KR20110074198A - Acrylonitrile/poly(ethyleneglycol)methacrylate copolymer manufactured by bulk copolymerization, preparing method thereof and membrane for water-treatment manufactured by that - Google Patents

Acrylonitrile/poly(ethyleneglycol)methacrylate copolymer manufactured by bulk copolymerization, preparing method thereof and membrane for water-treatment manufactured by that Download PDF

Info

Publication number
KR20110074198A
KR20110074198A KR1020090131100A KR20090131100A KR20110074198A KR 20110074198 A KR20110074198 A KR 20110074198A KR 1020090131100 A KR1020090131100 A KR 1020090131100A KR 20090131100 A KR20090131100 A KR 20090131100A KR 20110074198 A KR20110074198 A KR 20110074198A
Authority
KR
South Korea
Prior art keywords
poly
ethylene glycol
acrylonitrile
membrane
polymer
Prior art date
Application number
KR1020090131100A
Other languages
Korean (ko)
Other versions
KR101159067B1 (en
Inventor
김인철
김범식
박유인
송두현
권자영
정보름
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020090131100A priority Critical patent/KR101159067B1/en
Publication of KR20110074198A publication Critical patent/KR20110074198A/en
Application granted granted Critical
Publication of KR101159067B1 publication Critical patent/KR101159067B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/06Specific viscosities of materials involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/082Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: A acrylo night / poly (ethylene glycol) methacrylate copolymer, and a manufacturing method thereof and a membrane for water treatment using the same are provided to have suitable absolute viscosity for manufacturing the membrane for the water treatment, and have excellent mechanical property including the impact tolerance of the membrane for the water treatment etc, and to have excellent membraned contamination resistivity especially. CONSTITUTION: The manufacturing method of the acrylo night / poly (ethylene glycol) methacrylate copolymer includes the steps of: performing the bulk polymerization in 40 ~ 60°C after stirring the mixture of acrylonitrile monomer, the poly (ethylene glycol) methacrylate monomer and polymerization initiator under the anoxic atmosphere; stabilizing the polymeric composition by precipitating in the hexane of -30 ~ 0°C for 10 ~ 15 hours; after smashing after melting the stabilized polymeric composition in the benzene, re-stabilizing the polymeric composition ;by precipitating the smashed polymeric composition in the hexane of -30 ~ 0°C for 10 ~ 15 hours; and manufacturing the polymer after repeating the stabilizing and re-stabilizing steps for 2~5 times.

Description

벌크공중합법으로 제조된 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체, 이의 제조방법 및 이로 제조된 수처리용 멤브레인{Acrylonitrile/poly(ethyleneglycol)methacrylate copolymer manufactured by bulk copolymerization, Preparing method thereof and Membrane for water-treatment manufactured by that}Acrylonitrile / poly (ethyleneglycol) methacrylate copolymer manufactured by bulk copolymerization, Preparing method about and Membrane prepared by bulk copolymerization for water-treatment manufactured by that}

본 발명은 아크릴로나이트릴 단량체와 폴리(에틸렌글리콜)메타크릴레이트 단량체를 특정 조건에서 벌크공중합시켜서 제조한 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체(이하, “AN/PEGM 공중합체”로 칭한다.) 및 이의 제조방법에 관한 것이다. 또한, 상기 AN/PEGM 공중합체로 제조된 멤브레인에 관한 것이다.The present invention provides an acrylonitrile / poly (ethylene glycol) methacrylate copolymer prepared by bulk copolymerization of an acrylonitrile monomer and a poly (ethylene glycol) methacrylate monomer under specific conditions (hereinafter, referred to as an “AN / PEGM copolymer”. And a method for producing the same). It also relates to a membrane made of the AN / PEGM copolymer.

최근 정수처리공정에서 분리막(멤브레인)에 대한 관심이 증가하고 있으며 수질의 안정성, 컴팩트한 부지, 자동화 등의 장점이 높기 때문이다. 특히, 한외여과막의 사용이 증대되고 있으며, 정수처리뿐만 아니라 물부족에 대비하여 물의 재이용에도 그 사용이 증가하고 있다. 정수처리에 사용되는 대부분의 분리막은 오랜 기간 사용할 수 있는 특성이 요구되며 이를 위하여 분리막의 오염의 속도를 늦춰야 할 필요가 있다. 폴리아크릴로나이트릴(PAN) 분리막의 경우 막오염에 약한데, 이를 보안하기 위하여 막오염에 강한 PAN 분리막 제조가 요구되고 있으며, 또한, 기계적 강도가 우수하고, 병원성 미생물을 완벽하게 제거할 수 있으면서도, 높은 투과유량 및 막오염 저항성이 높은 분리막에 대한 요구가 증가하고 있다.In recent years, interest in separators (membrane) has increased in the water treatment process, and the advantages of stability of water quality, compact site, and automation are high. In particular, the use of ultrafiltration membranes is increasing, and the use of water is being increased not only for water purification but also for reuse of water in preparation for lack of water. Most membranes used for water purification are required to be used for a long time and it is necessary to slow down the contamination of the membrane. In case of polyacrylonitrile (PAN) membrane, it is weak to membrane contamination. In order to secure this, it is required to manufacture PAN membrane which is resistant to membrane contamination. In addition, it has excellent mechanical strength and can completely remove pathogenic microorganisms. Therefore, there is an increasing demand for a membrane having high permeate flow rate and high membrane fouling resistance.

본 발명자들은 새로운 멤브레인 소재를 제조하고자 노력한 결과, 아크릴로나이트릴 단량체와 폴리(에틸렌글리콜)메타크릴레이트 단량체를 특정 조건에서 벌크중합시켜서 제조한 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체가 멤브레인의 소재로 사용하기에 적합한 물성을 갖는다는 것을 알게 되어 본 발명을 완성하게 되었다. 따라서, 본 발명은 벌크공중합법으로 제조된 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체, 이의 제조방법 및 이로 제조된 수처리용 멤브레인을 제공하는데 그 목적이 있다.The present inventors have tried to produce a new membrane material, and as a result, the acrylonitrile / poly (ethylene glycol) methacrylate copolymer prepared by bulk polymerization of acrylonitrile monomer and poly (ethylene glycol) methacrylate monomer under specific conditions The present invention has been completed by knowing that has a suitable physical property for use as a material of the membrane. Accordingly, an object of the present invention is to provide an acrylonitrile / poly (ethyleneglycol) methacrylate copolymer prepared by a bulk copolymerization method, a method for preparing the same, and a membrane for water treatment prepared therefrom.

상기 과제를 해결하기 위한 본 발명은 벌크공중합법으로 제조된 절대점도(η) 0.5 ~ 1.5를 갖는 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체를 제공하는데 그 목적이 있다.The present invention for solving the above problems is to provide an acrylonitrile / poly (ethylene glycol) methacrylate copolymer having an absolute viscosity (η) 0.5 ~ 1.5 prepared by the bulk copolymerization method.

또한, 본 발명은 무산소 분위기 하에서, 아크릴로나이트릴 단량체와 폴리(에틸렌글리콜)메타크릴레이트 단량체 및 중합개시제를 혼합한 혼합물을 교반한 후, 40 ~ 60℃에서 벌크중합시켜서 제조하는 것을 특징으로 하는 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체의 제조방법을 제공하는데 그 목적이 있다.In addition, the present invention is prepared by stirring a mixture of an acrylonitrile monomer, a poly (ethylene glycol) methacrylate monomer and a polymerization initiator in an oxygen-free atmosphere, and then bulk-polymerizing at 40 to 60 ° C. It is an object of the present invention to provide a method for preparing an acrylonitrile / poly (ethylene glycol) methacrylate copolymer.

또한, 본 발명은 상기 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체로 제조된 수처리용 멤브레인을 제공하는데 그 목적이 있다.In addition, an object of the present invention is to provide a membrane for water treatment prepared from the acrylonitrile / poly (ethyleneglycol) methacrylate copolymer.

본 발명의 상기 AN/PEGM 공중합체는 수처리용 멤브레인을 제조하기에 적합한 절대점도를 갖고 있으며, 상기 AN/PEGM 공중합체로 제조된 수처리용 멤브레인은 내강도 등의 기계적 물성이 우수하며 특히, 막오염 저항성이 우수하다.The AN / PEGM copolymer of the present invention has an absolute viscosity suitable for producing a membrane for water treatment, and the membrane for water treatment made of the AN / PEGM copolymer has excellent mechanical properties such as strength, particularly membrane fouling. Excellent resistance

앞서 설명한 본 발명을 이하에서 더욱 자세하게 설명을 하겠다.The present invention described above will be described in more detail below.

본 발명은 AN/PEGM 공중합체는 벌크공중합법(bulk copolymerization)으로 제조된 것을 그 특징으로 하며, 또한, 상기 AN/PEGM 공중합체는 절대점도(η) 0.6 ~ 1.3을, 바람직하게는 절대점도 0.7 ~ 1.2를, 더욱 바람직하게는 절대점도 0.8 ~ 1.0을 갖는 것을 그 특징으로 한다. 상기 절대점도가 0.6 미만이면, 상기 AN/PEGM 공중합체를 이용하여 수처리용 멤브레인 제조시 공중합체의 점도가 낮고, 제조 수율이 낮아 멤브레인의 생산성이 떨어질 수 있으며, 1.3를 초과하면 멤브레인이 너무 얇아져서 내구성이 떨어질 수 있으므로, 상기 범위 내의 절대점도를 갖는 것이 좋다.The present invention is characterized in that the AN / PEGM copolymer is prepared by bulk copolymerization, and the AN / PEGM copolymer has an absolute viscosity (?) Of 0.6 to 1.3, preferably an absolute viscosity of 0.7. 1.2, More preferably, it has an absolute viscosity of 0.8-1.0. When the absolute viscosity is less than 0.6, when the membrane for water treatment using the AN / PEGM copolymer, the viscosity of the copolymer is low, the production yield is low, the productivity of the membrane can be lowered, if the 1.3 is exceeded, the membrane is too thin Since durability may fall, it is good to have absolute viscosity within the said range.

이하에서는 상기 본 발명의 AN/PEGM 공중합체를 제조하는 방법에 대하여 구체적으로 설명을 하겠다. Hereinafter, a method for preparing the AN / PEGM copolymer of the present invention will be described in detail.

본 발명의 AN/PEGM 공중합체의 제조방법은 무산소 분위기 하에서, 아크릴로나이트릴 단량체와 폴리(에틸렌글리콜)메타크릴레이트 단량체 및 중합개시제를 혼 합한 혼합물을 교반한 후, 40 ~ 60℃에서 벌크중합시켜서 제조하는 것을 그 특징으로 한다. In the method for producing the AN / PEGM copolymer of the present invention, the mixture is mixed with an acrylonitrile monomer, a poly (ethylene glycol) methacrylate monomer, and a polymerization initiator under an oxygen-free atmosphere, followed by bulk polymerization at 40 to 60 ° C. It is characterized by manufacturing by making.

본 발명의 AN/PEGM 공중합체의 제조방법을 단계별로 설명을 하면, 본 발명은 무산소 분위기 하에서, 아크릴로나이트릴 단량체와 폴리(에틸렌글리콜)메타크릴레이트 단량체 및 중합개시제를 혼합한 혼합물을 교반한 후, 40 ~ 60℃에서 벌크중합을 수행하여 중합물을 제조하는 1 단계; 상기 중합물을 -30 ~ 0℃의 헥산에 10 ~ 15 시간 동안 침전시켜서 중합물을 안정화시키는 2 단계; 상기 안정화된 중합물을 벤젠에 녹여 잘게 파쇄한 후, 파쇄된 중합물을 -30 ~ 0℃의 헥산에 10 ~ 15 시간 동안 침전시켜서 중합물을 재안정화시키는 3 단계; 및 2 단계와 3 단계를 2 ~ 5회 반복하여 중합체를 제조하는 4 단계;를 포함하는 것을 특징으로 한다.In the step-by-step description of the production method of the AN / PEGM copolymer of the present invention, the present invention is stirred in a mixture of an acrylonitrile monomer, a poly (ethylene glycol) methacrylate monomer and a polymerization initiator in an oxygen-free atmosphere Then, the first step of producing a polymer by performing a bulk polymerization at 40 ~ 60 ℃; 2 steps to stabilize the polymer by precipitating the polymer in -30 ~ 0 ℃ hexane for 10 to 15 hours; Three steps of dissolving the stabilized polymer in benzene to finely disintegrate and then restabilizing the polymer by precipitating the disintegrated polymer in hexane at -30 to 0 ° C. for 10 to 15 hours; And 4 steps of preparing the polymer by repeating 2 and 3 steps 2 to 5 times.

또한, 본 발명은 세척 및 진공건조시키는 5 단계;를 더 포함할 수 있다.In addition, the present invention may further include; five steps of washing and vacuum drying.

상기 1 단계는 벌크중합시 미량의 산소가 남아있으면 산소가 중합금지제 역할을 하여 중합이 잘 이루어지지 않기 때문에 무산소 분위기 하에서, 벌크중합을 수행한다. 무산소 분위기를 조성하기 위해서 당업계에서 사용하는 일반적인 방법을 사용할 수 있으며, 구체적인 예를 들면, 피로가롤-알칼리 수용액 트랩을 통과시켜 산소를 제거한 불활성 기체를 사용하여 무산소 분위기를 조성할 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니다.In the first step, when a small amount of oxygen remains during the bulk polymerization, the oxygen acts as a polymerization inhibitor and polymerization is not performed well, thereby performing bulk polymerization in an oxygen-free atmosphere. In order to create an oxygen-free atmosphere, a general method used in the art may be used, and for example, an oxygen-free atmosphere may be formed by using an inert gas from which oxygen is removed through a pyrogarol-alkali aqueous solution trap. However, the present invention is not limited thereto.

1 단계의 상기 아크릴로나이트릴 단량체와 폴리(에틸렌글리콜)메타크릴레이트 단량체는 7 ~ 9.5 : 0.5 ~ 3 몰비를 사용하는 것이 좋은데, 이때, 아크릴로나이트릴 단량체와 폴리(에틸렌글리콜)메타크릴레이트 단량체의 몰비가 상기 범위를 벗 어나서 중합된 공중합체를 사용하여 막을 제조하면 막의 막오염 저항성 및 기계적 물성이 떨어질 수 있으므로 상기 범위 내의 몰비로 혼합하여 사용하는 것이 좋다. 그리고, 상기 아크릴로나이트릴 단량체는 아황산나트륨 수용액으로 세척한 뒤 무수염화칼슘으로 처리하고 감압증류하여 정제하여 사용하는 것이 좋으며, 상기 폴리(에틸렌글리콜)메타크릴레이트 단량체는 상온에서 분주 컬럼(dispansable column)에 통과시켜서, 폴리(에틸렌글리콜)메타크릴레이트에 첨가되어 있는 미량의 중합방해물질인 MEHQ(Hydroquinone Monomethyl Ether)를 제거하여 사용하는 것이 좋다.The acrylonitrile monomer and the poly (ethylene glycol) methacrylate monomer of step 1 are preferably used in a molar ratio of 7 to 9.5: 0.5 to 3, wherein the acrylonitrile monomer and the poly (ethylene glycol) methacrylate are used. If the molar ratio of the monomer is out of the above range to prepare the membrane using a polymerized copolymer, the membrane fouling resistance and mechanical properties of the membrane may be deteriorated, so it is preferable to mix and use the molar ratio within the above range. The acrylonitrile monomer may be washed with an aqueous sodium sulfite solution, treated with anhydrous calcium chloride, distilled under reduced pressure, and purified. The poly (ethylene glycol) methacrylate monomer may be dispensed at room temperature. It is preferable to remove and use MEHQ (Hydroquinone Monomethyl Ether), which is a trace amount of a polymerization inhibitor added to poly (ethylene glycol) methacrylate.

그리고, 상기 중합개시제는 2,2′-아조비스(아이소부티로나이트릴), 2,2′-아조비스(2,4-디메틸발레로니트릴) 또는 2,2'-아조비스(4-메톡시-2,4-디메틸발레로니트릴)을 사용하는 것이 좋으며, 더욱 바람직하게는 2,2′-아조비스(아이소부티로나이트릴)을 사용하는 것이 좋다. 상기 중합개시제는 아크릴로나이트릴 단량체와 폴리(에틸렌글리콜)메타크릴레이트 단량체를 합한 전체 몰(mol)에 대하여, 0.0001 ~ 0.001의 몰비를 사용하는 것이 좋으며, 이때, 0.0001 몰비 미만으로 사용하면 중합체의 분자량이 너무 낮을 수 있으며, 0.001 몰비를 초과하여 사용하면 중합이 일어나지 않는 문제가 있을 수 있으므로, 상기 범위 내로 사용하는 것이 바람직하다.The polymerization initiator is 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile) or 2,2'-azobis (4-meth It is preferable to use oxy-2,4-dimethylvaleronitrile), and more preferably 2,2'-azobis (isobutyronitrile). The polymerization initiator is preferably used in a molar ratio of 0.0001 to 0.001 with respect to the total moles of the sum of the acrylonitrile monomer and the poly (ethylene glycol) methacrylate monomer, when used in less than 0.0001 molar ratio of the polymer The molecular weight may be too low, and when used in excess of 0.001 molar ratio, there may be a problem that polymerization does not occur, it is preferable to use within the above range.

1 단계의 상기 벌크중합(bulk copolymerization)은 40 ~ 60℃에서 수행하는 것이 좋으며, 40℃ 미만에서 벌크중합을 수행하면 AN/PEGM 공중합체의 절대점도가 너무 높아지는 문제가 있고, 60℃를 초과하는 온도에서 벌크중합을 수행하면 AN/PEGM 공중합체의 절대점도가 너무 낮아져서, 제조된 AN/PEGM 공중합체로 수처리용 멤브레인을 제조하기에 부적절한 물성을 갖게 되는 문제가 발생하므로, 상기 범위 내의 온도에서 벌크중합을 수행하는 것이 좋다.Bulk polymerization of the first step (bulk copolymerization) is preferably performed at 40 ~ 60 ℃, if the bulk polymerization is less than 40 ℃ there is a problem that the absolute viscosity of the AN / PEGM copolymer too high, exceeding 60 ℃ When the bulk polymerization is carried out at a temperature, the absolute viscosity of the AN / PEGM copolymer becomes too low, and thus, a problem arises in that the AN / PEGM copolymer has inadequate physical properties to prepare a membrane for water treatment. It is good to carry out the polymerization.

2 단계는 중합시 일어나는 발열반응으로 인하여 부반응이 일어나지 않도록 안정화시키는 단계로서, 구체적으로 설명을 하면, 1 단계에서 제조한 중합물을 -30 ~ 0℃의 헥산에 10 ~ 15 시간 동안 침전시켜서 냉동보관하여 중합물을 안정화시킨다. 그리고, 상기 헥산의 온도는 -30 ~ 0℃인 것이 좋은데, 온도가 -30℃ 미만으로 온도가 너무 낮으면 중합물에 남아있던 미반응 AN/PEGM가 제거되지 않는 문제가 있을 수 있으므로 상기 온도의 헥산을 사용하는 것이 좋다.Step 2 is a step of stabilizing so that side reactions do not occur due to the exothermic reaction that occurs during the polymerization. Specifically, the polymer prepared in step 1 is precipitated in hexane at -30 to 0 ° C. for 10 to 15 hours to be frozen and stored. Stabilize the polymer. And, the temperature of the hexane is preferably -30 ~ 0 ℃, if the temperature is less than -30 ℃ temperature is too low, there may be a problem that the unreacted AN / PEGM remaining in the polymer may not be removed, so the hexane of the temperature It is good to use

3 단계는 완벽하게 미반응 AN/PEGM을 제거하기 위하여, 2 단계에서 안정화시킨 중합물을 벤젠에 녹여 잘게 파쇄한 후, 파쇄한 중합물을 -30 ~ 0℃의 헥산에 10 ~ 15 시간 동안 침전시켜서 중합물을 재안정화 시키는 공정이다.In the third step, in order to completely remove the unreacted AN / PEGM, the polymer stabilized in step 2 was dissolved in benzene, finely crushed, and then the crushed polymer was precipitated in hexane at -30 to 0 ° C for 10 to 15 hours. It is a process to re-stabilize.

4 단계는 3 단계에서 재안정화시킨 중합물을 2 단계와 3 단계를 2 ~ 5회 반복하여 중합체를 제조하는 공정으로써, 이는 미반응 AN/PEGM을 완벽하게 제거하여 중합물의 순도를 높이기 위한 것이다. Step 4 is a process of preparing the polymer by repeating the step 2 and step 3 to 2 times the polymer re-stabilized in step 3, which is to completely remove the unreacted AN / PEGM to increase the purity of the polymer.

5 단계는 상기 4 단계의 중합체를 세척하여 잔존 미반응물을 제거하고, 건조하는 공정으로서, 상기 세척과 공정은 당업계에서 사용하는 일반적인 방법을 사용할 수 있으며, 특별히 한정하지는 않는다.Step 5 is a process of washing the polymer of step 4 to remove residual unreacted material, and drying. The washing and the process may use a general method used in the art, and are not particularly limited.

상기 제조방법으로 고순도의 AN/PEGM 공중합체를 얻을 수 있으며, 제조된 본 발명의 AN/PEGM 공중합체는 성형성이 우수한 바, 수처리용 멤브레인의 소재로 사용 하기에 적합하며, AN/PEGM 공중합체로 제조된 수처리용 멤브레인은 기계적 물성이 우수하고, 특히, 막오염 저항성이 우수하다.It is possible to obtain a high purity AN / PEGM copolymer by the above production method, the AN / PEGM copolymer of the present invention is excellent in formability, suitable for use as a material of the membrane for water treatment, AN / PEGM copolymer Membrane for water treatment is excellent mechanical properties, in particular, membrane fouling resistance is excellent.

그리고, 상기 수처리용 멤브레인은 디메틸아세트아마이드(DMAc), 디메틸포름아미드(DMF) 및 디메틸슬폭사이드(DMSO) 중에서 선택된 1 종 이상의 용매에 용액 전체 중량 중 상기 AN/PEGM 공중합체를 1 ~ 30 중량%가 되도록 용해시켜서 멤브레인을 제조한다. The membrane for water treatment is 1 to 30% by weight of the AN / PEGM copolymer in the total weight of the solution in at least one solvent selected from dimethylacetamide (DMAc), dimethylformamide (DMF) and dimethylsulfoxide (DMSO). Dissolve to make a membrane.

이하에서는 본 발명을 실시예에 의거하여 더욱 상세하게 설명을 하겠다. 그러나, 본 발명의 권리범위가 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited by the following examples.

실시예 1 : AN/PEGM 공중합체의 합성Example 1 Synthesis of AN / PEGM Copolymer

피로가롤-알칼리 수용액 트랩을 통과시켜서 산소를 제거한 질소를 250 ㎖ 3구 플라스크에 30분 동안 통과시킨 뒤, 아크릴로나이트릴 단량체(AN 단량체)와 폴리(에틸렌글리콜)메타크릴레이트 단량체(PEGM 단량체)를 9 : 1 몰비로 적하관을 통하여 서서히 첨가했다. 다음으로, 중합개시제인 2,2′-아조비스(아이소부티로나이트릴)(AIBN)을 AN 단량체와 PEGM 단량체 전체 몰비에 대하여 0.0001 몰비가 되도록 첨가한 후, 무산소 분위기 하에서(질소를 통과시켜 산소를 완전히 제거), 4 시간 동안 80 rpm으로 교반시켰다. 다음으로 이를 40℃까지 올린 후, 50 rpm으로 교반시키면서, 벌크중합을 수행하여 중합물을 제조하였다. 다음으로 -5℃의 핵산에 상기 중합물을 침전시켜서 12 시간 냉동 보관하여 중합물을 안정화시킨 뒤, 안정화시킨 중합물을 벤젠에 녹여 잘게 파쇄한 후, 이를 다시 -5℃의 헥산에 침전시켜서 15 시간 냉동보관하여 재안정화시켰다. 안정화 및 재안정화 과정을 3 차례 반복한 다음, 잔존 단량체를 세척한 후, 60℃에서 1일간 진공건조하여, 전환율 57%, 절대점도[η] 1.72의 AN/PEGM 공중합체를 합성하였으며, 그 결과를 하기 표 1에 나타내었다. 그리고, 전환율(%) 측정은 다음식{생성된 고분자의 무게(g)/사용 단량체의 무게(g)}×100를 이용하여 측정하였으며, 절대점도는 널리 사용되고 있는 점도법 으로 측정 하였으며 우벨로드 점도계를 이용하여 측정하였다.Oxygen-free nitrogen was passed through a pyrogarol-alkali aqueous solution trap for 30 minutes in a 250 ml three-necked flask, followed by acrylonitrile monomer (AN monomer) and poly (ethylene glycol) methacrylate monomer (PEGM monomer). ) Was slowly added through the drip tube at a 9: 1 molar ratio. Next, 2,2'-azobis (isobutyronitrile) (AIBN), which is a polymerization initiator, was added in an amount of 0.0001 molar ratio relative to the total molar ratio of the AN monomer and the PEGM monomer, and then under an oxygen-free atmosphere (nitrogen was passed through oxygen). Completely removed), and stirred at 80 rpm for 4 hours. Next, after raising it to 40 degreeC, carrying out the bulk polymerization, stirring at 50 rpm, and manufactured the polymer. Next, the polymer was precipitated in a nucleic acid at −5 ° C. and frozen for 12 hours to stabilize the polymer. The stabilized polymer was dissolved in benzene, finely crushed, and then precipitated in hexane at −5 ° C. again for 15 hours. Restabilization by After stabilization and restabilization three times, the remaining monomers were washed and then vacuum dried at 60 ° C. for 1 day to synthesize an AN / PEGM copolymer having a conversion rate of 57% and an absolute viscosity [η] of 1.72. It is shown in Table 1 below. In addition, conversion (%) was measured using the following formula {weight of produced polymer (g) / weight of monomer used (g)} × 100, and absolute viscosity was measured by a widely used viscosity method. Measured using.

실시예 2 ~ 10Examples 2-10

상기 실시예 1과 동일하게 실시하되, 하기 표 1에 나타낸 바와 같은 조건에서 실시하여 AN/PEGM 공중합체를 합성하였다.The same procedure as in Example 1, but under the conditions as shown in Table 1 to synthesize an AN / PEGM copolymer.

구분division 단량체 몰비Monomer molar ratio 중합개시제Polymerization initiator 벌크중합
온도(℃)
Bulk polymerization
Temperature (℃)
전환율
(%)
Conversion rate
(%)
절대점도
(η)
Absolute viscosity
(η)
AN/PEGM 몰비AN / PEGM molar ratio AIBN
(단량체 전체에 대한 몰비)
AIBN
(Molar ratio for the entire monomer)
실시예 1Example 1 9/19/1 0.0010.001 4040 4444 1.271.27 실시예 2Example 2 9/19/1 0.00050.0005 5050 4545 1.291.29 실시예 3Example 3 9/19/1 0.0010.001 5050 4141 1.071.07 실시예 4Example 4 9/19/1 0.00010.0001 6060 4949 1.251.25 실시예 5Example 5 9/19/1 0.00050.0005 6060 4141 0.980.98 실시예 6Example 6 8/28/2 0.0010.001 4040 4242 1.221.22 실시예 7Example 7 8/28/2 0.00050.0005 5050 4444 1.211.21 실시예 8Example 8 8/28/2 0.0010.001 5050 3939 0.970.97 실시예 9Example 9 8/28/2 0.00010.0001 6060 4646 1.231.23 실시예 10Example 10 8/28/2 0.00050.0005 6060 3838 0.860.86

통상 현탁중합이나 유화중합 같은 경우 보통 전환율이 50 ~ 90% 이상으로 전환율이 높게 나오지만 세척시 불순물을 완벽하게 제거하기 어려워 순도가 떨어지는 단점을 가지고 있다. 그렇지만, 벌크중합의 경우 상대적으로 전환율이 30% 내외로 많이 낮지만 순도가 높은 중합물을 제조할 수 있다는 장점을 가지고 있다. 상기 표 1을 살펴보면, 전환율이 평균 40% 이상이 되는 것을 확인할 수 있는데, 이는 벌크중합에서 전환율이 높다고 할 수 있다. 이를 통하여, 본 발명의 제조방법을 통하여 순도 및 전환율이 높은 AN/PEGM 공중합체를 제조할 수 있음을 확인할 수 있다. In general, in the case of suspension polymerization or emulsion polymerization, the conversion rate is usually higher than 50 ~ 90%, but it has a disadvantage in that purity is difficult because it is difficult to completely remove impurities during washing. However, the bulk polymerization has a relatively low conversion rate of about 30%, but has the advantage of producing a high purity polymer. Looking at Table 1, it can be seen that the conversion rate is more than 40% on average, which can be said that the conversion rate is high in the bulk polymerization. Through this, it can be seen that the AN / PEGM copolymer having high purity and conversion rate can be prepared through the production method of the present invention.

제조예 1 ~ 10 : 수처리용 멤브레인의 제조Preparation Examples 1 to 10: Preparation of the membrane for water treatment

상기 실시예 1 ~ 10에서 제조한 AN/PEGM 공중합체 각각을 이용하여, 평균분획분자량이 200,000인 수처리용 멤브레인(분리막)을 제조하여, 제조예 1 ~ 10을 실시하였다.Using each of the AN / PEGM copolymers prepared in Examples 1 to 10, a membrane for water treatment (separation membrane) having an average fraction molecular weight of 200,000 was prepared, and Preparation Examples 1 to 10 were carried out.

비교제조예 1: Polyacrylonitrile 분리막 제조Comparative Preparation Example 1 Preparation of Polyacrylonitrile Membrane

상기 제조예와 동일한 방법으로 수처리용 분리막을 제조하되, AN/PEGM 공중합체 대신 폴리아크릴로나이트릴(Polyacrylonitrile, PAN) 고분자를 이용하여 수처리용 분리막을 제조하였다.A water treatment membrane was prepared in the same manner as in Preparation Example, but a membrane for water treatment was prepared using polyacrylonitrile (PAN) polymer instead of AN / PEGM copolymer.

비교제조예 2: PVDF 분리막 제조Comparative Production Example 2: Preparation of PVDF Separator

상기 제조예와 동일한 방법으로 수처리용 분리막을 제조하되, AN/PEGM 공중합체 대신 폴리비닐리덴플루오라이드(Polyvinyllidene flouride, PVDF) 고분자를 이용하여 수처리용 분리막을 제조하였다.A water treatment membrane was prepared in the same manner as in Preparation Example, but a membrane for water treatment was prepared using a polyvinylidene fluoride (PVDF) polymer instead of an AN / PEGM copolymer.

실험예 1 : 물성측정실험Experimental Example 1 Physical Property Measurement Experiment

상기 제조예 1 ~ 10 및 비교예 1 ~ 2에서 제조한 수처리용 멤브레인의 물성을 하기 방법에 의해서 측정하였으며, 그 결과는 하기 표 2에 나타내었다. The physical properties of the membranes for water treatment prepared in Preparation Examples 1 to 10 and Comparative Examples 1 and 2 were measured by the following methods, and the results are shown in Table 2 below.

본 실험에서 평균기공크기는 PMI{Capillary flow porometer (Porous Material Inc., CFP-1500-AEL, USA)}를 사용하여 측정하였고, 순수투과유량은 중공사막의 일정한 길이와 가닥수를 갖는 모듈을 제조하여 수조에 있는 순수(20℃)를 Out-In 방식으로 흡입펌프를 사용하여 흡입하여 측정하였다. In this experiment, the average pore size was measured using PMI {Capillary flow porometer (Porous Material Inc., CFP-1500-AEL, USA)}, and the net permeate flow rate was prepared for a module having a constant length and number of strands of the hollow fiber membrane. Pure water in the tank (20 ℃) was measured by suction using the suction pump in the Out-In method.

구분division 평균기공크기
(㎛)
Average pore size
(Μm)
순수투과량
(L/㎡·hr, -500 mmHg, 20℃ )
Pure permeation
(L / ㎡ · hr, -500mmHg, 20 ℃)
제조예 1Preparation Example 1 0.00530.0053 100100 제조예 2Production Example 2 0.00530.0053 9999 제조예 3Production Example 3 0.00560.0056 105105 제조예 4Preparation Example 4 0.00530.0053 100100 제조예 5Preparation Example 5 0.00560.0056 106106 제조예 6Preparation Example 6 0.00550.0055 102102 제조예 7Preparation Example 7 0.00550.0055 102102 제조예 8Preparation Example 8 0.00570.0057 108108 제조예 9Preparation Example 9 0.00530.0053 101101 제조예 10Preparation Example 10 0.00610.0061 110110 비교예 1Comparative Example 1 0.00480.0048 9090 비교예 2Comparative Example 2 0.00370.0037 5050

상기 표 2의 물성측정실험결과를 통하여 본 발명의 AN/PEGM 공중합체로 제조된 수처리용 멤브레인이 기존의 수처리용 멤브레인 보다 순수투과량이 높음을 확인할 수 있었다.Through the measurement results of the physical properties of Table 2, it was confirmed that the membrane for water treatment made of the AN / PEGM copolymer of the present invention has a higher net permeation rate than the membrane for water treatment.

실험예 2 : 막오염 저항성 측정 실험Experimental Example 2 Membrane Contamination Resistance Measurement Experiment

순수투과유량을 측정한 후, 소혈청 단백질(bovine serum albumin, BSA) 100 ppm 수용액을 이용하여 -500 mmHg의 압력 하에서 6 시간 운전 후의 투과유량을 측정하고 순수투과유량 대비 투과유량 감소율로 나타내어 무차원의 relative flux로 표시하였다. 예를 들어, 초기투과유량이 500 L/m2hr이고 6 시간 후의 투과유량이 200 L/m2hr이면, relative flux는 200/500, 즉, 0.4가 된다. After measuring the pure permeate flow rate, the permeate flow rate after 6 hours of operation under a pressure of -500 mmHg using a 100 ppm aqueous solution of bovine serum albumin (BSA) was measured and expressed as the rate of permeate flow reduction compared to the pure permeate flow rate. It is expressed as relative flux of. For example, if the initial permeate flow rate is 500 L / m 2 hr and the permeate flow rate after 6 hours is 200 L / m 2 hr, the relative flux is 200/500, that is, 0.4.

이와 같은 방법을 이용하여, 실시예 1 ~ 10 및 비교예 1 ~ 2에서 제조한 수처리용 멤브레인의 막오염 저항성 측정 실험을 수행하였으며, 그 결과를 하기 표 3에 나타내었다.Using this method, the membrane fouling resistance measurement experiments of the membranes for water treatment prepared in Examples 1 to 10 and Comparative Examples 1 and 2 were performed, and the results are shown in Table 3 below.

구분division relative flux
(상대투과유량)
relative flux
Relative Permeate Flow Rate
제조예 1Preparation Example 1 0.600.60 제조예 2Production Example 2 0.590.59 제조예 3Production Example 3 0.620.62 제조예 4Preparation Example 4 0.600.60 제조예 5Preparation Example 5 0.670.67 제조예 6Preparation Example 6 0.630.63 제조예 7Preparation Example 7 0.630.63 제조예 8Preparation Example 8 0.660.66 제조예 9Preparation Example 9 0.630.63 실시예 10Example 10 0.710.71 비교제조예 1Comparative Preparation Example 1 0.520.52 비교제조예 2Comparative Production Example 2 0.430.43

상기 표 3의 막오염 저항성 측정결과를 통하여, 본 발명의 AN/PEGM 공중합체로 제조된 수처리용 멤브레인의 막오염 저항성이 매우 우수함을 확인할 수 있었다.Through the measurement results of the membrane fouling resistance of Table 3, it was confirmed that the membrane fouling resistance of the membrane for water treatment made of the AN / PEGM copolymer of the present invention is very excellent.

Claims (8)

무산소 분위기 하에서, 아크릴로나이트릴 단량체와 폴리(에틸렌글리콜)메타크릴레이트 단량체 및 중합개시제를 혼합한 혼합물을 교반한 후, 40 ~ 60℃에서 벌크중합시켜서 제조하는 것을 특징으로 하는 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체의 제조방법.Acrylonitrile / poly, which is prepared by stirring a mixture of an acrylonitrile monomer, a poly (ethylene glycol) methacrylate monomer, and a polymerization initiator under an oxygen-free atmosphere, followed by bulk polymerization at 40 to 60 ° C. Method for producing (ethylene glycol) methacrylate copolymer. 제 1 항에 있어서, The method of claim 1, 무산소 분위기 하에서, 아크릴로나이트릴 단량체와 폴리(에틸렌글리콜)메타크릴레이트 단량체 및 중합개시제를 혼합한 혼합물을 교반한 후, 40 ~ 60℃에서 벌크중합을 수행하여 중합물을 제조하는 1 단계; 1 step of preparing a polymer by stirring a mixture of an acrylonitrile monomer, a poly (ethylene glycol) methacrylate monomer and a polymerization initiator under an oxygen-free atmosphere, and then performing a bulk polymerization at 40 to 60 ° C .; 상기 중합물을 -30 ~ 0℃의 헥산에 10 ~ 15 시간 동안 침전시켜서 중합물을 안정화시키는 2 단계; 2 steps to stabilize the polymer by precipitating the polymer in -30 ~ 0 ℃ hexane for 10 to 15 hours; 상기 안정화된 중합물을 벤젠에 녹여 잘게 파쇄한 후, 파쇄된 중합물을 -30 ~ 0℃의 헥산에 10 ~ 15 시간 동안 침전시켜서 중합물을 재안정화시키는 3 단계; 및Three steps of dissolving the stabilized polymer in benzene to finely disintegrate and then restabilizing the polymer by precipitating the disintegrated polymer in hexane at -30 to 0 ° C. for 10 to 15 hours; And 2 단계와 3 단계를 2 ~ 5회 반복하여 중합체를 제조하는 4 단계;Repeating steps 2 and 3 two to five times to produce a polymer; 를 포함하는 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체의 제조방법.Method for producing an acrylonitrile / poly (ethylene glycol) methacrylate copolymer comprising a. 제 1 항에 있어서, 상기 아크릴로나이트릴 단량체와 폴리(에틸렌글리콜)메타크릴레이트 단량체는 7 ~ 9.5 : 0.5 ~ 3 몰비를 갖는 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the acrylonitrile monomer and the poly (ethylene glycol) methacrylate monomer have a molar ratio of 7 to 9.5: 0.5 to 3. 제 1 항에 있어서, 상기 중합개시제는 2,2′-아조비스(아이소부티로나이트릴)이고, 아크릴로나이트릴 단량체와 폴리(에틸렌글리콜)메타크릴레이트 단량체의 전체 몰(mol)에 대하여, 0.0001 ~ 0.001의 몰비를 갖는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the polymerization initiator is 2,2'-azobis (isobutyronitrile), and with respect to the total moles of the acrylonitrile monomer and the poly (ethylene glycol) methacrylate monomer, It has a molar ratio of 0.0001 to 0.001. 제 1 항 내지 제 4 항 중에서 선택된 어느 한 항의 제조방법으로 제조한 것을 특징으로 하는 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체.An acrylonitrile / poly (ethylene glycol) methacrylate copolymer, which is prepared by the process according to any one of claims 1 to 4. 제 5 항에 있어서, 절대점도(η)가 0.6 ~ 1.3인 것을 특징으로 하는 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체.6. The acrylonitrile / poly (ethylene glycol) methacrylate copolymer according to claim 5, wherein the absolute viscosity η is 0.6 to 1.3. 제 6 항의 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체로 제조된 것을 특징으로 하는 수처리용 멤브레인.A membrane for water treatment, which is made of the acrylonitrile / poly (ethylene glycol) methacrylate copolymer of claim 6. 제 7 항에 있어서, The method of claim 7, wherein 상기 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체; 및 The acrylonitrile / poly (ethylene glycol) methacrylate copolymer; And 아크릴로나이트/폴리(에틸렌글리콜)메타크릴레이트 공중합체, 디메틸아세트아마이드(DMAc), 디메틸포름아미드(DMF) 및 디메틸슬폭사이드(DMSO) 중에서 선택된 1 종 이상의 용매;At least one solvent selected from acrylonitrile / poly (ethylene glycol) methacrylate copolymer, dimethylacetamide (DMAc), dimethylformamide (DMF) and dimethylsulfoxide (DMSO); 를 포함하는 것을 특징으로 하는 수처리용 멤브레인.Membrane for water treatment, comprising a.
KR1020090131100A 2009-12-24 2009-12-24 Acrylonitrile/polyethyleneglycolmethacrylate copolymer manufactured by bulk copolymerization, Preparing method thereof and Membrane for water-treatment manufactured by that KR101159067B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090131100A KR101159067B1 (en) 2009-12-24 2009-12-24 Acrylonitrile/polyethyleneglycolmethacrylate copolymer manufactured by bulk copolymerization, Preparing method thereof and Membrane for water-treatment manufactured by that

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090131100A KR101159067B1 (en) 2009-12-24 2009-12-24 Acrylonitrile/polyethyleneglycolmethacrylate copolymer manufactured by bulk copolymerization, Preparing method thereof and Membrane for water-treatment manufactured by that

Publications (2)

Publication Number Publication Date
KR20110074198A true KR20110074198A (en) 2011-06-30
KR101159067B1 KR101159067B1 (en) 2012-07-03

Family

ID=44404599

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090131100A KR101159067B1 (en) 2009-12-24 2009-12-24 Acrylonitrile/polyethyleneglycolmethacrylate copolymer manufactured by bulk copolymerization, Preparing method thereof and Membrane for water-treatment manufactured by that

Country Status (1)

Country Link
KR (1) KR101159067B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510540B2 (en) * 1986-11-19 1996-06-26 東レ株式会社 Polyacrylonitrile-based semipermeable membrane and method for producing the same
KR100454153B1 (en) 2001-11-24 2004-10-26 태광산업주식회사 A hollow fiber membrane made of polyacrylonitrile and a preparation method thereof
KR100960644B1 (en) 2008-03-11 2010-06-07 재단법인서울대학교산학협력재단 Method of preparing polymer membrane for inhibiting microorganism propagation using copolymer

Also Published As

Publication number Publication date
KR101159067B1 (en) 2012-07-03

Similar Documents

Publication Publication Date Title
KR101016732B1 (en) Highly durable porous pvdf film, method of producing the same and washing method and filtration method using the same
EP2543429B1 (en) Macromolecular water-treatment membrane and manufacturing method therefor
JP5858154B2 (en) Resin composition for porous membrane, membrane-forming stock solution, method for producing porous membrane, method for producing porous membrane for hollow fiber membrane, method for producing porous membrane for water treatment device, production of porous membrane for electrolyte support Method and method for producing porous membrane for separator
JP6018790B2 (en) Separation membrane, manufacturing method thereof, and water treatment apparatus including separation membrane
EP3075764B1 (en) Hydrophilically modified fluorinated membrane
CN107759753B (en) Fluoropolymer and film (II) comprising fluoropolymer
JP2006257390A (en) Polybenzimidazole-based polymer and method for producing the same
KR101132731B1 (en) Acetylated methyl cellulose, Membrane for water treatment using that and Preparing method thereof
KR20140099695A (en) Draw solute for forward osmosis, forward osmosis water treatment device, and forward osmosis method for water treatment
DE112015006647T5 (en) Isatin copolymers with intrinsic microporosity
JP2010058096A (en) Hydrophilic polyethersulfone separation membrane and method for manufacturing the same
CN108097054A (en) It is a kind of can ultraviolet light cross-linking sulfonated polyphenyl ether sulfone ketone membrane for water treatment material preparation method
KR101780380B1 (en) Hydrophilically modified fluorinated membrane (ii)
KR101159067B1 (en) Acrylonitrile/polyethyleneglycolmethacrylate copolymer manufactured by bulk copolymerization, Preparing method thereof and Membrane for water-treatment manufactured by that
CN104610519B (en) Preparation method of PVDF-PEG (polyvinylidene fluoride-polyethylene glycol) block copolymer
KR101816188B1 (en) Anion-exchange membrane based on polyether ether ketone copolymer and manufacturing method thereof
KR101894077B1 (en) Polysulfone-based polymeric holleow fiber membrane with good selectivity
JP6374459B2 (en) Polymer and production method thereof
KR101068437B1 (en) Porous pvdf membranes with improved water permeability and chemical resistance and manufacturing method thereof
US20220251300A1 (en) Bio-based polysulfones and uses thereof
KR20220112292A (en) Polymer Additive Comprising Zwitterionic Moieties for Vylidene Fluoride Polymer Based Membrane
EP3548524B1 (en) Process for the production of polyacrylonitrile
JP6244427B2 (en) Ion exchange membrane
KR101072977B1 (en) Method for manufacturing sponge-type hollow fiber membrane made of polyacrylonitrile
KR20200005747A (en) Copolymers and trimers based on chlorotrifluoroethylene and vinyl chloride and uses thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee