KR20110075092A - Method for treating metal surface by using self-assembled monolayer, the steel sheet surface-treated by the method and the metal surface treatment solution therefor - Google Patents

Method for treating metal surface by using self-assembled monolayer, the steel sheet surface-treated by the method and the metal surface treatment solution therefor Download PDF

Info

Publication number
KR20110075092A
KR20110075092A KR1020090131435A KR20090131435A KR20110075092A KR 20110075092 A KR20110075092 A KR 20110075092A KR 1020090131435 A KR1020090131435 A KR 1020090131435A KR 20090131435 A KR20090131435 A KR 20090131435A KR 20110075092 A KR20110075092 A KR 20110075092A
Authority
KR
South Korea
Prior art keywords
acid
metal
self
steel sheet
treatment
Prior art date
Application number
KR1020090131435A
Other languages
Korean (ko)
Other versions
KR101143219B1 (en
Inventor
정용균
임상훈
이시우
이재륭
Original Assignee
주식회사 포스코
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 포항공과대학교 산학협력단 filed Critical 주식회사 포스코
Priority to KR1020090131435A priority Critical patent/KR101143219B1/en
Publication of KR20110075092A publication Critical patent/KR20110075092A/en
Application granted granted Critical
Publication of KR101143219B1 publication Critical patent/KR101143219B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • C23C22/03Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions containing phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/08Rinsing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Abstract

PURPOSE: A method for treating the surface of metal using a self-assembled monolayer, a steel sheet with a treated surface using the same, and a metal surface treatment solution therefor are provided to improve the properties of a metal surface. CONSTITUTION: A method for treating the surface of metal using a self-assembled monolayer is as follows. the surface of metal, composed of a galvanized steel sheet and a magnesium sheet, is organically washed. Organic solvents remained on the surface of the metal is eliminated using nitrogen gas. The surface of the metal is humidified. The metal is put into a solution which forms a self-assembled monolayer. The put metal is washed by one or more solvents. The metal is thermally hardened in a vacuum.

Description

자기 조립 분자막을 이용한 금속 표면 처리 방법, 상기 방법에 의해 표면 처리된 강판 및 상기 방법에 사용되는 금속 표면 처리용액{Method for treating metal surface by using self-assembled monolayer, the steel sheet surface-treated by the method and the metal surface treatment solution therefor} TECHNICAL FIELD The present invention relates to a metal surface treatment method using a self-assembled molecular film, a steel sheet surface-treated by the above method, and a metal surface treatment solution used in the above method method and the metal surface treatment solution therefor}

본 발명은 자기 조립 분자막을 이용한 금속 표면 처리 방법, 상기 방법에 의해 표면 처리된 강판 및 상기 방법에 사용되는 금속 표면 처리용액에 관한 것으로, 보다 상세하게는 아연 도금 강판 또는 마그네슘 판재의 표면에 자기 조립 분자막을 형성하여 표면 특성을 향상시키는 자기 조립 분자막을 이용한 금속 표면 처리 방법, 상기 방법에 의해 표면 처리된 강판 및 상기 방법에 사용되는 금속 표면 처리용액에 관한 것이다.The present invention relates to a metal surface treatment method using a self-assembled monolayer membrane, a steel sheet surface-treated by the above method and a metal surface treatment solution used in the method, and more particularly, A metal surface treatment method using a self-assembled molecular film that improves the surface characteristics by forming an aggregated molecular film, a steel sheet surface-treated by the method, and a metal surface treatment solution used in the method.

아연은 내식성이 우수한 특성을 지녔기 때문에 강판에 도금하여 아연 도금 강판으로 사용하나 그 이외의 용도로 사용하는 경우에는 도장성 및 기타 다른 특성 등이 취약해 제한이 있고, 마그네슘 판재의 경우에는 가볍고 무게 당 강도는 뛰어 난 장점이 있으나 내식성 및 기타 다른 특성 등이 취약한 문제점을 지닌다. Since zinc has excellent corrosion resistance, it is used as a galvanized steel sheet by plating on a steel sheet. However, when it is used for other purposes, it is limited in paintability and other characteristics, and in case of magnesium sheet, But it has weak resistance to corrosion and other characteristics.

이러한 물질의 한계점 때문에 과거에는 크롬이 포함된 물질을 사용하여 표면 처리를 하였으나, 여기에 사용된 크롬은 매우 유독하여 환경에 큰 문제가 되고, 규제가 까다롭다는 문제점이 있기 때문에 사용이 힘든 단점이 존재한다.In the past, due to the limitations of these materials, surface treatment was performed using chromium-containing materials. However, since chromium used here is very toxic, it is a big problem in the environment and is difficult to regulate. exist.

이에 따라 기존의 표면 특성 향상에 사용한 방법 및 물질의 한계를 극복하기 위한 새로운 표면 처리 연구가 필요한 실정이다. Therefore, new surface treatment studies are needed to overcome the limitations of the methods and materials used to improve the surface properties.

또한, 이러한 표면 특성 향상을 위해, 귀금속(Ni, Co 등)과의 합금을 통한 자체 금속의 내식성 향상, 고분자 막의 표면 코팅을 통한 내식성 향상 등의 방식을 사용하는 기술이 알려져 있지만, 이와 같은 방법 역시 금속 자체의 잇점이 없어지거나 가격 상승의 요인이 되는 문제점이 있다.Further, in order to improve such surface properties, there is known a technique using a method of improving the corrosion resistance of the self-metal through an alloy with a noble metal (Ni, Co, etc.) and improving the corrosion resistance by coating the surface of the polymer film. There is a problem that the advantage of the metal itself is lost or the price is increased.

따라서, 본 발명의 목적은 상기한 종래 문제점을 해결하기 위해 제안된 것으로서, 환경적으로도 문제되지 않으면서, 내식성, 내지문성 및 다른 물질층과의 접착성을 향상시킬 수 있을 뿐만 아니라 금속 자체의 특성을 유지하고, 적은 비용으로 금속 표면에 강하게 분자를 부착시킬 수 있는 금속 표면 처리 방법을 제공하는 것이다.Accordingly, the object of the present invention is to solve the above-mentioned problems of the prior art, and it is an object of the present invention to provide a method of manufacturing a metal material which can improve the corrosion resistance, And a method for treating a metal surface capable of strongly attaching molecules to a metal surface at a low cost.

또한, 본 발명의 다른 목적은 상기 방법에 의해 표면처리된 강판을 제공하는 것이다.Another object of the present invention is to provide a steel sheet surface-treated by the above method.

또한, 본 발명의 다른 목적은 상기 방법에 사용되는 금속 표면 처리용액을 제공하는 것이다.Another object of the present invention is to provide a metal surface treatment solution used in the above method.

본 발명의 일 견지에 의하면, 아연도금강판 및 마그네슘 판재중 적어도 하나로 이루어진 금속의 표면을 유기세척하는 단계; 상기 금속의 표면에 잔존하는 유기용매를 질소가스로 제거하는 단계; 상기 금속의 표면을 가습처리하는 단계; 상기 금속을 실란계열, 알칸계열산 및 인산계열 성분 중에서 선택된 적어도 하나의 자기 조립 특성을 갖는 화합물, 및 톨루엔, 벤젠, 에탄올, n-부탄올, n-헵탄올 및 이소프로판올 중에서 선택된 적어도 하나의 용매로 이루어진 자기 조립 분자막을 형성하는 용액에 담금처리하는 단계; 상기 담금처리된 금속을 톨루엔, 벤젠, 에탄올, n-부탄올, n-헵탄올 및 이소프로판올로 구성되는 그룹으로부터 선택된 적어도 하나의 용매에 세정하는 단계; 및 상기 금속을 진공 하에 100-200℃에서 열처리하여 경화시키는 단계를 포함하는 자기 조립 분자막을 이용한 금속 표면 처리 방법이 제공된다.According to one aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: organically cleaning a surface of a metal made of at least one of a galvanized steel sheet and a magnesium sheet; Removing the organic solvent remaining on the surface of the metal with nitrogen gas; Humidifying the surface of the metal; Wherein the metal is at least one compound having at least one self-assembling property selected from the group consisting of silane series, alkane series acid and phosphoric acid series components, and at least one solvent selected from toluene, benzene, ethanol, n-butanol, n- Immersing the solution to form a self-assembled molecular film; Washing the immersed metal into at least one solvent selected from the group consisting of toluene, benzene, ethanol, n-butanol, n-heptanol and isopropanol; And heat-treating the metal under vacuum at 100-200 占 폚 to cure the metal surface.

본 발명의 다른 견지에 의하면, 상기 방법에 의해 표면 처리된 강판이 제공된다.According to another aspect of the present invention, there is provided a steel sheet surface-treated by the above method.

본 발명의 또 다른 견지에 의하면, 실란계열, 알칸계열산 및 인산계열 성분중에서 선택된 적어도 하나의 성분 및 톨루엔, 벤젠, 에탄올, n-부탄올, n-헵탄올 및 이소프로판올 중에서 선택된 적어도 하나의 용매를 포함하여 이루어진 자기 조립 분자막을 형성하는 금속 표면 처리용액이 제공된다.According to another aspect of the present invention, there is provided a process for the production of at least one component selected from the group consisting of silane series, alkane series acid and phosphoric acid series component and at least one solvent selected from toluene, benzene, ethanol, n-butanol, n-heptanol and isopropanol A metal surface treatment solution for forming a self-assembled molecular film composed of a metal surface treatment solution is provided.

본 발명의 금속 표면 처리 방법에 의하면, 아연 도금 강판 또는 마그네슘 판재의 표면에 자기 조립 분자막이 형성되며, 이러한 자기 조립 분자막이 금속 표면의 특성을 향상 시킬 수 있다. 본 발명의 방법에 의하면 내식성, 내지문성 및 다른 물질층과의 부착을 위한 접착층으로 사용될 수 있는 등의 표면 특성이 향상된 아연 도금 강판 및 마그네슘 판재가 제공될 수 있다.According to the metal surface treatment method of the present invention, a self-assembled monolayer film is formed on the surface of a galvanized steel sheet or a magnesium sheet, and such a self-assembled monolayer film can improve the characteristics of the metal surface. According to the method of the present invention, it is possible to provide a galvanized steel sheet and a magnesium sheet which have improved surface characteristics such as being usable as an adhesive layer for adhesion with a layer of corrosion resistance, transparency and other materials.

또한, 본 발명의 방법은 크롬 프리(Cr-free) 표면처리 방법으로서 환경친화적인 잇점이 있다.In addition, the method of the present invention is environment-friendly as a chrome-free surface treatment method.

자기 조립 분자막(Self-Assembled Monolayer : SAM)이란 유기 용매와 계면 활성제를 넣은 용액 안에서 계면 활성제가 기판에 대한 흡착에 의해서 자발적으로 형성되어 모이는 분자들을 의미하고, 자기 조립 분자막을 형성하는 분자는 세 가지 구성요소로 구성되며 다음과 같다.Self-assembled Monolayer (SAM) is a molecule that is formed by spontaneous formation of a surfactant by adsorption to a substrate in a solution containing an organic solvent and a surfactant. The molecules forming the self-assembled monolayer It consists of three components as follows.

첫 번째 부분은 활성도를 가진 헤드기(Head group)로서 고체 시료 표면에 화학적 흡착을 일으키고, 이러한 과정을 통해서 헤드기는 기판 표면과 화학적 결합을 형성하고 유기 분자는 시료표면에 조밀하게 자리잡게 된다. 이러한 화학 결합은 공유 결합적인 성질이나, 배위 결합적 성질 또는 이온 결합적인 성질을 가지기도 한다. The first part is the active head group, which causes chemical adsorption on the surface of the solid sample. Through this process, the head group forms a chemical bond with the substrate surface and the organic molecules are densely placed on the surface of the sample. These chemical bonds may also have covalent, coordination, or ionic properties.

두 번째 부분은 알킬 사슬(Alkyl chain)이다. 에너지 측면에서 사슬 간의 인력은 10kcal/mol 미만의 반데르 발스 상호 작용이다. 따라서 자기 조립 분자막의 형성은 헤드기의 화학 결합과 그 후 일어나는 알킬 사슬의 상호작용을 통해 이루어진다.The second part is the alkyl chain. In terms of energy, the interchain attraction is a van der Waals interaction of less than 10 kcal / mol. Therefore, the formation of the self-assembled molecular film is achieved through the chemical bonding of the head group and the subsequent interaction of the alkyl chain.

세 번째 부분은 말단기능기(Surface group)로서 표면에 드러나는 부분이다. 이러한 말단기능기에 따라 자기 조립 분자막의 물리 화학적 성질이 결정된다. 가장 간단한 작용기로는 메틸기가 있으나 분자막에 특수한 기능을 부여하기 위해서는 여러 가지 다른 그룹들이 이용될 수 있다.The third part is the surface group, which is exposed on the surface. These end functional groups determine the physicochemical properties of the self-assembled monolayer. The simplest functional group is the methyl group, but several different groups can be used to impart specific functions to the membrane.

위의 성질을 지니는 자기 조립 분자막을 내식 향상을 위한 표면 처리에 이용할 경우 장점은 먼저, 자기 조립 분자막은 단분자층으로 코팅이 되기 때문에 금속 자체의 특성 유지, 적은 비용으로 금속 표면에 강하게 분자를 부착시킬 수 있고, 금속 표면의 모양이나 거칠기에 관계없이 가능하고, 자기 조립 분자막 분자의 말단기능기 선정에 따라 금속 표면 특성을 변화시킬 수 있는 점이다.When the self-assembled molecular film having the above properties is used for the surface treatment for improving corrosion resistance, the advantage is that the self-assembled molecular film is coated with a monolayer so that the molecules are strongly adhered to the metal surface And it is possible to change the characteristics of the metal surface according to the selection of the end functional group of the self-assembled molecular membrane molecule regardless of the shape or roughness of the metal surface.

이에, 본 발명자들은 예의 연구를 계속한 결과, 기존과는 다르게 아연 도금 강판과 마그네슘 판재를 가습 처리하여 표면에 산화막과 수산화막을 생성시키는 표면 전 처리 과정을 거친 다음, 자기 조립 분자막을 이용하여 아연 도금 강판과 마그네슘 판재에 표면 처리하였고, 이 때 용액의 농도와 담금 시간을 조절함으로써 조건별 내식성을 비교하여 짧은 시간 안에 자기 조립 분자막 표면 처리를 이용하여 내식성을 향상시킬 수 있음과 동시에 내지문성과 다른 물질 층의 접착층으로 사용가능함을 발견하고 본 발명을 완성하게 되었다.The inventors of the present invention have conducted intensive studies and have found that, after a surface pretreatment process in which an oxide film and a hydroxide film are formed on a surface by wetting a galvanized steel sheet and a magnesium sheet differently from each other, It is possible to improve the corrosion resistance by self-assembled monolayer surface treatment in a short time by comparing the corrosion resistance of each condition by adjusting the solution concentration and immersion time at the surface of the coated steel sheet and the magnesium sheet. And can be used as an adhesive layer of another material layer, thereby completing the present invention.

본 발명에 따른 표면 특성을 향상시키는 방법은 아연 도금 강판과 마그네슘 판재를 가습처리하여 표면에 산화막과 수산화막을 생성시킨 뒤, 자기 조립 분자막 성분으로서 실란계열, 알칸계열산(alkanoic acid) 또는 인산계열 화합물을 사용하여 표면처리하는 것을 특징으로 한다. The method for improving the surface characteristics according to the present invention is a method for improving the surface characteristics, comprising the steps of moistening a galvanized steel sheet and a magnesium sheet to produce an oxide film and a hydroxide film on the surface thereof and then forming a silane series, alkanoic acid, A surface treatment is carried out using a compound.

도 1에 본 발명의 금속 표면 처리 방법을 개략적으로 도시하였다.FIG. 1 schematically shows a metal surface treatment method of the present invention.

본 발명의 방법에 따르면, 우선 아연도금강판 및 마그네슘 판재중 적어도 하나로 이루어진 금속의 표면을 유기세척한다. 이때 상기 유기세척은 특별히 제한되지 않으나, 아세톤, 에탄올, 이소프로판올의 순서로 각 용매에 금속을 담그어서 초 음파 처리함으로써 수행되는 것이 바람직하다. According to the method of the present invention, first, the surface of the metal made of at least one of the galvanized steel sheet and the magnesium sheet is subjected to the organic washing. At this time, the organic washing is not particularly limited, but it is preferable that the organic washing is carried out by immersing the metal in each solvent in the order of acetone, ethanol, and isopropanol followed by ultrasonic treatment.

그 다음, 유기세척된 금속의 표면에 잔존하는 유기용매를 질소가스로 제거한 다음, 상기 금속의 표면을 가습처리한다. 이때 상기 가습처리 조건은 특별히 제한하는 것은 아니나, 적어도 80%이상의 습도 하에서 적어도 10시간동안 행하는 것이 바람직하다. 보다 바람직하게, 80-100%의 습도 하에서 20-30시간 동안 가습처리 된다. 이러한 가습처리에 의해 금속의 표면에 산화막 및 수산화막이 충분히 생성되어진다. 이러한 산화막 및 수산화막이 자기 조립 분자막의 형성을 가능하게 하여주며, 이러한 막이 균일하게 생성이 되어질수록 자기 조립 분자막 또한 균일하게 표면에 생성이 되어진다.Then, the organic solvent remaining on the surface of the organic washed metal is removed with nitrogen gas, and then the surface of the metal is subjected to a humidifying treatment. At this time, the humidifying treatment condition is not particularly limited, but it is preferable that the humidifying treatment is performed for at least 10 hours under at least 80% humidity. More preferably, it is humidified for 20-30 hours under a humidity of 80-100%. By this humidification treatment, an oxide film and an oxide film are sufficiently formed on the surface of the metal. The oxide film and the oxide film enable the formation of the self-assembled monolayer, and the more homogeneously the film is formed, the more uniformly the self-assembled monolayer is formed on the surface.

그 다음, 가습처리된 상기 금속을 실란계열, 알칸계열산 및 인산계열 성분중에서 선택된 적어도 하나의 자기 조립 특성을 갖는 화합물이 용해된 자기 조립 분자막을 형성하는 용액에 담금처리한다. 상기 자기 조립 분자막을 형성하는 용액은 바람직하게, 옥타데실트리클로로실란, 부틸트리클로로실란, 3-클로로프로필트리클로로실란, 3-브로모프로필트리클로로실란, 트리클로로(3,3,3-트리플루오로프로필)실란, 1H,1H,2H,2H-퍼플루오로옥틸-트리클로로실란, 펜에틸트리클로로실란, 4-(클로로메틸)페닐트리클로로실란, 2-(4-클로로설포닐페닐)에틸트리클로로실란, 헥사노익산, 헵타노익산, 옥탄산, 노나노익산, 데카노익산, 라우르산, 미리스트산, 팔미트산, 스테아르산, 아라키딕산, 12-아미노도데카노익산,1,11-운데칸디카르복시산, 메틸포스폰산, 페닐포스폰산, 옥타데실포스폰산, 3-머캅토프로필포스폰산중에서 선택된 적어도 하나의 자기 조립 특성을 갖는 화합물이 0.01 내지 20mM의 농도로 존재하는 것이다. 이때 상기 자기 조립 특성을 갖는 화합물의 농도가 0.01mM미만인 경우에는 표면에 자기 조립 분자막의 형성속도가 매우 늦어질 뿐만 아니라, 형성된 자기 조립 분자막이 균일하지 않게 된다. 20mM을 초과하는 경우에는 농도가 너무 높아지게 되어, 표면에 자기 조립 분자막을 형성함과 동시에 표면과 자기 조립 분자막 형성시 생기는 부산물과 반응을 하여 오히려 표면 특성이 좋지 않게 되어 바람직하지 않다.Then, the humidified metal is immersed in a solution forming a self-assembled monolayer in which a compound having at least one self-assembling property selected from a silane series, an alkane series acid and a phosphoric acid series component is dissolved. The solution for forming the self-assembled molecular film is preferably a solution containing at least one selected from the group consisting of octadecyltrichlorosilane, butyltrichlorosilane, 3-chloropropyltrichlorosilane, 3-bromopropyltrichlorosilane, trichloro (3,3,3- Perfluorooctyl-trichlorosilane, phenethyltrichlorosilane, 4- (chloromethyl) phenyl trichlorosilane, 2- (4-chlorosulfonylphenyl) But are not limited to, ethyl trichlorosilane, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, A compound having at least one self-assembling property selected from 1,11-undecandicarboxylic acid, methylphosphonic acid, phenylphosphonic acid, octadecylphosphonic acid and 3-mercaptopropionic acid is present in a concentration of 0.01 to 20 mM . If the concentration of the compound having the self-assembling property is less than 0.01 mM, the rate of formation of the self-assembled monolayer is very slow on the surface, and the formed self-assembled monolayer is not uniform. When the concentration is more than 20 mM, the concentration becomes too high to form a self-assembled monolayer on the surface and react with the byproducts formed on the surface and the self-assembled monolayer, resulting in poor surface characteristics.

또한, 이때 상기 자기 조립 분자막을 형성하는 용액에서 상기 화합물들에 대한 용매로서 톨루엔, 벤젠, 에탄올, n-부탄올, n-헵탄올 및 이소프로판올 중에서 선택된 적어도 하나의 용매가 사용되는 것이 바람직하다.It is preferable that at least one solvent selected from toluene, benzene, ethanol, n-butanol, n-heptanol, and isopropanol is used as a solvent for the compounds in the solution forming the self-assembled molecular membrane.

또한, 상기 담금처리시 그 조건은 특별히 제한되지 않으나, -10℃ 내지 60℃에서 1초 내지 30분 동안 수행되는 것이 바람직하다. 만일 상기 담금처리시 -10℃미만의 온도에서 수행되는 경우에는 자기 조립 분자막의 형성되는 시간이 매우 오래 걸리며, 60℃를 초과하여 수행되는 경우에는 자기 조립 분자막이 형성되기보다는 분자와 표면이 부반응을 하게 되어 표면 특성이 좋지 않게 되어 바람직하지 않으며, 또한, 처리시간이 1초미만으로 너무 짧으면 표면상에 자기 조립 분자막이 형성되지 않으며, 30분을 초과하는 경우에는 표면에 자기 조립 분자막을 형성함과 동시에 표면과 자기 조립 분자막 형성시 생기는 부산물과 반응을 하여 오히려 표면 특성이 좋지 않게 되어 바람직하지 않다.The condition for the immersion treatment is not particularly limited, but it is preferably carried out at -10 캜 to 60 캜 for 1 second to 30 minutes. When the immersion treatment is carried out at a temperature lower than -10 ° C, the formation of the self-assembled monolayer takes a very long time. When the immobilization is carried out at a temperature higher than 60 ° C, The self-assembled molecular film is not formed on the surface if the treatment time is too short, and if the treatment time exceeds 1 minute, the self-assembled molecular film is not formed on the surface. And at the same time, it reacts with the byproducts generated when the surface and the self-assembled molecular film are formed, and the surface properties are not good, which is not preferable.

그 다음, 상기 담금처리된 금속을 꺼내어 용매를 사용하여 세정한다. 이때 세정시 사용되는 용매는 특별히 제한되지 않으나, 톨루엔, 벤젠, 에탄올, n-부탄올, n-헵탄올 및 이소프로판올로 구성되는 그룹으로부터 선택된 적어도 하나의 용매가 사용되는 것이 바람직하다.Then, the immersed metal is taken out and washed with a solvent. At this time, the solvent used for washing is not particularly limited, but it is preferable to use at least one solvent selected from the group consisting of toluene, benzene, ethanol, n-butanol, n-heptanol and isopropanol.

그 다음, 마지막으로 상기 세정된 금속을 진공하에 열처리하여 경화시킨다. 열처리시 온도는 100-200℃, 바람직하게 120-180℃에서 수행될 수 있으며, 시간은 1-30분간으로 하는 것이 바람직하다.Finally, the cleaned metal is finally cured by heat treatment under vacuum. The temperature for the heat treatment may be 100-200 deg. C, preferably 120-180 deg. C, and the time is preferably 1-30 min.

본 발명에서와 같이 자기 조립 분자막으로 금속 표면을 처리함으로써 비교적 짧은 시간 안에 아연도금 강판 또는 마그네슘 판재의 내식성을 향상시킬 수 있으며, 이와 동시에 내지문성 및 다른 물질 층과의 접착성이 개선되어 다른 물질과의 접착층으로 사용가능한 특성을 갖는다. The corrosion resistance of the zinc-plated steel sheet or the magnesium plate can be improved in a relatively short time by treating the metal surface with the self-assembled molecular film as in the present invention, and at the same time, And can be used as an adhesive layer.

이하, 본 발명을 실시예에 의거하여 상세히 설명하고자 하나, 본 발명이 기술되는 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples described.

실시예Example

실시예 1 - 아연도금 강판 및 마그네슘 판재의 표면 처리Example 1 - Surface treatment of galvanized steel sheet and magnesium sheet

표면 처리 하기 전에 아연 도금 강판과 마그네슘 판재의 표면에 묻은 이물질을 제거하기 위해 아세톤, 에탄올, 이소프로판올의 순서로 사용하여 각각의 유기 용매에 15분간씩 초음파 처리하면서 유기세척하였다. 그 다음, 상기 금속의 표면에 잔존하는 유기용매를 질소가스로 제거하였다. 그 다음, 상기 금속을 습도 80%하에 24시간동안 방치하여 가습처리하였다.Before surface treatment, organic solvents were cleaned by ultrasonic treatment in acetone, ethanol and isopropanol in order of acetone, ethanol and isopropanol in order to remove impurities on the surfaces of galvanized steel sheet and magnesium sheet for 15 minutes. Then, the organic solvent remaining on the surface of the metal was removed with nitrogen gas. Then, the metal was allowed to stand for 24 hours under a humidity of 80% to be humidified.

한편, 자기 조립 분자막을 형성하는 물질로서 옥타데실트리클로로실란(octadecyltrichlorosilane, OTS)을 사용하고, 용매로서 톨루엔을 사용하여 자기 조립 분자막 용액을 제조하였다. 상기 금속을 상기 제조된 자기 조립 분자막 용액에 담금처리하여 표면 처리를 수행하였다. 이때 표면 처리 시 온도는 상온이었고, 용액 농도는 0.1내지 2mM에서 변화시키고, 담금 시간은 1초부터 5분내의 범위에서 변화시키면서 수행하였다. 담금 처리후, 이물질을 제거하기위해 용매로서 톨루엔을 사용하여 세정하였다. 그 다음, 표면 처리 후에 자기 조립 분자막이 붙어있는 아연 도금 강판과 마그네슘 판재를 진공 오븐에 넣어 150℃에서 10분간 열 경화시켰다.On the other hand, octadecyltrichlorosilane (OTS) was used as a material to form a self-assembled molecular film, and toluene was used as a solvent to prepare a self-assembled molecular film solution. The metal was immersed in the prepared self-assembled monolayer solution to perform surface treatment. At this time, the surface treatment temperature was room temperature, the solution concentration was varied from 0.1 to 2 mM, and the immersion time was varied from 1 second to 5 minutes. After immersion treatment, the substrate was washed with toluene as a solvent to remove foreign matters. Then, after the surface treatment, the galvanized steel sheet and the magnesium sheet having the self-assembled monolayer were placed in a vacuum oven and thermally cured at 150 ° C for 10 minutes.

실시예 2 - 가습처리후 금속 강판의 표면 분석Example 2 - Surface analysis of metal sheet after humidification

상기 실시예 1에서 아연 도금 강판을 습도 80%하에 24시간동안 방치하여 가습처리한 후, 표면에 산화막 및 수산화막이 형성되었는지 조사하기위해 XPS(X-ray photoelectron) 및 AES(auger electron spectrometer)를 이용하여 표면을 분석하였 다. 그 결과를 도 2에 나타내었다. 도 2로부터 알 수 있는 바와 같이, XPS 결과인 Zn2p 및 O1s를 살펴보면, 표면 상태에서 충분히 Zn(OH)2 및 ZnO가 생성되어 있음을 확인할 수 있으며, 또한, AES 결과인 ZnLMN을 살펴보면, 역시 Zn(OH)2 및 ZnO가 충분히 생성되어 있음을 확인할 수 있다.In Example 1, a galvanized steel sheet was allowed to stand under a humidity of 80% for 24 hours and then subjected to a humidifying treatment. Thereafter, an X-ray photoelectron (XPS) and an auger electron spectrometer And the surface was analyzed. The results are shown in Fig. As can be seen from FIG. 2, when Zn2p and O1s as the XPS results are examined, it can be seen that Zn (OH) 2 and ZnO are sufficiently generated in the surface state, and Zn LMN , which is the result of AES, (OH) 2 and ZnO are sufficiently generated.

또한, 상기 실시예 1에서 마그네슘 판재를 습도 80%하에 24시간동안 방치하여 가습처리한 후, 표면에 산화막 및 수산화막이 형성되었는지 조사하기위해 XPS(X-ray photoelectron)를 이용하여 표면을 분석하였다. 그 결과를 도 3에 나타내었다. 도 3으로부터 알 수 있는 바와 같이, XPS 결과인 Mg2p 및 O1s를 살펴보면, Mg(OH)2 및 MgO가 충분 히 생성이 된 것을 확인할 수 있다.In Example 1, the surface of the magnesium plate was subjected to a humidification treatment by keeping it at a humidity of 80% for 24 hours, and then the surface of the magnesium plate was analyzed using an X-ray photoelectron (XPS) . The results are shown in Fig. As can be seen from FIG. 3, when Mg2p and O1s as XPS results are examined, it can be confirmed that Mg (OH) 2 and MgO are sufficiently generated.

또한, 도 2 및 3의 XPS 결과에서 각 피크별 넓이를 통하여 표면의 산화막 및 수산화막의 조성을 구한 결과를 표 1에 나타내었다. In addition, the XPS results of FIGS. 2 and 3 show the composition of the oxide film and the oxide film on the surface through the widths of the respective peaks are shown in Table 1.

[표 1][Table 1]

기판Board 스퍼터 타임Sputter time Zn(OH)2Zn (OH) 2 Zn, ZnOZn, ZnO GIGI 0s(표면)
600s
0s (surface)
600s
82.9%
62.6%
82.9%
62.6%
17.1%
37.4%
17.1%
37.4%
기판Board 스퍼터 타임Sputter time Mg(OH)2 Mg (OH) 2 MgOMgO MgMg 0s(표면)
1200s
0s (surface)
1200s
100%
32%
100%
32%
0%
68%
0%
68%

상기 표 1로부터 알 수 있는 바와 같이, 마그네슘 판재가 아연 도금 강판에 비하여 Mg(OH)2의 수산화막으로만 구성되어 더 균일한 표면을 가짐을 알 수 있으며, 이 표면의 균일함이 자기 조립 분자막의 형성에 영향을 미쳐 표면의 내식성을 향상시키는 것으로 여겨진다.As can be seen from the above Table 1, it can be seen that the magnesium plate is composed of only an oxide film of Mg (OH) 2 as compared with the galvanized steel sheet to have a more uniform surface, It is considered to affect the formation of the caption and improve the corrosion resistance of the surface.

실시예 3 - 표면처리후(담금처리후) 금속 강판의 표면 분석Example 3 - Surface analysis of metal sheet after surface treatment (after immersion treatment)

상기 실시예 1에서 금속 강판을 담금처리하여 표면처리가 완료된 후, 표면에 자기 조립 분자막이 형성되었는지 조사하기위해 FT-IR(Fourier-transform infrared spectroscopy )을 이용하여 표면을 분석하였다. 시험 결과, 아연도금 강판과 마그네슘 판재에 대한 결과가 완전히 동일하였으며, 도 4에 아연도금 강판의 결과를 나타내었다. 도 4의 좌측은 담금 시간을 1초로 고정하여 농도별로 확인한 결과이고, 우측은 담금 시간을 5분으로 고정하여 농도별로 확인한 결과이다. 도 4로부터 알 수 있는 바와 같이, 2mM의 농도로 1초간 담근 경우와 모든 농도에서 5분동안 담근 경우의 피크의 크기가 동일한 것을 통해 2mM에 1초만 담그어도 표면에 완전한 자기 조립 분자막이 생성됨을 확인할 수 있었으며, 아연 도금 강판과 마그네슘 판재가 동일한 결과를 보였다.The surface of the metal sheet was analyzed by Fourier transform infrared spectroscopy (FT-IR) in order to investigate whether a self-assembled monolayer was formed on the surface after immersing the metal sheet in Example 1 and completing the surface treatment. As a result of the test, the results for the galvanized steel sheet and the magnesium sheet were the same, and the results of the galvanized steel sheet were shown in FIG. On the left side of FIG. 4, the immersion time was fixed at 1 second and the immersion time was fixed at 5 minutes. As can be seen from FIG. 4, when the sample is immersed for 1 second at a concentration of 2 mM and the peak of the sample is immersed for 5 minutes at all concentrations, a complete self-assembled monolayer is formed on the surface even if immersed for only 1 second at 2 mM And the same results were obtained for the galvanized steel sheet and the magnesium sheet.

또한, 표면에 자기 조립 분자막이 형성되었는지 조사하기위해 접촉각(contact angle)을 이용하여 자기 조립 분자막이 생성되었는지 확인하여 그 결과를 도 5에 나타내었다. 도 5로부터 알 수 있는 바와 같이, FT-IR 분석 결과와 동일한 결과를 보였으며, 마찬가지로 2mM에 1초만 담그어도 표면에 완전한 자기 조 립 분자막이 생성됨을 확인할 수 있다.Also, in order to investigate whether a self-assembled molecular film was formed on the surface, it was confirmed whether a self-assembled molecular film was formed using a contact angle, and the result is shown in FIG. As can be seen from FIG. 5, the results were the same as those of the FT-IR analysis, and it was confirmed that complete self-assembled molecular films were formed on the surface even when immersed for only 1 second at 2 mM.

실시예 4 - 내식성 시험Example 4 - Corrosion resistance test

상기 실시예 1에서 표면 처리된 아연 도금 강판 및 마그네슘 판재에 대해 내식성을 조사하기위해 염수 분무시험(5% NaCl 용액)을 수행하여 그 결과를 도 6에 나타내었다. 좌측은 시험전 사진이며, 우측은 시험후 사진이다. 도 6으로부터 알 수 있는 바와 같이, 시험 전, 후를 살펴보면, 아연 도금 강판 및 마그네슘 판재 모두 내식성이 향상된 것을 확인할 수 있으나, 아연 도금 강판의 경우는 마그네슘 판재에 비해 내식성이 조금 저하되는 것을 확인할 수 있으며, 이 결과는 도 2 및 3, 그리고 표 1의 결과로서 설명된다. 즉, 마그네슘 판재가 아연 도금 강판보다 표면이 더 균일하여 부식 저항막인 자기 조립 분자막이 더 촘촘하게 생성되어 더 우수한 내식성을 가지게 되는 것으로 설명된다.A salt spray test (5% NaCl solution) was conducted to examine the corrosion resistance of the galvanized steel sheet and the magnesium plate surface-treated in Example 1, and the results are shown in FIG. The left side is the pre-test image, and the right side is the post-test image. As can be seen from FIG. 6, before and after the test, it was confirmed that the corrosion resistance was improved in both of the zinc-coated steel sheet and the magnesium sheet, but the corrosion resistance of the zinc-coated steel sheet was slightly lower than that of the magnesium sheet , The results are illustrated in Figures 2 and 3 and in Table 1. That is, it is explained that the magnesium plate is more uniform in surface than the galvanized steel sheet, and the self-assembled monolayer membrane, which is a corrosion resistant membrane, is formed more densely and has more excellent corrosion resistance.

또한, 상기 염수 분무시험 결과를 하기 표 2에 나타내었다.The results of the salt spray test are shown in Table 2 below.

[표 2][Table 2]

표면처리여부Whether surface treatment 표면미처리
(비교예)
Surface untreated
(Comparative Example)
표면처리Surface treatment
시료sample 시료 1Sample 1 시료 2Sample 2 시료 3Sample 3 시료 4Sample 4 시료 5Sample 5 시료 6Sample 6 시료 7Sample 7 시료 8Sample 8 담금처리조건Immersion treatment conditions 미처리Untreated 0.1mM
1초
0.1 mM
1 second
0.1mM
1분
0.1 mM
1 minute
0.1mM
5분
0.1 mM
5 minutes
0.5mM
1초
0.5 mM
1 second
0.5mM
1분
0.5 mM
1 minute
0.5mM
5분
0.5 mM
5 minutes
2mM
1초
2 mM
1 second
염수분무시험결과Salt water spray test result GIGI 0.5시간0.5 hours 0.8시간0.8 hours 2시간2 hours 5.5시간5.5 hours 1시간1 hours 2.1시간2.1 hours 6시간6 hours 5.7시간5.7 hours MgMg 0.5시간0.5 hours 1시간1 hours 2.2시간2.2 hours 7.2시간7.2 hours 1.5시간1.5 hours 3시간3 hours 7.5시간7.5 hours 7.3시간7.3 hours 내식성 평가Corrosion resistance evaluation ×× ×× ××

* 염수 분무 시험 평가시 내식성을 다음과 같이 3가지 등급으로 구분하였다. ×: 0-2시간, △: 2-5시간, ○: 5-8시간* In salt spray test, corrosion resistance is classified into three grades as follows. ×: 0-2 hours, Δ: 2-5 hours, ○: 5-8 hours

상기 표 2로부터 알 수 있는 바와 같이, 표면미처리된 비교예인 시료 1에 비해 실시예 1에 따라 표면처리된 시료들이 내식성이 우수함을 알 수 있으며, 실시예 1에 따른 시료 2-8을 살펴보면, 동일한 농도에서 담금 시간이 증가할수록 내식성이 향상됨을 확인할 수 있다. 특히, 시료 8을 살펴보면, 짧은 시간의 담금 처리를 통해서도 내식성이 매우 향상되어, 이를 통해 본 발명의 방법에 따르면 짧은 시간 내의 표면 처리를 통해서 내식성이 향상됨을 확인할 수 있다.As can be seen from the above Table 2, it can be seen that the samples which were surface-treated according to Example 1 are superior in corrosion resistance to the sample 1 which is the non-surface treated comparative sample, and the samples 2-8 according to Example 1 have the same It can be confirmed that the corrosion resistance is improved as the immersion time is increased. Particularly, when the sample 8 is examined, the corrosion resistance is improved by the immersion treatment for a short period of time. Thus, according to the method of the present invention, it is confirmed that the corrosion resistance is improved through the surface treatment in a short time.

또한, 상기 실시예 1에서 표면 처리된 아연 도금 강판 및 마그네슘 판재에 대해 내식성을 조사하기위해 EIS(Electrochemical Impedance Spectroscopy)에 의해 분석하여 나이키스트 임피던스 플롯(Nyquist impedence plot)을 구하여 그 결과를 도 7에 나타내었다. 또한, 도 7의 나이키스트 임피던스 플롯으로부터 구한 반지름을 통해 내식성에 대한 효율(PE)을 계산하여 그 결과를 표 3에 나타내었다. 도 7에서 좌측은 표면처리를 수행하지 않은 경우의 그래프이며, 우측은 표면처리를 수행한 경우의 그래프이다. 내식성은 그래프에서 반원의 반지름을 의미하며, 반지름이 커질수록 내식성이 커짐을 의미한다. 표 3에서 Rt는 표면 처리를 하지 않은 경우의 내식성 테스트의 결과이고, Rsam은 본 발명에 따라 표면 처리 한 후에 내식성 테스트 한 결과이다.The Nyquist impedance plot was obtained by analyzing the galvanized steel sheet and the magnesium plate surface-treated in Example 1 by EIS (Electrochemical Impedance Spectroscopy) in order to investigate the corrosion resistance. The results are shown in FIG. 7 Respectively. In addition, the efficiency (PE) for corrosion resistance was calculated through the radius obtained from the Nyquist impedance plot of FIG. 7, and the results are shown in Table 3. 7 is a graph when the surface treatment is not performed on the left side, and a graph when the surface treatment is performed on the right side. Corrosion resistance means the radius of a semicircle in the graph, which means that the larger the radius, the greater the corrosion resistance. In Table 3, Rt is a result of the corrosion resistance test without the surface treatment, and Rsam is the corrosion resistance test result after the surface treatment according to the present invention.

[표 3][Table 3]

기판Board 조건Condition Rt(Ω·㎠)Rt (Ω · cm 2) 조건Condition Rsam(Ω·㎠)Rsam (Ω · cm 2) 내식성효율
(PE)(%)
Corrosion resistance efficiency
(PE) (%)
GIGI 미처리(bare)Bare 3.7×103 3.7 x 10 3 0.1mM, 5분0.1 mM, 5 min 3.75×104 3.75 x 10 4 90.190.1 2mM, 1초2mM, 1 sec 4.0×104 4.0 × 10 4 90.890.8 MgMg 미처리Untreated 4.5×103 4.5 x 10 3 0.1mM, 5분0.1 mM, 5 min 1.25×105 1.25 × 10 5 96.496.4 2mM, 1초2mM, 1 sec 1.3×105 1.3 x 10 5 96.596.5

도 7 및 표 3으로부터 알 수 있는 바와 같이, 아연 도금 강판 및 마그네슘 판재 모두 내식성이 향상되었음을 확인할 수 있었으며, 다만 아연 도금 강판이 마그네슘 판재보다 내식성이 조금 낮음을 알 수 있었고, 그 이유는 도 2 및 3, 그리고 표 1의 결과로 설명되어지는 이유와 도 6의 결과를 통해서 마그네슘 판재가 아연 도금 강판보다 표면이 더 균일하여 부식 저항막인 자기 조립 분자막이 더 촘촘하게 생성되어 더 우수한 내식성을 가지게 되는 것으로 여겨진다. As can be seen from FIG. 7 and Table 3, it was confirmed that the corrosion resistance was improved in both the galvanized steel sheet and the magnesium sheet, but it was found that the galvanized steel sheet had a lower corrosion resistance than the magnesium sheet, 3, and the results shown in Table 1 and the result in FIG. 6, it can be seen that the magnesium plate is more uniform in surface than the galvanized steel sheet, and the self-assembled monolayer membrane, which is the corrosion resistant membrane, ≪ / RTI >

도 1은 본 발명의 금속 표면 처리 방법을 개략적으로 도시한 것이다.1 schematically shows a metal surface treatment method of the present invention.

도 2는 아연 도금 강판을 가습처리한 후 XPS(X-ray photoelectron) 및 AES(auger electron spectrometer)를 이용한 표면 분석결과를 나타낸 것이다.Fig. 2 shows the result of surface analysis using an X-ray photoelectron (XPS) and an auger electron spectrometer (AES) after a galvanized steel sheet is subjected to a moistening treatment.

도 3은 마그네슘 판재를 가습처리한 후 XPS를 이용한 표면 분석결과를 나타낸 것이다.Fig. 3 shows the result of surface analysis using XPS after humidifying the magnesium plate material.

도 4는 본 발명의 방법에 따라 표면처리한 후 FT-IR(Fourier-transform infrared spectroscopy)을 이용하여 금속 강판의 표면을 분석한 결과를 나타낸 것이다.FIG. 4 is a graph showing the results of surface analysis of a metal sheet using FT-IR (Fourier-transform infrared spectroscopy) after surface treatment according to the method of the present invention.

도 5는 본 발명의 방법에 따라 표면처리한 후 접촉각(contact angle)을 이용하여 금속 강판의 표면을 분석한 결과를 나타낸 것이다.FIG. 5 shows the result of analyzing the surface of a metal sheet using a contact angle after surface treatment according to the method of the present invention.

도 6은 본 발명의 방법에 따라 표면처리된 금속 강판에 대해 내식성을 조사하기위해 염수 분무시험(5% NaCl 용액)을 수행한 결과를 나타낸 것이다.Fig. 6 shows the result of performing a salt spray test (5% NaCl solution) to examine the corrosion resistance of a metal sheet subjected to surface treatment according to the method of the present invention.

도 7은 본 발명의 방법에 따라 표면처리된 금속 강판에 대해 내식성을 조사하기위해 EIS(Electrochemical Impedance Spectroscopy) 분석을 수행한 결과를 나타낸 것이다.FIG. 7 is a graph showing the results of an EIS (Electrochemical Impedance Spectroscopy) analysis for examining the corrosion resistance of a surface-treated metal sheet according to the method of the present invention.

Claims (9)

아연도금강판 및 마그네슘 판재중 적어도 하나로 이루어진 금속의 표면을 유기세척하는 단계;Organic cleaning of a surface of a metal comprising at least one of a galvanized steel sheet and a magnesium sheet; 상기 금속의 표면에 잔존하는 유기용매를 질소가스로 제거하는 단계;Removing the organic solvent remaining on the surface of the metal with nitrogen gas; 상기 금속의 표면을 가습처리하는 단계;Humidifying the surface of the metal; 상기 금속을 실란계열, 알칸계열산 및 인산계열 화합물 중에서 선택된 적어도 하나의 자기 조립 특성을 갖는 화합물, 및 톨루엔, 벤젠, 에탄올, n-부탄올, n-헵탄올 및 이소프로판올 중에서 선택된 적어도 하나의 용매로 이루어진 자기 조립 분자막을 형성하는 용액에 담금처리하는 단계;Wherein the metal is at least one compound having at least one self-assembling property selected from the group consisting of silane series, alkane series acid and phosphoric acid series compound, and at least one solvent selected from toluene, benzene, ethanol, n-butanol, n-heptanol and isopropanol Immersing the solution to form a self-assembled molecular film; 상기 담금처리된 금속을 톨루엔, 벤젠, 에탄올, n-부탄올, n-헵탄올 및 이소프로판올로 구성되는 그룹으로부터 선택된 적어도 하나의 용매에 세정하는 단계; 및Washing the immersed metal into at least one solvent selected from the group consisting of toluene, benzene, ethanol, n-butanol, n-heptanol and isopropanol; And 상기 금속을 진공하에 열 경화시키는 단계Thermally curing the metal under vacuum 를 포함하는 자기 조립 분자막을 이용한 금속 표면 처리 방법.A metal surface treatment method using the self-assembled molecular film. 제 1항에 있어서, 상기 유기세척은 금속을 아세톤, 에탄올 및 이소프로판올의 순서로 담그어 초음파 처리함으로써 수행되는 것을 특징으로 하는 방법. The method according to claim 1, wherein the organic cleaning is performed by immersing the metal in the order of acetone, ethanol and isopropanol, followed by ultrasonic treatment. 제 1항에 있어서, 상기 가습처리는 적어도 80%이상의 습도하에서 적어도 10시간동안 행해지는 것을 특징으로 하는 방법.The method according to claim 1, wherein the humidifying treatment is performed for at least 10 hours under at least 80% humidity. 제 1항에 있어서, 상기 자기 조립 분자막을 형성하는 용액은 옥타데실트리클로로실란, 부틸트리클로로실란, 3-클로로프로필트리클로로실란, 3-브로모프로필트리클로로실란, 트리클로로(3,3,3-트리플루오로프로필)실란, 1H,1H,2H,2H-퍼플루오로옥틸-트리클로로실란, 펜에틸트리클로로실란, 4-(클로로메틸)페닐트리클로로실란, 2-(4-클로로설포닐페닐)에틸트리클로로실란, 헥사노익산, 헵타노익산, 옥탄산, 노나노익산, 데카노익산, 라우르산, 미리스트산, 팔미트산, 스테아르산, 아라키딕산, 12-아미노도데카노익산,1,11-운데칸디카르복시산, 메틸포스폰산, 페닐포스폰산, 옥타데실포스폰산, 3-머캅토프로필포스폰산중에서 선택된 적어도 하나의 자기 조립 특성을 갖는 화합물이 상기 용매에 0.01 내지 20mM의 농도로 존재하는 것을 특징으로 하는 방법.2. The method according to claim 1, wherein the solution forming the self-assembled molecular film is selected from the group consisting of octadecyltrichlorosilane, butyltrichlorosilane, 3-chloropropyltrichlorosilane, 3-bromopropyltrichlorosilane, trichloro , 3-trifluoropropyl) silane, 1H, 1H, 2H, 2H-perfluorooctyl-trichlorosilane, phenethyltrichlorosilane, 4- (chloromethyl) phenyltrichlorosilane, 2- Octanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, 12-amino dodecanoic acid, A compound having at least one self-assembling property selected from among succinic acid, carnaic acid, 1,11-undecandicarboxylic acid, methylphosphonic acid, phenylphosphonic acid, octadecylphosphonic acid and 3-mercaptopropionic acid is added to the solvent in an amount of 0.01 to 20 mM ≪ / RTI > by weight. 제 1항에 있어서, 상기 담금처리는 -10℃ 내지 60℃에서 1초 내지 30분 동안 수행되는 것을 특징으로 하는 방법.The method according to claim 1, wherein the dipping treatment is performed at -10 ° C to 60 ° C for 1 second to 30 minutes. 제 1항 내지 제 5항 중 어느 한 항의 방법에 의해 표면 처리된 강판.A steel sheet surface-treated by the method according to any one of claims 1 to 5. 제 6항에 있어서, 상기 금속은 아연도금강판 또는 마그네슘 판재인 것을 특징으로 하는 강판.The steel sheet according to claim 6, wherein the metal is a galvanized steel sheet or a magnesium steel sheet. 실란계열, 알칸계열산 및 인산계열 성분 중에서 선택된 적어도 하나의 화합물 및 톨루엔, 벤젠, 에탄올, n-부탄올, n-헵탄올 및 이소프로판올 중에서 선택된 적어도 하나의 용매를 포함하여 이루어진 자기 조립 분자막을 형성하는 금속 표면 처리용액.At least one compound selected from silane series, alkane series acid and phosphoric acid series components and at least one solvent selected from toluene, benzene, ethanol, n-butanol, n-heptanol and isopropanol Metal surface treatment solution. 제 8항에 있어서, 상기 용액은 옥타데실트리클로로실란, 부틸트리클로로실란, 3-클로로프로필트리클로로실란, 3-브로모프로필트리클로로실란, 트리클로로(3,3,3-트리플루오로프로필)실란, 1H,1H,2H,2H-퍼플루오로옥틸-트리클로로실란, 펜에틸트리클로로실란, 4-(클로로메틸)페닐트리클로로실란, 2-(4-클로로설포닐페닐)에틸트리클로로실란, 헥사노익산, 헵타노익산, 옥탄산, 노나노익산, 데카노익산, 라우르산, 미리스트산, 팔미트산, 스테아르산, 아라키딕산, 12-아미노도데카노 익산,1,11-운데칸디카르복시산, 메틸포스폰산, 페닐포스폰산, 옥타데실포스폰산, 3-머캅토프로필포스폰산중에서 선택된 적어도 하나의 자기 조립 특성을 갖는 화합물이 0.01 내지 20mM의 농도로 존재하는 것을 특징으로 하는 금속 표면 처리 용액.The method of claim 8, wherein the solution is selected from the group consisting of octadecyltrichlorosilane, butyltrichlorosilane, 3-chloropropyltrichlorosilane, 3-bromopropyltrichlorosilane, trichloro (3,3,3- ) Silane, 1H, 1H, 2H, 2H-perfluorooctyl-trichlorosilane, phenethyltrichlorosilane, 4- (chloromethyl) phenyltrichlorosilane, 2- (4- chlorosulfonylphenyl) ethyl trichloro Silane, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidonic acid, Characterized in that a compound having at least one self-assembling property selected from undecandicarboxylic acid, methylphosphonic acid, phenylphosphonic acid, octadecylphosphonic acid and 3-mercaptopropionic acid is present in a concentration of 0.01 to 20 mM. Surface treatment solution.
KR1020090131435A 2009-12-28 2009-12-28 Method for treating metal surface by using self-assembled monolayer, the steel sheet surface-treated by the method and the metal surface treatment solution therefor KR101143219B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090131435A KR101143219B1 (en) 2009-12-28 2009-12-28 Method for treating metal surface by using self-assembled monolayer, the steel sheet surface-treated by the method and the metal surface treatment solution therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090131435A KR101143219B1 (en) 2009-12-28 2009-12-28 Method for treating metal surface by using self-assembled monolayer, the steel sheet surface-treated by the method and the metal surface treatment solution therefor

Publications (2)

Publication Number Publication Date
KR20110075092A true KR20110075092A (en) 2011-07-06
KR101143219B1 KR101143219B1 (en) 2012-05-18

Family

ID=44915138

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090131435A KR101143219B1 (en) 2009-12-28 2009-12-28 Method for treating metal surface by using self-assembled monolayer, the steel sheet surface-treated by the method and the metal surface treatment solution therefor

Country Status (1)

Country Link
KR (1) KR101143219B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101859527B1 (en) * 2016-11-29 2018-06-28 한국해양과학기술원 Chemical modification method of aluminium surface for improving corrosion resistant charateristics and aluminium materials modified thereby

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524535B2 (en) * 2004-02-25 2009-04-28 Posco Method of protecting metals from corrosion using thiol compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101859527B1 (en) * 2016-11-29 2018-06-28 한국해양과학기술원 Chemical modification method of aluminium surface for improving corrosion resistant charateristics and aluminium materials modified thereby

Also Published As

Publication number Publication date
KR101143219B1 (en) 2012-05-18

Similar Documents

Publication Publication Date Title
Fan et al. Layer-by-layer assembly of a self-healing anticorrosion coating on magnesium alloys
Ding et al. Structure and performance insights in carbon dots-functionalized MXene-epoxy ultrathin anticorrosion coatings
Palomino et al. Investigation of the corrosion behaviour of a bilayer cerium-silane pre-treatment on Al 2024-T3 in 0.1 M NaCl
Liu et al. Synthesis of l-histidine-attached graphene nanomaterials and their application for steel protection
Akhtar et al. Enhancement of anticorrosion property of 304 stainless steel using silane coatings
Zhu et al. Structural characterization of bis-[triethoxysilylpropyl] tetrasulfide and bis-[trimethoxysilylpropyl] amine silanes by Fourier-transform infrared spectroscopy and electrochemical impedance spectroscopy
Wang et al. Self-assembled monolayer and multilayer thin films on aluminum 2024-T3 substrates and their corrosion resistance study
Chen et al. Preparation and anti-corrosion performance of superhydrophobic silane/graphene oxide composite coating on copper
Akamatsu et al. Surface modification-based synthesis and microstructural tuning of nanocomposite layers: monodispersed copper nanoparticles in polyimide resins
Chen et al. Electrochemical behavior and corrosion protection performance of bis-[triethoxysilylpropyl] tetrasulfide silane films modified with TiO2 sol on 304 stainless steel
Vignesh et al. Surface modification, characterization and corrosion protection of 1, 3-diphenylthiourea doped sol-gel coating on aluminium
JP2005240181A (en) Corrosion prevention method for metal utilizing thiol compound, and coating method therefor
Palraj et al. Effect of phosphate coatings on the performance of epoxy polyamide red oxide primer on galvanized steel
JP5186814B2 (en) Steel plate for containers and manufacturing method thereof
Zhang et al. Robust superhydrophobic SiO2/epoxy composite coating prepared by one-step spraying method for corrosion protection of aluminum alloy: Experimental and theoretical studies
Ou et al. Construction and corrosion behaviors of a bilayer superhydrophobic film on copper substrate
Ansari et al. Study on the protective function of cloisite incorporated silane sol–gel coatings cured at different conditions
Korrapati et al. Self-assembled layers for the temporary corrosion protection of magnesium-AZ31 alloy
Hassan et al. Super-hydrophobic green corrosion inhibitor on carbon steel
CN108103545A (en) A kind of environmental type nano thin-film and its application in the anti-corrosion field of metal
KR101143219B1 (en) Method for treating metal surface by using self-assembled monolayer, the steel sheet surface-treated by the method and the metal surface treatment solution therefor
WO2011089431A1 (en) Anticorrosion sol-gel coating for metal substrate
KR101220652B1 (en) Method for Treating Metal Surface By Forming Self-Assembled Monolayer on Metal Surface Comprising Pretreatment
Banczek et al. Effect of surface treatments based on self‐assembling molecules and cerium coatings on the AA3003 alloy corrosion resistance
TWI503447B (en) Electrical or electronic machine frame with the conductive pre - aluminum alloy plate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150417

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160427

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170426

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180426

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190426

Year of fee payment: 8