly, to a mini-block spring steel wire having excellent peeling workability and a method of manufacturing the same.

미니블럭 스프링은 도 1에 나타난 바와 같이, 끝단부와 중심부의 선경에, 예를 들면, 약 5㎜φ이상의 차이가 있다.As shown in FIG. 1, the mini block spring has a difference of, for example, about 5 mmφ or more in the diameter of the tip and center portion.

이와 같이 미니블럭 스프링의 끝단부와 중심부의 선경에 약 5㎜φ이상의 차이가 있으므로, 미니블럭 스프링강 선재의 경우에는 미니블럭 스프링으로 가공시 상당히 많은 양의 소재를 깎아내어야 한다.As such, there is a difference of about 5 mmφ or more in the diameter of the tip and center of the mini block spring. Therefore, in the case of the mini block spring steel wire rod, a considerable amount of material must be scraped off when processing the mini block spring.

이 때문에 소재(선재)가 편차없이 얼마나 잘 깍이는지가 매우 중요한 품질 특성중의 하나이다. 이를 소재(선재)의 필링(Peeling) 가공성이라고도 표현하는데 일반적으로 소재를 깎아낼 때 표층의 경도가 낮아 바이트의 마모량이 적을 수록 필링 가공성이 우수하다고 표현한다. For this reason, how well the material (wire) is cut without variation is one of the very important quality characteristics. This is also referred to as the peeling (peeling) workability of the material (wire) in general, when cutting the material, the hardness of the surface is low, the less the amount of bite wear, the better the peeling workability.

뿐만아니라 필링 시 소재가 얼마나 곧게 가공되는지(직진도)와 생성된 칩의 모양이 얼마나 균일한가 또한 필링 가공성과 밀접한 관련이 있다. In addition, how straight the material is processed during the filling (straightness) and how uniform the shape of the resulting chips is also closely related to the peeling processability.

종래의 미니블럭 스프링강 선재는 그 경도가 높고 그 편차 또한 컸기 때문에 우수한 필링 가공성을 확보하기 위하여 가공 전 소둔 열처리를 실시하였다.Since the conventional miniblock spring steel wire has a high hardness and a large variation, it is subjected to annealing heat treatment before processing to ensure excellent peeling workability.

일반적으로, 상기 소둔 열처리는 코일 전체를 배치(Batch)에 넣어 행하였는데, 이 과정에서 소요되는 시간과 비용은 고객사의 원가 경쟁력을 떨어뜨리는 주 원인이 되었다.In general, the annealing heat treatment was performed by placing the entire coil in a batch, and the time and cost in this process were the main cause of the cost competitiveness of the customer.

이와 같은 배경에서 소둔 열처리를 생략하기 위한 여러 시도가 있었지만, 코일의 탑(TOP)부와 버텀(BOTTOM)부 간의 냉각편차, 중심부에 발생되는 저온조직 발생 등으로 인해 열처리를 생략하기가 어려운 상황이다. Although many attempts have been made to omit the annealing heat treatment in this background, it is difficult to omit the heat treatment due to the cooling deviation between the TOP and BOTTOM portions of the coil and the occurrence of low temperature tissue generated at the center. .

이에 고객사에서는 자체적으로 마모성을 높인 티타늄 바이트를 개발하게 되었는데 그럼에도 불구하고 종래의 미니블럭 스프링강 선재를 열처리 없이 사용하기에는 무리가 있었다. The customer developed a titanium bite, which increased its wear resistance. Nevertheless, it was difficult to use the conventional mini block spring steel wire without heat treatment.

따라서, 열처리 없이도 우수한 필링 가공성을 갖는 미니블럭 스프링강 선재의 개발이 요구되고 있는 실정이다.Therefore, there is a demand for the development of mini block spring steel wire having excellent peeling workability without heat treatment.

본 발명은 선재 압연 온도 및 냉각조건을 적절히 제어함으로써 열처리를 행하지 않고서도 우수한 필링 가공성을 갖는 미니블럭 스프링강 선재 및 그 제조방법을 제공하고자 하는 것이다.The present invention is to provide a mini-block spring steel wire having excellent peeling workability without heat treatment by appropriately controlling the wire rolling temperature and cooling conditions, and a manufacturing method thereof.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 중량%로, C: 0.52 ~ 0.58%, Si: 1.2 ~ 1.6%, Mn: 0.6 ~ 0.8%, Cr: 0.60 ~ 0.80%, V: 0.10 ~ 0.15%, P: 0.025%이하, S: 0.015%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 그 조직이 3 ~ 15 Vol.%의 페라이트와 나머지 펄라이트로 이루어지고, 그리고 26.9 ~ 27.3의 HRC 경도값을 갖는 미니블럭 스프링강 선재에 관한 것이다.The present invention is in weight%, C: 0.52 to 0.58%, Si: 1.2 to 1.6%, Mn: 0.6 to 0.8%, Cr: 0.60 to 0.80%, V: 0.10 to 0.15%, P: 0.025% or less, S: It relates to a miniblock spring steel wire which is composed of less than 0.015%, the remaining Fe and other unavoidable impurities, the structure consists of 3-15 vol.% Ferrite and the remaining pearlite, and has an HRC hardness value of 26.9 to 27.3. .

상기 펄라이트의 라멜라층상 간격은 0.3 ~ 0.6㎛가 바람직하다.As for the lamellar layer space | interval of the said pearlite, 0.3-0.6 micrometer is preferable.

또한, 본 발명은 중량%로, C: 0.52 ~ 0.58%, Si: 1.2 ~ 1.6%, Mn: 0.6 ~ 0.8%, Cr: 0.60 ~ 0.80%, V: 0.10 ~ 0.15%, P: 0.025%이하, S: 0.015%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성된 빌렛을 1000℃ 이상에서 가열한 후, 조압연, 중간마무리압연, 최종마무리압연과 감면 및 치수제어압연(Reducing and Sizing Milling)을 거쳐 레잉 헤드(Laying Head)에서 권취한 다음, 컨베이어와 하나 또는 다수개의 서냉커버가 구비되어 있는 냉각대에서 냉각하여 선재를 제조하는 방법으로서, In addition, the present invention is a weight%, C: 0.52 ~ 0.58%, Si: 1.2 ~ 1.6%, Mn: 0.6 ~ 0.8%, Cr: 0.60 ~ 0.80%, V: 0.10 ~ 0.15%, P: 0.025% or less, S: 0.015% or less, the billet composed of the remaining Fe and other unavoidable impurities is heated at 1000 ° C or higher, and then subjected to rough rolling, intermediate finishing rolling, final finishing rolling, reduction and dimensional control rolling (Reducing and Sizing Milling). As a method of manufacturing a wire rod by winding in a head, it is cooled in a cooling stand equipped with a conveyor and one or more slow cooling covers.

상기 권취온도가 880~920℃이고, 그리고 냉각대에서의 선재의 냉각속도가 0.45 ~ 1.0℃/초(s)인 것을 특징으로 하는 미니블럭 스프링강 선재의 제조방법에 관한 것이다.The winding temperature is 880 ~ 920 ℃, and the cooling rate of the wire rod in the cooling zone is 0.45 ~ 1.0 ℃ / sec (s) relates to a method for producing a mini-block spring steel wire.

상술한 바와 같이, 본 발명에 의하면, 열처리를 행하지 않고서도 우수한 필링 가공성을 갖는 미니블럭 스프링강 선재를 제공함으로써, 열처리를 행하지 않고 스프링 가공이 가능하게 되어 원가절감, 생산성 향상 및 품질개선 등을 가져올 수 있다.As described above, according to the present invention, by providing a mini-block spring steel wire having excellent peeling workability without heat treatment, spring processing can be performed without heat treatment, resulting in cost reduction, productivity improvement, and quality improvement. Can be.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

우선, 빌렛의 조성에 대하여 설명한다.First, the composition of the billet will be described.

상기 C은 강도 상승에 매우 효과적인 원소로서, 강도 확보를 위하여 0.52% 이상 첨가되어야 하지만, C 함량의 증가에 따른 강도 상승은 변형저항성 등 스프링강 고유의 물성을 확보하는데 부적합하므로 그 상한은 0.58%로 제한하는 것이 바람직하다. The C is a very effective element to increase the strength, and should be added at least 0.52% to secure the strength, but the increase in strength due to the increase of the C content is not suitable for securing the inherent properties of the spring steel such as deformation resistance, so the upper limit thereof is 0.58%. It is desirable to limit.

상기 Si는 스프링강의 강도 확보 및 변형저항성 측면에서 필요한 원소로서, 이러한 효과를 얻기 위해서는 1.2%이상 첨가되어야 하나, Si는 선재 제조 시 가열로 및 냉각대에서 표면 탈탄을 조장하므로 그 상한은 1.6%로 제한하는 것이 바람직하다.Si is an element necessary for securing strength and deformation resistance of spring steel, and in order to obtain such an effect, it should be added at least 1.2%. However, Si promotes surface decarburization in heating furnaces and cooling zones during wire fabrication, so the upper limit thereof is 1.6%. It is desirable to limit.

상기 Mn은 스프링강에서 경화능을 향상시켜 강도를 확보하는데 유익한 원소이다. 따라서, 상기 Mn 함량이 0.6% 미만인 경우에는 고강도 선재로서 요구되는 충분한 강도 및 소입성을 얻기 어렵고, 0.8%를 초과하는 경우에는 인성이 저하하므로 상기 Mn의 함량은 0.6~0.8%로 제한하는 것이 바람직하다. The Mn is an element that is beneficial for securing strength by improving hardenability in spring steel. Therefore, when the Mn content is less than 0.6%, it is difficult to obtain sufficient strength and hardenability required as a high strength wire, and when it exceeds 0.8%, the toughness is lowered, so the Mn content is preferably limited to 0.6 to 0.8%. Do.

상기 Cr은 그 함량에 따라 강재의 내산화성, 템퍼 연화성 및 소입성 등에 영향을 주기 때문에 0.60% 이상 첨가되어야 한다. The Cr should be added at least 0.60% because it affects the oxidation resistance, temper softening and quenching properties of the steel depending on the content thereof.

그러나, 그 함량이 지나치게 많은 경우에는 스프링강의 주요 특징중의 하나인 변형저항성에 악영향을 미치므로 그 상한은 0.80%로 제한한다.However, if the content is too large, the upper limit thereof is limited to 0.80% because it adversely affects deformation resistance, which is one of the main characteristics of spring steel.

상기 V은 단독, 또는 복합 첨가에 의해 탄/질화물을 형성하여 석출경화 작용을 일으킴으로써 스프링 특성을 개선하는 원소이다. V 함량은 0.10% 이상, 0.15%를 넘지 않는 범위로 제한하여 결정립도 제어와 스프링의 피로특성을 개선하도록 하는 것이 바람직하다.The V is an element that improves the spring characteristics by forming a carbon / nitride alone or in combination to cause precipitation hardening. It is desirable to limit the V content to not more than 0.10% and not more than 0.15% to improve the grain size control and the fatigue properties of the spring.

상기 P는 0.025% 이하로 제한하는 것이 바람직한데, 그 이유는 P의 경우 결정 입계에 편석되어 인성을 저하시켜 신선 가공성을 떨어뜨리기 때문이다.It is preferable to limit the P to 0.025% or less because P is segregated at the grain boundaries and the toughness is lowered to reduce the workability.

상기 S는 유화물을 형성시키기 때문에 제강공정에서 일반적으로 제어 가능한 수준인 0.015%이하로 제한하는 것이 바람직하다.The S is preferably limited to 0.015% or less, which is a generally controllable level in the steelmaking process because it forms an emulsion.

상기와 같이 조성되는 빌렛은 가열, 압연 및 냉각 공정을 거쳐 스프링용 선재로 만들어지게 되는데, 이하에서는 제조공정에 대하여 설명한다.The billet formed as described above is made of a wire rod for the spring through a heating, rolling and cooling process, the manufacturing process will be described below.

상기 빌렛은 1000℃ 이상의 가열온도로 가열되고, 가열된 빌렛은 조압연, 중간마무리압연, 최종마무리압연 및 감면 및 치수제어압연을 거쳐 레잉 헤드(Laying Head)에서 권취되게 된다. The billet is heated to a heating temperature of 1000 ℃ or more, the heated billet is wound in a laying head through rough rolling, intermediate finishing rolling, final finishing rolling and reduction and dimensional control rolling.

이 레잉 헤드에서 권취되자마자 측정되는 온도를 권취온도라고 하는데 이 온도는 선재의 물성을 결정짓는 냉각 공정의 초기온도로 매우 중요한 의미를 가진다. The temperature measured as soon as it is wound in this laying head is called the winding temperature, which is very important as the initial temperature of the cooling process that determines the properties of the wire rod.

따라서, 이 온도를 어떻게 관리하느냐에 따라서 선재의 물성을 크게 변화시킬수 있다.Therefore, the physical properties of the wire rod can be greatly changed depending on how the temperature is managed.

본 발명에서는 선재의 경도를 낮추기 위하여 가능한 한 권취온도를 높게 제한하는데, 이는 권취온도가 높을 수록 선재의 연속냉각곡선에서 높은 온도영역에서 변태가 개시되기 때문이며, 높은 온도에서 생성되는 펄라이트 조직은 저온에서 생성되는 조직에 비해 그 라멜라 층상간격이 더 넓다. In the present invention, in order to reduce the hardness of the wire rod, the winding temperature is limited as high as possible because the higher the winding temperature, the transformation starts in the high temperature region in the continuous cooling curve of the wire rod. Its lamellar spacing is wider than the resulting tissue.

그러나, 권취온도가 너무 높은 경우에는 조업 과정에서 수냉대 냉각수량의 감소로 소재의 심각한 표면긁힘을 유발할 수도 있다.However, if the coiling temperature is too high, it may cause serious surface scratches of the material due to the decrease of the amount of cooling water in the cooling process.

따라서, 본 발명에서는 권취온도를 880~920℃로 제한한다.Therefore, in the present invention, the winding temperature is limited to 880 ~ 920 ℃.

상기와 같이 권취된 선재는 냉각되는데, 이 때, 냉각속도는 0.45 ~ 1.0℃/초(s)로 제한하는 것이 바람직하다.The wire wound as described above is cooled, wherein the cooling rate is preferably limited to 0.45 ~ 1.0 ℃ / s (s).

상기 냉각속도가 0.45 ℃/s 미만인 경우에는 설비특성상 제어가 어려울 뿐만 아니라 생상성이 떨어지고, 1.0 ℃/s 를 초과하는 경우에는 경도가 증가하여 필링 가공성을 저하시킨다.When the cooling rate is less than 0.45 ° C / s, not only is it difficult to control due to the characteristics of the equipment, but also the productivity is lowered, and when the cooling rate exceeds 1.0 ° C / s, the hardness is increased to decrease the peeling workability.

상기한 선재의 냉각속도를 제어하는 방법의 예로서는 특별히 한정되는 것은 아니지만, 예를 들면, 냉각대의 컨베이어 속도 및 선재 냉각대의 서냉커버 조건을 제어하는 방법 등을 들 수 있는데, 이에 대하여 설명한다.Examples of the method of controlling the cooling rate of the wire rod are not particularly limited, but examples thereof include a conveyor speed of the cooling stand and a method of controlling the slow cooling cover condition of the wire rod cooling stand.

본 발명에 사용될 수 있는 냉각대는 특별히 한정되는 것은 아니지만, 통상적인 스텔모어(Stelmor)냉각대 등이 본 발명에 바람직하게 사용될 수 있다.The cooling stand that can be used in the present invention is not particularly limited, but a conventional Stelmor cooling stand or the like can be preferably used in the present invention.

선재의 냉각대의 컨베이어 속도에 대하여 설명한다.The conveyor speed of the cooling stand of the wire rod will be described.

스텔모어(Stelmor)냉각대의 컨베이어 속도는 송풍 시 그 영향을 얼마나 받을 것인지와 냉각대에서의 적치밀도를 결정하는 가장 중요한 인자이다. The conveyor speed of the Stelmor cooling stage is the most important factor in determining how much it will be affected by the blowing and the stocking density in the cooling stage.

본 발명에서는 냉각대에서 송풍은 실시하지 않는 것이 바람직하다.In the present invention, it is preferable not to blow air in the cooling zone.

송풍을 실시하지 않는 경우 컨베이어 속도는 선재의 적치밀도에 한정되어 작용하는데 컨베이어 속도가 느려질수록 선재의 적치밀도는 증가하게 되며 이 경우 링과 링 사이에 작용하는 복사열로 인하여 서냉의 효과는 더욱 극대화된다. In the absence of blowing, the conveyor speed is limited to the pile density of the wire rod. As the conveyor speed decreases, the pile density of the wire rod increases. In this case, the slow cooling effect is maximized due to the radiant heat between the rings. .

하지만, 선재의 압연 속도가 일정하기 때문에 치수가 작은 경우 권취되어 나오는 소재의 양이 상대적으로 많아 무조건 컨베이어 속도를 낮게 유지하는 것은 자칫 조업 이상 발생의 원인이 될 수 있다. However, since the rolling speed of the wire rod is constant, if the dimension is small, the amount of material wound up is relatively large, so that the conveyor speed can be unconditionally caused by abnormal operation.

따라서, 컨베이어의 최대속도는 정상적인 조업이 가능하면서 적치밀도를 최대로 높일 수 있는 컨베이어 속도인 0.15m/s 이상으로 제한하는 것이 바람직하다.Therefore, it is preferable to limit the maximum speed of the conveyor to 0.15 m / s or more, which is a conveyor speed capable of normal operation and maximizing pile load density.

그러나, 컨베이어 속도가 0.2m/s를 초과하는 경우에는 서냉효과가 떨어져 경도가 증가하여 필링 가공성이 떨어지므로, 컨베이어 속도는 0.15 ~ 0.20m/s로 제한하는 것이 바람직하다.However, when the conveyor speed exceeds 0.2 m / s, the slow cooling effect is lowered to increase the hardness and the peeling workability is reduced, it is preferable to limit the conveyor speed to 0.15 ~ 0.20 m / s.

다음으로, 선재 냉각대의 서냉커버 조건에 대하여 설명한다.Next, the slow cooling cover conditions of the wire rod cooling stand will be described.

스텔모어(Stelmor) 냉각대의 부족한 서냉능을 보완하기 위한 설비인 서냉커버는 정해진 구간 내에서 변태를 완료시키고 커버 안에서의 복열 효과를 최소화 하기 위해 스프링강의 경우 일반적으로 냉각초기 1, 2개의 서냉커버를 연 상태로 작업해 왔다.The slow cooling cover, which is a facility to compensate for the poor slow cooling ability of the Stelmor cooling table, is generally used in the case of spring steel in order to complete the transformation within a predetermined section and minimize the reheating effect in the cover. I have been working open.

그러나, 본 발명자들의 여러 차례에 걸친 시험(TEST) 결과, 서냉커버를 모두 닫은 상태로 조업하는 것이 미니블럭 스프링강의 필링 가공성 향상에 보다 효과적임을 확인할 수 있었다.However, as a result of several tests of the present inventors, it was confirmed that operating with the slow cooling cover all closed is more effective in improving the peeling workability of the mini block spring steel.

이러한 시험결과에 의하여, 본 발명에서는 냉각대에서의 서냉커버는 모두 닫은 상태로 조업하는 것이 바람직하다.According to the test results, in the present invention, it is preferable to operate the slow cooling cover in the cooling stand in a closed state.

상기와 같이 제조된 선재는 3 ~ 15 Vol.%의 페라이트와 나머지 펄라이트로 이루어지는 조직을 갖는다.The wire rod manufactured as described above has a structure composed of 3-15 vol.% Of ferrite and the remaining pearlite.

상기 페라이트의 함량이 3Vol.%미만인 경우에는 연성이 저하하여 필링 가공성이 떨어지므로, 상기 페라이트는 3Vol.%이상은 포함되어야 하지만, 페라이트를 15Vol.% 를 초과하여 포함시키는 것은 제조상 어려움이 있다.When the content of the ferrite is less than 3 Vol.%, The ductility is lowered and the peeling workability is poor. Therefore, the ferrite should contain 3Vol.% Or more, but it is difficult to include the ferrite in excess of 15Vol.%.

따라서, 상기 페라이트의 함량은 3 ~ 15Vol.%로 제한하는 것이 바람직하다.Therefore, the content of the ferrite is preferably limited to 3 ~ 15 Vol.%.

상기 펄라이트의 라멜라층상 간격은 0.3 ~ 0.6㎛가 바람직하다.As for the lamellar layer space | interval of the said pearlite, 0.3-0.6 micrometer is preferable.

상기 펄라이트의 라멜라층상 간격이 0.3 ㎛미만인 경우에는 경도가 증가되어 필링가공성이 떨어지고, 0.6㎛를 초과하는 경우에는 인성이 저하되어 가공성이 떨어진다.When the lamellar layer spacing of the pearlite is less than 0.3 μm, the hardness is increased to reduce the peeling workability. When the pearlite is more than 0.6 μm, the toughness decreases and the workability is poor.

또한, 상기 선재는 26.9 ~ 27.3의 HRC 경도값을 갖는다.In addition, the wire rod has an HRC hardness value of 26.9 ~ 27.3.

상기 경도가 27.3를 초과하는 경우에는 경도가 증가되어 필링 가공성이 떨어지므로, 경도는 27.3이하로 제한하는 것이 바람직하지만, 경도를 26.9미만으로 제 어하는 것은 제조 상 어려움이 있다.When the hardness exceeds 27.3, the hardness is increased and the peeling workability is inferior. Therefore, the hardness is preferably limited to 27.3 or less, but it is difficult to control the hardness to less than 26.9.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기 표 1과 같은 조성을 갖는 160X160㎟ 의 스프링강 빌렛을 15.5 mmφ선재로 압연한 후, 하기 표 2의 권취온도 및 냉각조건으로 권취 및 냉각한 다음, 선재를 C방향으로 절단한 단면에서 열십자 모양으로 9개 지점의 HRC 경도(로크웰 경도), 퍼얼라이트의 라멜라층상 간격 및 페라이트 분율을 측정하고, 그 결과를 하기 표 2에 나타내었다.After rolling a 160 × 160 mm2 spring steel billet having a composition as shown in Table 1 with a 15.5 mmφ wire rod, winding and cooling it under the winding temperature and cooling conditions shown in Table 2, and then cutting the wire rod in a cross-section in the cross section C direction HRC hardness (Rockwell hardness), lamellar lamellar spacing and ferrite fraction of nine points were measured, and the results are shown in Table 2 below.

하기 표 2의 종래재(1-2)는 도 2에 나타난 바와 같이 서냉커버들 중 1,2번 2개만을 덮고 선재를 냉각을 시킨 것[도 2의 (a)]이고, 발명재(1-3)의 경우에는 서냉커버들 모두를 덮고 선재를 냉각시킨 것[도 2의 (b)]이다.The conventional material (1-2) of the following Table 2 is to cover only two or two of the slow cooling covers as shown in FIG. 2 and to cool the wire rod [Fig. 2 (a)]. In the case of -3), the wire rods are cooled by covering all the slow cooling covers (FIG. 2 (b)).

조성(중량%)Composition (% by weight) CC SiSi MnMn PP SS AlAl CrCr VV N(ppm)N (ppm) 0.540.54 1.451.45 0.650.65 0.0070.007 0.0050.005 0.0030.003 0.670.67 0.110.11 4545

시편No.Specimen No. 권취온도
(℃)
Coiling temperature
(℃)
컨베이어
속도(m/s)
conveyor
Speed (m / s)
평균냉각
속도(℃/s)
Average cooling
Speed (℃ / s)
HRC경도HRC Hardness 라메라층상
간격(㎛)
Lamera Layered
Thickness (㎛)
페라이트
분율(%)
ferrite
Fraction (%)
종래재 1Conventional material 1 852852 0.300.30 1.321.32 28.728.7 0.150.15 3 미만Less than 3 종래재 2Conventional material 2 860860 0.300.30 1.351.35 28.328.3 0.150.15 3 미만Less than 3 발명재 1Invention 1 908908 0.170.17 0.720.72 27.227.2 0.350.35 7.87.8 발명재 2Invention Material 2 910910 0.190.19 0.760.76 27.227.2 0.520.52 8.08.0 발명재 3Invention 3 903903 0.150.15 0.560.56 27.327.3 0.500.50 10.210.2

상기 표 2에 나타난 바와 같이, 본 발명에 부합되는 조건으로 제조된 선재(발명재 1-3)는 HRC 경도값이 27.2~27.3으로서 종래조건으로 생산한 종래재(1-2)와 비교하면 경도가 낮아진 것을 확인할 수 있다. As shown in Table 2, the wire rod (inventive material 1-3) manufactured under the conditions according to the present invention has an HRC hardness value of 27.2 to 27.3, compared with the conventional material (1-2) produced under conventional conditions. It can be seen that is lowered.

또한, 발명재(1-3)은 종래재(1-2)와 비교하여 라멜라층상간격이 더 넓고, 또한 페라이트 분율이 더 큼을 알 수 있다.In addition, it can be seen that the inventive material (1-3) has a larger lamellar layer spacing and a larger ferrite fraction than the conventional material (1-2).

도 1은 통상적인 미니블럭 스프링의 일례도1 is an example of a conventional mini block spring

도 2는 종래재와 발명재를 제조하기 위한 냉각설비조건을 나타내는 개략도로서, (a)는 종래재에 관한 것이고, (b)는 발명재에 관한 것임.2 is a schematic view showing cooling equipment conditions for producing conventional materials and invention materials, (a) relates to conventional materials, and (b) relates to invention materials.

Claims (4)

중량%로, C: 0.52 ~ 0.58%, Si: 1.2 ~ 1.6%, Mn: 0.6 ~ 0.8%, Cr: 0.60 ~ 0.80%, V: 0.10 ~ 0.15%, P: 0.025%이하, S: 0.015%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 그 조직이 3 ~ 15 Vol.%의 페라이트와 나머지 펄라이트로 이루어지고, 그리고 26.9 ~ 27.3의 HRC 경도값을 갖는 미니블럭 스프링강 선재.By weight%, C: 0.52 to 0.58%, Si: 1.2 to 1.6%, Mn: 0.6 to 0.8%, Cr: 0.60 to 0.80%, V: 0.10 to 0.15%, P: 0.025% or less, S: 0.015% or less , Miniblock spring steel wire, composed of the remaining Fe and other unavoidable impurities, the structure consisting of 3-15 vol.% Ferrite and the remaining pearlite, and having an HRC hardness value of 26.9-27.3. 제1항에 있어서, 상기 펄라이트의 라멜라층상 간격이 0.3 ~ 0.6㎛인 것을 특징으로 하는 미니블럭 스프링강 선재.The mini block spring steel wire according to claim 1, wherein the lamellar layer spacing of the pearlite is 0.3 to 0.6 mu m. 중량%로, C: 0.52 ~ 0.58%, Si: 1.2 ~ 1.6%, Mn: 0.6 ~ 0.8%, Cr: 0.60 ~ 0.80%, V: 0.10 ~ 0.15%, P: 0.025%이하, S: 0.015%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성된 빌렛을 1000℃ 이상에서 가열한 후, 조압연, 중간마무리압연, 최종마무리압연과 감면 및 치수제어압연을 거쳐 레잉 헤드(Laying Head)에서 권취한 다음, 컨베이어와 하나 또는 2개이상의 서냉커버가 구비되어 있는 냉각대에서 냉각하여 선재를 제조하는 방법으로서, By weight%, C: 0.52 to 0.58%, Si: 1.2 to 1.6%, Mn: 0.6 to 0.8%, Cr: 0.60 to 0.80%, V: 0.10 to 0.15%, P: 0.025% or less, S: 0.015% or less , The billet composed of the remaining Fe and other unavoidable impurities is heated at 1000 ℃ or higher, and then wound in a laying head through rough rolling, intermediate finishing rolling, final finishing rolling and reduction and dimensional control rolling. As a method of producing a wire rod by cooling in a cooling stand equipped with one or two or more slow cooling cover, 상기 권취온도가 880~920℃이고, 그리고 냉각대에서의 선재의 냉각속도가 0.45 ~ 1.0℃/초(s)인 것을 특징으로 하는 미니블럭 스프링강 선재의 제조방법.The winding temperature is 880 ~ 920 ℃, and the cooling rate of the wire rod in the cooling zone is 0.45 ~ 1.0 ℃ / second (s) The manufacturing method of the mini-block spring steel wire. 제3항에 있어서, 상기 선재의 냉각속도가 컨베이어의 속도를 0.15 ~ 0.2 m/s 로 제어하고 또한 서냉커버를 모두 닫은 상태에서 선재를 냉각시키는 것에 의해 제어되는 것을 특징으로 하는 미니블럭 스프링강 선재의 제조방법.4. The mini block spring steel wire rod according to claim 3, wherein the cooling speed of the wire rod is controlled by controlling the speed of the conveyor at 0.15 to 0.2 m / s and cooling the wire rod with all of the slow cooling cover closed. Manufacturing method.
KR1020090132128A 2009-12-28 2009-12-28 Wire Rod for Miniblock Spring and Method for Manufacturing the Wire Rod KR101316324B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090132128A KR101316324B1 (en) 2009-12-28 2009-12-28 Wire Rod for Miniblock Spring and Method for Manufacturing the Wire Rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090132128A KR101316324B1 (en) 2009-12-28 2009-12-28 Wire Rod for Miniblock Spring and Method for Manufacturing the Wire Rod

Publications (2)

Publication Number Publication Date
KR20110075629A true KR20110075629A (en) 2011-07-06
KR101316324B1 KR101316324B1 (en) 2013-10-08

Family

ID=44915607

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090132128A KR101316324B1 (en) 2009-12-28 2009-12-28 Wire Rod for Miniblock Spring and Method for Manufacturing the Wire Rod

Country Status (1)

Country Link
KR (1) KR101316324B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468920A (en) * 2013-08-20 2013-12-25 首钢总公司 High-carbon steel rod on-line aging high-speed production method
KR101685826B1 (en) * 2015-06-18 2016-12-12 현대제철 주식회사 Alloy steel for slewing bearing and method for manufacturing thereof
KR20200033513A (en) 2018-09-20 2020-03-30 주식회사 포스코 Wire material cooling control apparatus and wire material cooling control method
CN112680582A (en) * 2021-01-21 2021-04-20 广东韶钢松山股份有限公司 Control method for ultra-low carbon steel CH1T edge fine grain

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368530B1 (en) * 1998-12-21 2003-01-24 가부시키가이샤 고베 세이코쇼 Spring Steel Superior in Workability
US7074282B2 (en) * 2000-12-20 2006-07-11 Kabushiki Kaisha Kobe Seiko Sho Steel wire rod for hard drawn spring, drawn wire rod for hard drawn spring and hard drawn spring, and method for producing hard drawn spring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468920A (en) * 2013-08-20 2013-12-25 首钢总公司 High-carbon steel rod on-line aging high-speed production method
KR101685826B1 (en) * 2015-06-18 2016-12-12 현대제철 주식회사 Alloy steel for slewing bearing and method for manufacturing thereof
KR20200033513A (en) 2018-09-20 2020-03-30 주식회사 포스코 Wire material cooling control apparatus and wire material cooling control method
CN112680582A (en) * 2021-01-21 2021-04-20 广东韶钢松山股份有限公司 Control method for ultra-low carbon steel CH1T edge fine grain

Also Published As

Publication number Publication date
KR101316324B1 (en) 2013-10-08

Similar Documents

Publication Publication Date Title
KR100979006B1 (en) Wire Rods Having Superior Strength And Ductility For Drawing And Method For Manufacturing The Same
KR101676109B1 (en) Wire rod having good drawability and high strength, steel wire having high strength and manufacturing method of wire rod
KR101316324B1 (en) Wire Rod for Miniblock Spring and Method for Manufacturing the Wire Rod
KR100742821B1 (en) A wire rod for steel cord, and method for manufacturing the same
KR101758482B1 (en) High carbon steel wire rod and steel wire having excellent drawability and method for manufacturing thereof
KR102030157B1 (en) Steel wire for spring with excellent fatigue properties, high carbon steel wire rod therefor and method for manufacturing thereof
KR101696095B1 (en) Method for manufacturing heat treated wire rod having excellent drawability
KR101353551B1 (en) High carbon hot/cold rolled steel coil and manufactureing method thereof
KR101767821B1 (en) High carbon wire rod and steel wire and method for manufacturing thereof
KR102443412B1 (en) High strength wire rod with excellent fatigue properties and manufacturing method thereof
KR102326240B1 (en) Ultra-high sterngth steel wire rod, steel wire and manufacturing method thereof
KR102492641B1 (en) Wire rod and steel wire for spring, spring with improved fatigue resistance and nitriding properties, and the method for manufacturing the same
KR100940674B1 (en) Method for Manufacturing Wire Rod of Spring Steel
KR102531464B1 (en) Steel wire rod, steel wire, and manufacturing method thereof for ultra-high strength springs
KR20020050384A (en) A method for manufacturing spring steel without ferrite decaburization
KR102448751B1 (en) Wire rod, steel wire with improved impact toughness and formability, and their manufacturing method
KR101328320B1 (en) Hyper eutectoid wire rod having high strength and method for manufacturing the same
KR102168369B1 (en) Manufacturing method of high-carbon steel with improved bendability and the method for manufacturing the same
KR101060904B1 (en) Wire rod excellent in cold drawing workability and manufacturing method thereof
KR102046231B1 (en) Steel wire having excellent straightness while drawing and manufacturing method for the same
KR101674870B1 (en) Wire rod and steel wire having excellent strength and elongation and method for manufacturing thereof
KR101585725B1 (en) Heat treated steel wire rod for high strength ultrathin steel wire, ultrathin steel wire using the same and method for manufacturing thereof
KR101726129B1 (en) Wire rod and steel wire having excellent elongation and method for manufacturing thereof
KR101428173B1 (en) High carbon steel wire having excellent corrosion resistance and method for manufacturing thereof
KR20160082608A (en) Wire rod and steel wire having excellent strength and elongation and method for manufacturing thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant