KR20110073535A - 수성 액체의 정수 방법 및 시스템 - Google Patents

수성 액체의 정수 방법 및 시스템 Download PDF

Info

Publication number
KR20110073535A
KR20110073535A KR1020117009109A KR20117009109A KR20110073535A KR 20110073535 A KR20110073535 A KR 20110073535A KR 1020117009109 A KR1020117009109 A KR 1020117009109A KR 20117009109 A KR20117009109 A KR 20117009109A KR 20110073535 A KR20110073535 A KR 20110073535A
Authority
KR
South Korea
Prior art keywords
unit
supercapacitor desalination
concentrate
water purification
supercapacitor
Prior art date
Application number
KR1020117009109A
Other languages
English (en)
Other versions
KR101298853B1 (ko
Inventor
제임스 마니오 실바
Original Assignee
제너럴 일렉트릭 캄파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제너럴 일렉트릭 캄파니 filed Critical 제너럴 일렉트릭 캄파니
Publication of KR20110073535A publication Critical patent/KR20110073535A/ko
Application granted granted Critical
Publication of KR101298853B1 publication Critical patent/KR101298853B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Water Treatments (AREA)

Abstract

이온성 용질을 포함하는 수성 액체의 효율적 정수를 위한 방법 및 시스템이 제공된다. 이러한 수성 액체들은 직렬로 작용하는 복수의 수퍼커패시터 탈염 유닛들에 의해 정수되는 데, 제 1 수퍼커패시터 탈염 유닛은 "충전" 모드로 작동하여 공급 용액을 탈이온화시키고 정수된 생성액을 생성하며, 제 2 수퍼커패시터 탈염 유닛은 "방전" 모드로 작동하여 이온을 순환 스트림 내로 배출하고 농축물을 생성한다. 제 1 수퍼커패시터 탈염 유닛의 산물은 정수된 생성물 스트림으로 제거된다. 제 2 수퍼커패시터 탈염 유닛의 산물은 공통 석출 유닛에 전달되는 농축물이며, 상기 공통 석출 유닛에서 이온 용질의 일부분이 석출되고, 제 2 수퍼커패시터 탈염 유닛으로 다시 재순환될 수 있는 나머지 액상으로부터 유리된다. 서로 다른 상태로 작동하는 두개의 수퍼커패시터 탈염 유닛들을 이용함으로써, 공통 석출 유닛이 정상 상태 조건 하에서 연속적으로 작동할 수 있다.

Description

수성 액체의 정수 방법 및 시스템{METHODS AND SYSTEMS FOR PURIFYING AQUEOUS LIQUIDS}
본 발명의 실시예들은 수성 액체의 정수 분야, 특히 수성 액체의 탈염(desalination)에 관한 것이다. 본 발명의 실시예들은 탈염 장치 및 탈염 장치를 이용하는 방법에 관한 것이다.
지구 표면 상에서 1% 미만의 물이 가정용 또는 산업용으로 직접 사용하기에 적합하다. 천연 음용수의 수원이 제한되어 있기 때문에, 탈염이라고 통상적으로 알려져 있는, 해수 또는 기수(brackish water)의 탈이온화가 담수를 생성하는 한가지 방법이다. 수원을 탈이온화하거나 탈염하기 위해 현재 사용되는 탈염 기술에는 여러 가지가 있다.
용량성 탈이온화는 낮은 전압(약 1 볼트) 및 낮은 압력(15 psig)에서 작동하는 정전적 프로세스이다. 염수(saline water)가 고-표면적 전극 조립체를 통해 펌핑될 때, 용해되어 있는 염, 금속, 및 일부 유기질과 같은 물 안의 이온들이 반대로 대전된 전극으로 끌려들어간다. 이는 전극에 이온들을 농축시키고, 물 안의 이온 농도를 감소시킨다. 전극 용량이 소모될 때, 염류 공급 흐름이 중단되고, 커패시터는 방전되어, 부가적으로, 별도의 더욱 농축된 용액을 얻게 된다. 그 후 이 사이클이 반복된다.
현재 가용한 장치 또는 시스템들과는 다른 탈염 장치 또는 시스템들을 갖는 것이 바람직할 수 있다. 현재 가용한 방법들과는 다른 탈염 장치 또는 시스템을 제작하거나 이용하는 방법을 갖는 것이 바람직할 수 있다.
일 실시예에 있어서, 본 발명은 수성 액체의 정수 방법을 제공하며, 상기 방법은, 이온성 용질을 포함하는 수성 공급 용액을 제 1 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 2 수퍼커패시터 탈염 유닛으로부터 농축물(B)을 배출시키며, 그리고, 농축물(B)을 공통 석출 유닛 내로 유입시키는 단계와, 그후, 상기 수성 공급 용액을 제 2 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 1 수퍼커패시터 탈염 유닛으로부터 농축물(A)을 배출시키며, 그리고, 농축물(A)을 공통 석출 유닛 내로 유입시키는 단계와, 정수된 액체 및 석출물을 회수하는 단계를 포함한다.
다른 실시예에 있어서, 본 발명은 해수 탈염 방법을 제공하며, 상기 방법은, 해수를 제 1 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 2 수퍼커패시터 탈염 유닛으로부터 농축물(B)을 배출시키며, 그리고, 농축물(B)을 공통 석출 유닛 내로 유입시키는 단계와, 그후, 해수를 제 2 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 1 수퍼커패시터 탈염 유닛으로부터 농축물(A)을 배출시키며, 그리고, 농축물(A)을 공통 석출 유닛 내로 유입시키는 단계와, 정수된 물을 회수하는 단계와, 선택적으로, 염 석출물을 회수하는 단계를 포함한다.
또 다른 실시예에 있어서, 본 발명은 수성 액체의 정수 방법을 제공하며, 상기 방법은, 이온성 용질을 포함하는 수성 공급 용액을 제 1 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 2 수퍼커패시터 탈염 유닛으로부터 농축물(B)을 배출시키며, 그리고, 농축물(B)을 공통 석출 유닛 내로 유입시키는 단계와, 그후, 상기 수성 공급 용액을 제 2 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 1 수퍼커패시터 탈염 유닛으로부터 농축물(A)을 배출시키며, 그리고, 농축물(A)을 공통 석출 유닛 내로 유입시키는 단계와, 정수된 액체 및 석출물을 회수하는 단계를 포함하며, 각각의 수퍼커패시터 탈염 유닛이 적어도 한 쌍의 반대로 대전된 표면들을 포함하고, 농축물(A) 또는 농축물(B)의 공통 석출 유닛 내의 체류 시간이 약 5분 내지 약 4시간 범위 내에 있으며, 충전 시간 및 방전 시간이 실질적으로 동일하고 약 5분 내지 약 4시간 범위 내에 있으며, 상기 한 쌍의 반대로 대전된 표면들 사이의 전위 강하는 약 1 볼트이며, 수퍼커패시터 탈염 유닛들 중 적어도 하나가 에너지 회수 장치를 통해 방전된다.
또 다른 실시예에 있어서, 본 발명은 무배수(zero liquid discharge) 정수 시스템을 제공하며, 상기 시스템은, (a) 제 1 수퍼커패시터 탈염 유닛과, (b) 제 2 수퍼커패시터 탈염 유닛과, (c) 공통 석출 유닛과, (d) 제 1 유체 입력 라인 및 제 2 유체 입력 라인과, (e) 제 1 유체 배출 라인 및 제 2 유체 배출 라인과, (f) 생성물 출력 라인과, (g) 유체 복귀 루프를 포함하며, 상기 제 1 및 제 2 수퍼커패시터 탈염 유닛은 상기 생성물 출력 라인 또는 상기 공통 석출 유닛에 교대로, 그리고 상호 배타적으로 연결될 수 있다.
본 발명의 이와 같은, 그리고 그외 다른 특징, 형태, 및 장점들이 다음의 상세한 설명을 참고하여 더욱 쉽게 이해될 수 있다.
도면 간에 유사한 번호들은 실질적으로 동일한 부분을 나타낸다.
도 1은 수퍼커패시터 탈염 유닛 장치의 개략도,
도 2는 대안의 수퍼커패시터 탈염 유닛 장치의 개략도,
도 3은 도 1의 스택의 일부분의 전개 사시도,
도 4는 본 발명의 특정 실시예들에 따른 충전 작동 모드 중 수퍼커패시터 탈염 셀의 사시도,
도 5는 본 발명의 특정 실시예들에 따른 방전 작동 모드 중 수퍼커패시터 탈염 셀의 사시도,
도 6은 충전 작동 모드 및 방전 작동 모드 중 무배수 정수 시스템의 블록도,
도 7은 본 발명의 실시예들에 따른 무배수 정수 시스템의 블록도,
도 8은 본 발명의 실시예들에 따른 무배수 정수 시스템의 블록도.
다음의 명세서 및 명세서에 이어지는 청구범위에서, 다음의 의미를 가지는 것으로 정의될 다수의 용어들을 참고해야할 것이다.
"하나", "한 개", 및 "상기"는 그렇지 않다고 명확하게 언급하지 않는 한 복수의 지시 대상을 포함한다.
"부가적인", 또는, "부가적으로"는, 다음에 설명되는 사건이나 상황이 발생할 수도 있고 발생하지 않을 수도 있으며, 사건이 발생하는 사례와 사건이 발생하지 않는 사례를 포함하는 것을 의미한다.
명세서 및 청구범위 전반에 사용되는 개략적인 어휘는, 관련된 기본적 기능의 변화없이 바뀔 수 있는 정성적 표현을 수정하는 데 적용될 수 있다. 따라서, "약" 및 "실질적으로"와 같은 용어에 의해 수정되는 값은, 명시된 정확한 값만으로 한정되어서는 안된다. 적어도 일부 사례에서, 개략적 어휘는 값을 측정하기 위한 기기의 정밀도에 대응할 수 있다. 여기서, 그리고 명세서 및 청구범위 전반에서, 범위 한정사항은 조합되고, 및/또는 교환될 수 있으며, 이러한 범위들은 그렇지 않다고 언급되지 않는 한, 그 안에 포함된 모든 서브범위들을 포함한다.
일 실시예에서 언급하는 바와 같이, 본 발명은 수성 액체를 정수하는 방법을 제공하고, 상기 방법은 이온성 용질을 포함하는 수성 공급 용액을 제 1 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 2 수퍼커패시터 탈염 유닛으로부터 농축물(B)을 배출하고 농축물(B)을 공통 석출 유닛 내로 유입시키는 단계와, 그후, 수성 공급 용액을 제 2 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 1 수퍼커패시터 탈염 유닛으로부터 농축물(A)을 배출하고 농축물(A)을 공통 투석 유닛 내로 유입시키는 단계와, 정수된 액체 및 석출물을 회수하는 단계를 포함한다.
본 발명에 의해 제공되는 방법에 따라 정수될 수 있는 하나 이상의 이온성 용질을 포함하는 수성 액체는, 해수, 기수(brackish water), 냉각탑 취출수, 화학적 처리 하수 스트림, 소금물(brine), 호수(lake water), 강물, 저수(reservoir water), 및 이들의 조합에 의해 설명된다. 해수가 비교적 풍부하기 때문에, 해수는 본 발명의 방법에 따라 정수될 수 있는 특히 중요한 공급 용액이다. 일 실시예에서, 기수가 정수될 공급 용액으로 기능할 수 있다. 일 실시예에서, 수성 용액은 예를 들어, 사차 암모늄염과 같은 유기 이온성 용질을 포함한다. 여기서, 염수(saline water)는 넓은 범위에서, 하나 이상의 이온성 용질들을 함유하는 수성 용액을 의미한다. 일반적으로, 염수에 존재하는 이온성 용질은, 염화나트륨, 브롬화나트륨, 탄산나트륨, 황산나트륨, 염화칼슘, 플루오르화리튬, 등과 같은 무기염들이다.
본 발명의 다양한 실시예에서, 이온성 용질을 포함하는 수성 공급 용액은, 직렬로 작용하는 두개 이상의 수퍼커패시터 탈염 유닛을 이용하여 정수되며, 제 1 수퍼커패시터 탈염 유닛은 "충전" 모드로 작동하고 정수된 생성 액체를 생성하며, 제 2 수퍼커패시터 탈염 유닛은 "방전" 모드로 작동하여 농축물을 생성한다. 제 1 수퍼커패시터 탈염 유닛의 산물(정수된 생성 액체)은 정수된 생성물 스트림으로 시스템으로부터 제거된다. 제 2 수퍼커패시터 탈염 유닛의 산물은 농축물이고, 이 농축물은 공통 석출 유닛으로 전달되어 이온성 용질의 일부분이 석출되고, "방전" 모드로 작동하는 제 2 수퍼커패시터 탈염 유닛으로 다시 순환되는 나머지 액상으로부터 유리된다. 당 업자라면, 석출물에 부착되거나 석출물 내에 함유된 액체는 별개로 하여, 본 문단 및 본 공개 내용 전반의 실시예들에서 설명되는 시스템이 무배수 기능을 할 수 있고 무배수 정수 시스템으로 불릴 수 있음을 이해할 수 있을 것이다.
아래 설명되는 바와 같이, "충전" 모드의 수퍼커패시터 탈염 유닛은 이온성 용질의 가용 보유 용량을 넘어설 때까지 "충전" 모드로 작동할 수 있고, 그후, 수퍼커패시터 탈염 유닛이 "방전" 모드로 작동하여, 보유된 이온성 용질이 수퍼커패시터 탈염 유닛으로부터 해리된다. 종래의 무배수 정수 시스템들은 단일한 수퍼커패시터 탈염 유닛과 단일한 석출 유닛을 이용한다. 그 결과, 수퍼커패시터 탈염 유닛이 "충전" 모드에 있을 때, 석출 유닛은 농축물을 수용하지 않는다. 수퍼커패시터 탈염 유닛을 완전하게 "충전" 및 "방전"하는 데 요구되는 시간이 대략 동일하기 때문에, 종래의 무배수 정수 시스템의 석출 유닛은 충분히 활용되지 못하고 정상 상태(steady state) 조건 하에서 작동하지 못한다. 본 발명에 의해 제공되는 방법 및 시스템의 중요한 장점은, 공통 석출 유닛에 대한 농축물 공급이 차단되지 않고 공통 석출 유닛이 정상 상태 조건 하에서, 또는 정상 상태에 매우 근사하는 조건 하에서 작동할 수 있어서, 공통 석출 유닛의 효율적 작동을 개선시킨다는 점이다.
일 실시예에서, 본 발명의 방법 및 시스템은, 해수의 탈염, 또는, 다른 기수의 탈이온화에 이용되어 염의 양을 가정용 및 산업용으로 허용가능한 수준까지 감소시킬 수 있다.
본 발명 및 본 발명의 장점들을 더 잘 이해하기 위해, 수퍼커패시터 탈염 유닛들의 기본적 원리가 여기서 간단하게 제시된다. 따라서, 수퍼커패시터는 종래의 커패시터와 비교할 때, 비교적 높은 에너지 밀도를 가지는 전기화학적 커패시터이다. 여기서 사용되는 바와 같이, 수퍼커패시터는 울트라커패시터와 같은, 다른 고성능 커패시터를 포함한다. 커패시터는 한 쌍의 밀착 이격된 전도체("판"이라 불림) 사이의 전기장으로 에너지를 저장할 수 있는 전기 소자이다. 전압이 커패시터에 인가되면, 동일 크기, 그러나 반대 극성의 전하들이 각각의 판 상에 축전된다.
도 1을 참조하면, 도면은 컨트롤러(도시되지 않음)를 갖고, 그리고 하우징(12)을 이용하는 일례의 수퍼커패시터 탈염 유닛(장치라고도 불림)(10)을 개략적으로 나타낸다. 하우징은 볼륨을 규정하는 내부 표면을 가진다. 이러한 볼륨 내에서 하우징은 수퍼커패시터 탈염 스택(14)을 지닌다. 탈염 스택은 복수의 수퍼커패시터 탈염 셀(16)들을 포함한다. 각각의 셀(16)은 한 쌍의 전극과, 하나의 절연 스페이서와, 한 쌍의 전류 컬렉터를 포함한다. 더욱이, 하우징은 공급 액체를 수퍼커패시터 탈염 유닛 내로 유입되게 하는 적어도 하나의 유입구(18)와, 수퍼커패시터 탈염 셀과의 접촉 이후에 액체를 수퍼커패시터 탈염 유닛으로부터 빠져나가게 하는 유출구(20)를 포함한다. 수퍼커패시터 탈염 유닛을 통한 공급 액체의 움직임은 중력, 흡입, 펌핑과 같은 다양한 수단에 의해 촉진될 수 있다.
여전히 도 1을 참조하면, 유체 유입구(18)를 통해 "충전" 모드로 작동하는 수퍼커패시터 탈염 유닛에 유입되는 공급 액체(도시되지 않음)가 염수 용액, 예를 들어, 해수일 때, 유체 유출구(20)를 통해 수퍼커패시터 탈염 유닛을 빠져나가는 생성 액체의 염도가 공급 액체의 염도보다 낮을 것이다. 이와는 달리, 수퍼커패시터 탈염 유닛이 "방전" 모드로 작동하고 있을 때, 유체 유출구(20)를 통해 수퍼커패시터 탈염 유닛을 빠져나가는 유체의 염도는 공급 액체의 염도보다 일반적으로 높을 것이다. 언급되는 바와 같이, 수퍼커패시터 탈염 유닛은 컨트롤러를 포함하고, 상기 컨트롤러는 개별 수퍼커패시터 탈염 셀(16)의 전극 간의 전위 강하의 제어를 제공한다. 추가적으로, 컨트롤러는 적절한 밸브, 센서, 스위치, 등과 통신하고 이를 제어하여, 작동 모드가 지정 기준에 따라 "스위치" 모드로부터 "방전" 모드로 가역적으로 스위칭할 수 있다. 이러한 기준은 시간 경과, 이온성 용질의 농도, 전도도, 전기저항 등을 포함할 수 있다.
여전히 도 1을 참조하면, "충전" 모드에서, 수퍼커패시터 탈염 유닛 스택(14) 내의 공급 액체의 체류 시간을 제어하여, 유체 유출구(20)를 빠져나가는 특정 염도의 생성 액체를 얻을 수 있다. 즉, 컨트롤러와 통신하는, 적절히 위치한 센서에 의해 측정되는 바와 같이, 공급 액체를 지정 레벨의 대전된 종들로 탈이온화하는 데 시간이 좀 더 걸릴 수도 있고 좀 덜 걸릴 수도 있다. 특정 실시예에서, 이러한 복수의 셀들이 수퍼커패시터 탈염 유닛 내에 배열되어, 제 1 셀의 산물이 제 2 셀의 공급 액체로 처리될 수 있게 된다.
도 2를 참조하면, 도면은, 복수의 수퍼커패시터 탈염 셀(16)들을 포함하는 지지판(32)에 의해 지지되는 수퍼커패시터 탈염 스택(14)이 도시되고, 상기 셀들은 절연 스페이서(28)에 의해 분리되는 전극(24, 26)을 포함한다. 수퍼커패시터 탈염 스택은 전류 컬렉터(30)를 부가적으로 포함한다. 전류 컬렉터(30)는 "충전" 중 수퍼커패시터 탈염 유닛에 저장되는, 그리고, 수퍼커패시터 탈염 유닛의 "방전" 중 릴리스되는, 전기 에너지를 회수하는 데 사용될 수 있다.
도 3을 참조하면, 도면은 도 1 및 도 2에 비해 상세하게 수퍼커패시터 탈염 스택(14)을 나타낸다. 도면은 지지판(32) 및 수퍼커패시터 탈염 셀(16)과, 상기 셀(16)들 사이에 배치되는 전류 컬렉터(30)를 포함하는 수퍼커패시터 탈염 스택(14)을 도시한다. 수퍼커패시터 탈염 셀(16)은 전극(24, 26) 및 절연 스페이서(28)를 포함한다. 도면은 스택(14)을 포함하는 수퍼커패시터 탈염 유닛 내에 존재하면서, 액체를 유동시킬 수 있는 구멍 또는 개구부(21)의 이용을 또한 도시한다. 예를 들어, 개구부(21)를 통해 방향 화살표(22)에 의해 표시되는 바와 같이 스택(14) 내로 유체가 유입될 수 있고, 방향 화살표(23)에 의해 표시되는 바와 같이 스택의 적어도 일부분을 통해 유동하여, 방향 화살표(25)에 의해 표시되는 바와 같이 스택을 빠져나갈 수 있다.
도 4를 참조하면, 도면은 수퍼커패시터 탈염 유닛의 "충전" 중 수퍼커패시터 탈염 셀(절연 스페이서는 도시되지 않음)을 나타낸다. 따라서, 양이온(36) 및 음이온(38)을 포함하는 이온성 용질을 포함하는 공급 스트림(34)이 셀 내로 유입된다. 공급 스트림(34)이 셀을 통과함에 따라, 반대로 대전된 전극(24, 26)들이 공급 스트림으로부터 반대 전하의 이온들을 끌어당겨서 보유한다. 수퍼커패시터 탈염 셀을 떠나는 생성 유체는 공급 스트림에 비해 적은 이온성 용질을 함유하고, 정수된 액체를 나타내는 "희석 스트림"으로 도면에서 언급된다. 일반적으로, 전극(24, 26)은 약 1 볼트와 약 2 볼트(직류 전류) 사이의 전위차를 형성한다. 이온성 용질은 이온성 용질의 농도 변화없이 공급 스트림이 셀을 통과하는 지점에서 표면이 포화될 때까지 반대로 대전된 전극(24, 26)에서 흡착될 것이다. 본 발명의 다양한 실시예에서, 수퍼커패시터 탈염 유닛의 수퍼커패시터 탈염 셀의 전극은 "반대로 대전된 표면"이라 불릴 수 있다.
도 5를 참조하면, 도면은 수퍼커패시터 탈염 유닛의 방전 모드 중 수퍼커패시터 탈염 셀(16)을 나타낸다. 수퍼커패시터 탈염 셀의 방전 모드 중, 전극(24, 26)은 단락되고(또는, 저장된 에너지를 회수하도록 부하를 통해 제어된 조건 하에서 방전되고), 양이온(36) 및 음이온(38)들은 전극(24, 26) 표면으로부터 릴리스된다. 본 예에서, 방전 모드 중 셀에 유입되는 유체는 포화된 또는 과포화된 이온성 용질의 스트림이다. 이러한 유체(42)는 석출 유닛(446)을 떠난다. (도면에서 "배출 스트림"으로 언급되는) 방전 모드 중 셀을 빠져나가는 유체는, 이온성 용질의 과포화된 용액을 나타낸다. 배출 스트림은, 이온성 용질의 일부가 배출 스트림으로부터 고형 석출물(48)로 분리되는 석출 유닛(46)에 전달된다. 이온성 고형물의 석출 이후 석출 유닛의 유체는 이온성 용질로 포화되거나 과포화된 상태로 유지된다. 이러한 스트림은 석출 유닛(46)의 이온 종들의 석출 때문에 배출 스트림(44)보다 낮은 농도를 가진다. 이러한 유체(도면에서 "포화된 공급 스트림"(42)로 불림)은 셀로부터 양이온(36) 및 음이온(38)의 제거를 돕도록 셀을 통해 재순환된다. 따라서, 방전 중 수퍼커패시터 탈염 셀의 생성물들은 고형 석출물(48)과 포화된 공급 스트림(42)이다. 이온성 용질을 포함하는 유체로 젖은 상태일 수 있는 고형 석출물은, 석출 유닛으로부터 주기적으로 또는 연속적으로 배출될 수 있다.
도 6을 참조하면, 도면은 "충전" 모드 및 "방전" 모드로 교대로 작동하는 수퍼커패시터 탈염 유닛(10) 및 석출 유닛(46)을 포함하는 종래의 무배수 정수 시스템(10)을 나타낸다. "충전" 모드 중, 이온성 용질을 포함하는 수성 공급 스트림(34)이 밸브(52)를 통해 시스템 내로, 그리고, 유체 입력 라인(54)을 따라 수퍼커패시터 탈염 유닛(10)으로 유입된다. "충전" 모드 중, 수퍼커패시터 탈염 유닛(10)을 빠져나가는 유체(40)는 유체 배출 라인(56)을 따라 밸브(58)까지 전달되는 정수 액체이고, "충전" 모드 중 상기 밸브는 생성물 출력 라인(59)에 연결되고 이후 회수된다.
도 6의 종래의 무배수 정수 시스템(50)을 여전히 참조하면, 도면은 또한, "방전 모드"로 작동하는 시스템을 도시하며, 수퍼커패시터 탈염 유닛을 빠져나가는 배출 스트림(44)이 밸브(58)를 통해 펌프(60)를 통해 석출 유닛(46)에 전달된다. 석출 유닛의 조건들은, 원심분리기와 같은 여과 장치 상에 수집될 수 있는 고형 석출물(48)로 석출 유닛에서 석출되는 이온성 용질에서 배출 스트림이 과포화되도록, 유지된다. 석출 유닛에 존재하는 액상은 유체 복귀 루프(64), 밸브(52), 및 유체 입력 라인(54)을 통해 다시 수퍼커패시터 탈염 유닛으로 전달되어, 수퍼커패시터 탈염 유닛으로부터 이온성 용질의 제거를 돕는다. 따라서, "방전" 모드 중, 수퍼커패시터 탈염 유닛은 석출 유닛에서 우세한 조건들에 대해 포화 또는 과포화되는 용액(42)으로 세척된다.
당 업자라면, 도 6의 특징을 가진 종래의 무배수 정수 시스템(50)이 "충전" 모드로 작동할 때, 석출 유닛이 아이들 상태가 될 것임을 이해할 수 있을 것이다. "방전" 모드 중, 석출 유닛은 비-정상 상태(non-steady state) 조건 하에서 작동하게 된다. 따라서, 종래의 무배수 정수 시스템은 정상 상태 조건 하에서 작동하는 석출 유닛과 연속적인 작동을 행하지 못한다. 당 업자라면, 장비의 효율적 이용을 위해, 그리고, 높은 수준의 프로세스 제어를 실현하기 위해, 정상 상태 조건 하에서 작동하는 연속적인 유닛 작동들의 바람직함을 이해할 수 있을 것이다.
도 7을 참조하면, 도면은 본 발명의 여러 가지 실시예들을 도시한다. 제 1 실시예에서, 도 7은 "충전" 모드 및 "방전" 모드로 동시에 작동하고 정상 상태 조건 하에서 작동하게 되는 공통 석출 유닛(46)을 포함하는 무배수 정수 시스템(70)을 도시한다. 도 7a는 제 1 수퍼커패시터 탈염 유닛(10) 및 제 2 수퍼커패시터 탈염 유닛(10s), 공통 석출 유닛(46), 제 1 유체 입력 라인(54) 및 제 2 유체 입력 라인(54s), 제 1 유체 배출 라인(56) 및 제 2 유체 배출 라인(56s), 생성물 출력 라인(59), 펌프(60), 부가적인 보충(makeup) 유체 유입구(62), 및 유체 복귀 루프(64)를 포함하는 본 발명의 무배수 정수 시스템을 도시한다. 당 업자라면, 제 1 및 제 2 수퍼커패시터 탈염 유닛(10, 10s)이 교대로, 그리고 상호 배타적으로 생성물 출력 라인(59) 또는 공통 석출 유닛(46)에 연결될 수 있도록 무배수 정수 시스템(70)이 구성된다는 것을 이해할 수 있을 것이다. 이는, 작동 중 수퍼커패시터 탈염 유닛들 중 제 1 수퍼커패시터 탈염 유닛의 출력이 생성물 출력 라인(59)에 연결되는 동시에, 제 2 수퍼커패시터 탈염 유닛의 출력이 펌프(60)를 통해 공통 석출 유닛(46)에 전달됨을 의미한다. 당 업자라면 공통 석출 유닛에 의해 제시되는 장점들을 추가적으로 이해할 수 있을 것이다. 즉, 공통 석출 유닛이 "충전" 및 "방전" 모드로 교대로 작동하는 제 1 및 (이어서) 제 2 수퍼커패시터 탈염 유닛에 의해 교대로 공급되기 때문에, 공통 석출 유닛이 연속적으로, 그리고, 정상 상태 조건 하에서 작동할 수 있다.
여전히 도 7을 참조하면, 도면은 본 발명의 제 2 형태, 즉, 수성 액체의 정수 방법을 도시한다. 따라서, 도 7a는 수성 공급 용액(34)이 밸브(52) 및 유체 입력 라인(54)을 통해, "충전" 모드로 작동하는 제 1 수퍼커패시터 탈염 유닛(10) 내로 유입되는 방법을 도시한다. 공급 용액이 수퍼커패시터 탈염 유닛 내에 존재하는 수퍼커패시터 탈염 셀(16)을 통과함에 따라(도 3 참조), 공급 용액 내에 존재하는 이온성 용질의 일부분이 셀 내에 보유되며, 음이온들은 양으로 대전된 전극(애노드) 상에 보유되고, 양이온들은 음으로 대전된 전극(캐소드) 상에 보유된다(도 4 참조). 수퍼커패시터 탈염 유닛(10)으로부터 생성물 스트림(40)이 나타나서, 유체 배출 라인(56) 및 밸브(58)를 통해 생성물 출력 라인(59)까지 운반된다. 생성물 스트림(40)은 공급 스트림(34)보다 실질적으로 적은 이온성 용질을 지닌다는 점에서 정수 액체를 구성한다.
여전히 도 7을 참조하면, 도 7a는 제 1 수퍼커패시터 탈염 유닛(10)이 충전되고 있는 동안 제 2 수퍼커패시터 탈염 유닛(10s: 제 1 수퍼커패시터 유닛과의 구분을 위해 편의상 10s로 표시함)이 방전되는 본 발명의 특징을 도시하고 있다. 당 업자라면 작동이 시작될 때, 수퍼커패시터 탈염 유닛(10, 10s)이 차례로 충전되어, 작동 중 수퍼커패시터 탈염 유닛들이 서로 다른 상태로 작동하게 하여 제 1 수퍼커패시터 탈염 유닛이 충전 중일 때 제 2 수퍼커패시터 탈염 유닛이 방전하게 된다. 제 2 수퍼커패시터 탈염 유닛(10s)이 방전됨에 따라, 이온성 용질을 포함하는 농축된 용액("농축물(B)", 또는 배출 스트림(44s)이라고도 불림)이 제 2 수퍼커패시터 탈염 유닛으로부터 나타나서, 펌프(60)에 의해 제공되는 힘으로 제 2 유체 배출 라인(56s) 및 밸브(58)를 통해 전달되게 된다. 농축물 B는 공통 석출 유닛(46)에 유입된다. 공통 석출 유닛 내의 우세한 조건 하에서, 농축물(B)은 과포화된 용액이고 이온성 용질의 일부분이 고형 석출물(48)로 석출된다. 공통 석출 유닛에는 고형 석출물의 연속적 제거를 위한 수단이 구성되고, 상기 연속적 제거를 위한 수단은 예를 들어, 원심 분리기 또는 회전 진공 필터이며, 유체 복귀 루프(64), 밸브(52), 및 제 2 유체 입력 라인(54s)를 통해 다시 제 2 수퍼커패시터 탈염 유닛(10s)으로 복귀하는 상청액의 회수 수단이 또한 구성된다. 상청액은 요망 레벨의 배출을 얻을 때까지 수퍼커패시터 탈염 유닛(10s)를 통해 재순환될 수 있다. 당 업자라면, 배출 스트림(44s)에 존재하는 용해된 용질의 양의 변화가 공통 석출 유닛(46)의 정상 상태 작동에 해로운 영향을 미치지 않도록 공통 석출 유닛의 크기가 적절히 조정될 수 있음을 이해할 수 있을 것이다.
여전히 도 7을 참조하면, 도 7b는 제 1 수퍼커패시터 탈염 유닛(10)이 방전 모드로 작동하고 제 2 수퍼커패시터 탈염 유닛(10s)가 "충전" 모드로 작동하는 본 발명의 특징을 도시한다. 도 7에 도시되는 실시예에서, 수퍼커패시터 탈염 유닛은, 단순히 수퍼커패시터 탈염 셀 내의 전극들을 단락시킴으로서, 그리고 밸브(52, 58)를 회전시킴으로써, "충전" 모드로부터 방전 모드로 스위칭될 수 있다. 대안으로서, 수퍼커패시터 탈염 유닛은, 단순히 수퍼커패시터 탈염 셀들의 전극 간에 전압 전위를 인가함으로써 그리고 밸브(52, 58)를 스위칭함으로써 "방전" 모드로부터 "충전" 모드로 스위칭될 수 있다.
도 8을 참조하면, 도면은 본 발명의 방법에 따라 사용될 수 있는 프로토콜을 도시한다. 도 8a는 도 7a에 도시되는 구성으로부터 도 7b에 도시되는 구성으로 스위칭될 때, 유용한 무배수 정수 시스템(70)의 중간 구성을 나타낸다. 이 구성에 따르면, 수퍼커패시터 탈염 유닛(10s, 10) 및 관련 파이프(56s, 56)의 품목을 분출하게 하여, 이 품목들의 값을 캡처할 수 있고 농축된 스트림 및 정수된 스트림의 혼합을 방지할 수 있다. 또한 이 단계에 따라, 공급 라인(54s, 54)들이 도 7b에 도시되는 모드의 작동을 준비하기 위해 정확한 조성으로 충전될 수 있다. 도 8a에 도시되는 모드의 작동의 지속시간은, 도 7a 및 7b에 도시되는 모드의 작동의 지속시간에 비해 짧다. 당 업자라면 도 7a 및 8a의 구성이 관련된 것이고 밸브(52) 스위칭에 의해 상호교환가능한 것임을 이해할 수 있을 것이다. 도 8a를 참조하면, 공급 스트림(34)이 제 2 수퍼커패시터 탈염 유닛(10s)으로 다시 유입되어, 공통 석출 유닛을 향해 셀(10s) 및 라인(56s)의 농축된 품목을 분출하게 한다. 이에 따라, 라인(54s) 및 셀(10s)이 새로운 공급수로 적어도 부분적으로 채워지고, 따라서, 충전 모드에 들어갈 준비가 된다. 또한 이에 따라, 라인(54) 및 셀(10)이 농축물로 적어도 부분적으로 채워져서, 방전 모드로 들어갈 준비가 된다. 도 8a에 의해 도시되는 모드의 작동은 또한, 수퍼커패시터 탈염 유닛(10), 유체 방전 라인(56)으로부터 밸브(58)를 통해 생성물 출력 라인(59)까지 청정 생성물을 분출한다. 설정된 타이머에 의해, 또는, 적절한 전도도 또는 농도 측정에 의해 표시되는 바와 같이 이러한 분출 단계가 완료되면, 밸브(58)가 스위칭되어 도 7b에 도시되는 구성을 제공하게 된다.
도 8b는 도 7b에 도시되는 구성으로부터 도 7a에 도시되는 구성으로 스위칭할 때, 유용한 무배수 정수 시스템(70)의 주간 구성을 나타낸다. 당 업자라면, 도 7b 및 7a의 구성이 서로 관련된 것으로서 밸브(52)의 스위칭에 의해 상호교환가능한 것임을 이해할 수 있을 것이다. 도 8b를 참조하면, 공급 스트림(34)이 제 1 수퍼커패시터 탈염 유닛(10)에 재유입되어, 제 1 수퍼커패시터 탈염 유닛(10) 및 유체 배출 라인(56)의 농축된 품목을 공통 석출 유닛을 향해 분출하게 한다. 이에 따라, 라인(54) 및 셀(10)이 신선한 공급수로 적어도 부분적으로 채워지고 따라서 충전 모드로 들어갈 준비가 된다. 또한, 이에 따라, 라인(54s) 및 셀(10s)이 농축물로 적어도 부분적으로 채워지고, 따라서, 방전 모드로 배치될 준비가 된다. 도 8b에 의해 도시되는 모드의 작동은 제 2 수퍼커패시터 탈염 유닛(10s) 및 유체 배출 라인(56s)으로부터 청정 생성물을 밸브(58)를 통해 생성물 출력 라인(59)에게로 또한 분출시킨다. 설정된 타이머에 의해, 또는, 적절한 전도도 또는 농도 측정에 의해 표시되는 바와 같이 이러한 분출 단계가 완료될 때, 밸브(58)가 스위칭되어 도 7a에 도시되는 구성을 제공하게 된다.
당 업자라면, 본 발명의 다양한 실시예에서 특징으로 나타나는 공통 석출 유닛(46)이 젖은 고형물을 생성할 수 있고 이러한 젖은 고형물은 추가적인 물 회수를 구현하기 위해 열 결정화기와 같은 별도의 작동에서 선택적으로 건조될 수 있다는 것을 이해할 수 있을 것이다. 더욱이, 본 발명의 다양한 형태들에서 특징으로 나타나는 공통 석출 유닛(46)은 퍼지 스트림을 포함할 수 있다. 퍼지 스트림은 추가적인 물 회수를 구현하기 위해 열 결정화기에서 또한 처리될 수 있다. 공통 석출 유닛의 실질적으로 정상 상태의 작동을 구현하기 위해, 퍼지 스트림, 또는, 고형 생성물의 수분 함량, 또는 둘 모두에 의해 나타나는 석출기로부터의 물 손실이, 보충 유체 유입구(62)를 통해 석출기에 소량의 신선한 공급수를 유입시킴으로써 벌충될 수 있다.
언급되는 바와 같이, 본 발명의 다양한 실시예에서, 제 1 수퍼커패시터 탈염 유닛, 제 2 수퍼커패시터 탈염 유닛, 및 공통 석출 유닛을 포함하는 무배수 정수 시스템을 이용하여 이온성 용질을 포함하는 수성 액체의 정수 방법이 제공된다.
다른 실시예에서, 본 발명은 하나 이상의 이온성 용질을 포함하는 수성 액체의 정수에 유용한 무배수 정수 시스템을 제공한다. 이러한 시스템은 제 1 수퍼커패시터 탈염 유닛, 제 2 수퍼커패시터 탈염 유닛, 공통 석출 유닛, 제 1 유체 입력 라인 및 제 2 유체 입력 라인, 제 1 유체 배출 라인 및 제 2 유체 배출 라인, 생성물 출력 라인 및 유체 복귀 루프를 포함한다. 일 실시예에서, 수퍼커패시터 탈염 유닛들 중 적어도 하나는 전기 저항이 작고 비표면적이 큰 에어로겔(예를 들어, 탄소 에어로겔)을 포함하는 적어도 하나의 전극을 포함한다. 일부 실시예에서, 수퍼커패시터 탈염 유닛들 중 적어도 하나는 전극의 이온 보유 기능을 수행하는 한 쌍의 반대로 대전된 표면들을 포함한다. 따라서, 특정 실시예에서, 제 1 수퍼커패시터 탈염 유닛, 또는, 제 2 수퍼커패시터 탈염 유닛, 또는 둘 모두가 한 쌍의 반대로 대전된 표면들을 포함할 수 있고, 이 표면들 중 적어도 하나는 에어로겔을 포함한다. 다른 실시예에서, 제 1, 2 수퍼커패시터 탈염 유닛들 중 적어도 하나가 에어로겔을 포함하는 적어도 한 쌍의 반대로 대전된 표면들을 포함한다.
일 실시예에서, 본 발명은 제 1 수퍼커패시터 탈염 유닛, 제 2 수퍼커패시터 탈염 유닛, 공통 석출 유닛, 제 1 유체 입력 라인 및 제 2 유체 입력 라인, 제 1 유체 배출 라인 및 제 2 유체 배출 라인, 생성물 출력 라인, 그리고 유체 복귀 루프를 포함하고, 제 1, 2 수퍼커패시터 탈염 유닛들은 교대로, 그리고 상호 배타적으로, 생성물 출력 라인에, 또는 공통 석출 유닛에 연결될 수 있다. 일 실시예에서, 제 1 수퍼커패시터 탈염 유닛이 공통 석출 유닛에 연결될 때, 제 1 수퍼커패시터 탈염 유닛이 유체 복귀 루프에 또한 연결되고, 제 1 유체 입력 라인의 적어도 일부분이 유체 복귀 루프에 또한 연결된다. 일 실시예에서, 제 1, 2 수퍼커패시터 탈염 유닛들이 두개 이하의 밸브를 이용하여 생성물 출력 라인 또는 공통 석출 유닛에 교대로 또는 상호 배차적으로 연결될 수 있다. 일 실시예에서, 무배수 정수 시스템은 유체 펌프를 더 포함한다. 다른 실시예에서, 공통 석출 유닛은 보충 유체 유입구 및 연속적 여과 장치를 포함한다. 일 실시예에서, 공통 석출 유닛은 버드 필터(Bird filter), 회전 진공 필터, 원심분리기, 그리고 이들의 조합으로 구성되는 그룹으로부터 선택되는 연속적 여과 장치를 포함한다. 일 실시예에서, 본 발명에 의해 제공되는 무배수 정수 시스템은 버드 필터를 포함하는 공통 석출 유닛을 포함한다.
일 실시예에서, 본 발명은 제 1 수퍼커패시터 탈염 유닛, 제 2 수퍼커패시터 탈염 유닛, 공통 석출 유닛, 제 1 유체 입력 라인 및 제 2 유체 입력 라인, 제 1 유체 배출 라인 및 제 2 유체 배출 라인, 생성물 출력 라인, 및 유체 복귀 루프를 포함하는 무배수 정수 시스템을 제공하며, 제 1, 2 수퍼커패시터 탈염 유닛들은 교대로, 그리고 상호 배타적으로, 생성물 출력 라인에, 또는 공통 석출 유닛에 연결될 수 있고, 제 1, 2 수퍼커패시터 탈염 유닛들 중 적어도 하나는 에너지 회수 장치(예를 들어, 인버터)를 포함한다.
일 실시예에서, 본 발명은 이온 투과성 유기 코팅(예를 들어, 이온 투과성 유기 폴리머)를 포함하는 적어도 한 쌍의 반대로 대전된 표면들을 포함한다.
언급되는 바와 같이, 본 발명의 다양한 실시예에서, 이러한 시스템은 고형 석출물의 연속적 제거 기능을 할 수 있는 공통 석출 유닛을 포함한다. 공통 석출 유닛은 석출물을 상청액으로부터 분리시키는 연속적 여과 장치를 포함할 수 있다. 일 실시예에서, 공통 석출 유닛은 버드 필터, 드럼 필터, 회전 진공 필터, 원심분리기, 또는 이들의 조합으로 구성되는 그룹으로부터 선택되는 연속적 여과 장치를 포함한다. 대안의 실시예에서, 공통 석출 유닛은 원심분리기인 연속적 여과 장치를 포함한다. 또 다른 실시예에서, 공통 석출 유닛은 회전 진공 필터인 연속적 여과 장치를 포함한다.
본 발명에 의해 제공되는 방법은, 본 발명을 실제 구현하는 데 사용되는 시스템의 특정 구성요소들 내에서 물질의 다양한 체류 시간을 특징으로 할 수 있다. 일 실시예에서, 본 발명의 방법은 약 1분 내지 약 24시간의 범위의 농축물(A) 또는 농축물(B)의 공통 석출 유닛에서의 체류 시간을 특징으로 할 수 있다. 대안의 실시예에서, 본 발명의 방법은 약 10분 내지 약 4시간 범위의 농축물(A) 또는 농축물(B)의 공통 석출 유닛에서의 체류 시간을 특징으로 할 수 있다.
다양한 실시예에서, 본 발명에 의해 제공되는 방법은 충전 시간 및 방전 시간을 특징으로 할 수 있다. 충전 시간은 수퍼커패시터 탈염 유닛이 "충전" 모드로 작동하는 시간 구간이다. 방전 시간은 수퍼커패시터 탈염 유닛이 "방전" 모드로 작동하는 시간 구간이다. 충전 시간 및 방전 시간이 이온성 용질을 포함하는 수성 액체의 연속적 정수 중 필요에 따라 바뀔 수 있지만, 순차적으로 관련되는 충전 및 방전 시간은 거의 동일한 길이일 수 있다.
일 실시예에서, 본 발명에 의해 제공되는 방법은, 적어도 한 쌍의 대전된 표면들 간의 약 1 볼트의 전위 강하를 특징으로 할 수 있다. 일 실시예에서, 본 발명에 의해 제공되는 방법은, 수퍼커패시터 탈염 셀의 적어도 한 쌍의 반대로 대전된 전극들 간에 약 1 볼트의 전위 강하를 특징으로 할 수 있다.
언급되는 바와 같이, "충전" 모드로부터 "방전" 모드로 스위칭할 때, 충전 수퍼커패시터 탈염 유닛 내의 수퍼커패시터 탈염 셀의 전극 또는 반대로 대전된 표면들은, 단락되거나 제어형 방전에 귀속된다. 제어형 방전 기법을 취하면, 충전 중 수퍼커패시터 탈염 유닛에 저장되는 에너지가 회수될 수 있다. 일 실시예에서, 본 발명에 의해 제공되는 방법들에 사용되는 수퍼커패시터 탈염 유닛들 중 적어도 하나가, 제어형 방전에 귀속되고, 충전 중 수퍼커패시터 탈염 유닛에 저장되는 에너지가 하나 이상의 에너지 회수 장치를 이용하여 회수된다. 일 실시예에서, 에너지 회수 장치는 인버터다.
일 실시예에서, 본 발명은 적어도 하나의 에너지 회수 장치를 포함하는 무배수 정수 시스템을 제공한다. 일 실시예에서, 에너지 회수 장치는 인버터다. 일 실시예에서, 본 발명은 인버터를 포함하는 무배수 정수 시스템을 제공한다.
여기서 개시되는 실시예들은 청구범위에 언급되는 발명의 요소들에 대응하는 요소들을 가지는 조성물, 구조물, 시스템, 및 방법의 예에 해당한다. 이와 같이 기술된 설명에 따라, 당 업자가 청구범위에 언급된 발명의 요소들에 마찬가지로 대응하는 대안의 요소들을 가진 실시예들을 제작 및 활용할 수 있다. 따라서, 본 발명의 범위는 청구범위의 글자 그대로의 언어와 다른 조성물, 구조물, 시스템, 및 방법을 포함하며, 청구범위의 글자 그대로의 언어로부터 실질적인 차이가 없는 다른 구조물, 시스템, 방법을 더 포함한다. 특정한 특징 및 실시예들이 여기서 설명되고 제시되었으나, 많은 변형 및 변화가 관련 분야의 당 업자에게 이루어질 수 있다. 첨부된 청구범위는 이러한 모든 변형 및 변화들을 커버한다.

Claims (21)

  1. 수성 액체를 정수하는 방법에 있어서,
    이온성 용질을 포함하는 수성 공급 용액을 제 1 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 2 수퍼커패시터 탈염 유닛으로부터 농축물(B)을 배출시키며, 그리고, 농축물(B)을 공통 석출 유닛 내로 유입시키는 단계와,
    그후, 상기 수성 공급 용액을 제 2 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 1 수퍼커패시터 탈염 유닛으로부터 농축물(A)을 배출시키며, 그리고, 농축물(A)을 공통 석출 유닛 내로 유입시키는 단계와,
    정수된 액체 및 석출물을 회수하는 단계를 포함하는
    수성 액체 정수 방법.
  2. 제 1 항에 있어서,
    상기 수성 공급 액체는 해수, 기수, 냉각탑 취출수, 화학적 처리 하수 스트림, 소금물, 염수[표면 염수호(surfac salt lake)], 및 이들의 조합으로 구성되는 그룹으로부터 선택되는
    수성 액체 정수 방법.
  3. 제 1 항에 있어서,
    상기 수성 액체 용액이 해수인
    수성 액체 정수 방법.
  4. 제 1 항에 있어서,
    제 1 및 제 2 수퍼커패시터 탈염 유닛 중 적어도 하나는 에어로겔을 포함하는 적어도 한 쌍의 반대로 대전된 표면을 포함하는
    수성 액체 정수 방법.
  5. 제 4 항에 있어서,
    상기 반대로 대전된 표면은 이온 투과성 코팅을 포함하는
    수성 액체 정수 방법.
  6. 제 1 항에 있어서,
    상기 공통 석출 유닛은 적어도 하나의 여과 장치를 포함하는
    수성 액체 정수 방법.
  7. 제 1 항에 있어서,
    상기 공통 석출 유닛은 버드 필터(Bird filter), 드럼 필터, 회전 진공 필터, 원심분리기, 및 이들의 조합으로 구성되는 그룹으로부터 선택되는 연속적 여과 장치를 포함하는
    수성 액체 정수 방법.
  8. 제 1 항에 있어서,
    상기 농축물(A) 또는 농축물(B)의 공통 석출 유닛에서의 체류 시간이 약 1분 내지 약 24 시간 범위 내에 있는
    수성 액체 정수 방법.
  9. 제 1 항에 있어서,
    농축물(A) 또는 농축물(B)의 공통 석출 유닛에서의 체류 시간이 약 5분 내지 약 4 시간 범위 내에 있는
    수성 액체 정수 방법.
  10. 제 1 항에 있어서,
    충전 시간 및 방전 시간이 실질적으로 동일하고 약 5분 내지 약 4시간의 범위 내에 있는
    수성 액체 정수 방법.
  11. 제 4 항에 있어서,
    상기 한 쌍의 반대로 대전된 표면 사이에 약 1 볼트의 전위 강하가 존재하는
    수성 액체 정수 방법.
  12. 제 1 항에 있어서,
    제 1 및 제 2 수퍼커패시터 탈염 유닛 중 적어도 하나는 에너지 회수 장치(예를 들면, 인버터)를 통해 방전되는
    수성 액체 정수 방법.
  13. 해수 탈염 방법에 있어서,
    해수를 제 1 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 2 수퍼커패시터 탈염 유닛으로부터 농축물(B)을 배출시키며, 그리고, 농축물(B)을 공통 석출 유닛 내로 유입시키는 단계와,
    그후, 해수를 제 2 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 1 수퍼커패시터 탈염 유닛으로부터 농축물(A)을 배출시키며, 그리고, 농축물(A)을 공통 석출 유닛 내로 유입시키는 단계와,
    정수된 물을 회수하는 단계와,
    선택적으로, 해수 염 석출물을 회수하는 단계를 포함하는
    해수 탈염 방법.
  14. 수성 액체를 정수하는 방법에 있어서,
    이온성 용질을 포함하는 수성 공급 용액을 제 1 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 2 수퍼커패시터 탈염 유닛으로부터 농축물(B)을 배출시키며, 그리고, 농축물(B)을 공통 석출 유닛 내로 유입시키는 단계와,
    그후, 상기 수성 공급 용액을 제 2 수퍼커패시터 탈염 유닛 내로 유입시키는 동시에, 제 1 수퍼커패시터 탈염 유닛으로부터 농축물(A)을 배출시키며, 그리고, 농축물(A)을 공통 석출 유닛 내로 유입시키는 단계와,
    정수된 액체 및 석출물을 회수하는 단계를 포함하며,
    제 1 및 제 2 수퍼커패시터 탈염 유닛은 각각 적어도 한 쌍의 반대로 대전된 표면을 포함하고,
    농축물(A) 또는 농축물(B)의 공통 석출 유닛 내에서의 체류 시간이 약 5분 내지 약 4시간 범위 내에 있으며,
    충전 시간 및 방전 시간이 실질적으로 동일하고 약 5분 내지 약 4시간 범위 내에 있고,
    상기 한 쌍의 반대로 대전된 표면 사이의 전위 강하가 약 1 볼트이며,
    제 1 및 제 2 수퍼커패시터 탈염 유닛 중 적어도 하나가 에너지 회수 장치를 통해 방전되는
    수성 액체 정수 방법.
  15. 무배수 정수 시스템에 있어서,
    (a) 제 1 수퍼커패시터 탈염 유닛과,
    (b) 제 2 수퍼커패시터 탈염 유닛과,
    (c) 공통 석출 유닛과,
    (d) 제 1 유체 입력 라인 및 제 2 유체 입력 라인과,
    (e) 제 1 유체 배출 라인 및 제 2 유체 배출 라인과,
    (f) 생성물 출력 라인과,
    (g) 유체 복귀 루프를 포함하며,
    상기 제 1 및 제 2 수퍼커패시터 탈염 유닛은 상기 생성물 출력 라인 또는 상기 공통 석출 유닛에 교대로, 그리고 상호 배타적으로 연결될 수 있는
    무배수 정수 시스템.
  16. 제 15 항에 있어서,
    제 1 수퍼커패시터 탈염 유닛이 상기 공통 석출 유닛에 연결될 때, 상기 제 1 수퍼커패시터 탈염 유닛이 상기 유체 복귀 루프에도 또한 연결되고, 상기 제 1 유체 입력 라인의 적어도 일부분이 상기 유체 복귀 루프에 연결되는
    무배수 정수 시스템.
  17. 제 15 항에 있어서,
    제 1 수퍼커패시터 탈염 유닛이 상기 생성물 출력 라인에 연결될 때, 제 2 수퍼커패시터 탈염 유닛이 상기 공통 석출 유닛 및 유체 복귀 로프에 연결되고, 제 2 유체 입력 라인의 적어도 일부분이 상기 유체 복귀 루프에 연결되는
    무배수 정수 시스템.
  18. 제 15 항에 있어서,
    제 1 및 제 2 수퍼커패시터 탈염 유닛은 두개 이하의 밸브를 이용하여 상기 생성물 출력 라인 또는 공통 석출 유닛에 교대로 그리고 상호 배타적으로 연결될 수 있는
    무배수 정수 시스템.
  19. 제 15 항에 있어서,
    유체 펌프를 더 포함하는
    무배수 정수 시스템.
  20. 제 15 항에 있어서,
    상기 공통 석출 유닛은 보충 유체 유입구 및 연속적 여과 장치를 포함하는
    무배수 정수 시스템.
  21. 제 15 항에 있어서,
    상기 공통 석출 유닛이 버드 필터를 포함하는
    무배수 정수 시스템.
KR1020117009109A 2008-10-23 2009-10-18 수성 액체의 정수 방법 및 시스템 KR101298853B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/256,918 US8333887B2 (en) 2008-10-23 2008-10-23 Methods and systems for purifying aqueous liquids
US12/256,918 2008-10-23
PCT/US2009/061115 WO2010048065A1 (en) 2008-10-23 2009-10-18 Methods and systems for purifying aqueous liquids

Publications (2)

Publication Number Publication Date
KR20110073535A true KR20110073535A (ko) 2011-06-29
KR101298853B1 KR101298853B1 (ko) 2013-08-23

Family

ID=41361303

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117009109A KR101298853B1 (ko) 2008-10-23 2009-10-18 수성 액체의 정수 방법 및 시스템

Country Status (9)

Country Link
US (1) US8333887B2 (ko)
EP (1) EP2349934A1 (ko)
JP (1) JP5503661B2 (ko)
KR (1) KR101298853B1 (ko)
CN (1) CN102196999B (ko)
BR (1) BRPI0914053A2 (ko)
CA (1) CA2739938C (ko)
TW (1) TWI527766B (ko)
WO (1) WO2010048065A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110024354A1 (en) * 2009-07-30 2011-02-03 General Electric Company Desalination system and method
US20110056843A1 (en) 2009-09-08 2011-03-10 Patrick Michael Curran Concentric layer electric double layer capacitor cylinder, system, and method of use
US8377297B2 (en) 2009-12-23 2013-02-19 Bae Systems Information And Electronic Systems Integration Inc. Water desalination apparatus
US20130105406A1 (en) * 2010-05-19 2013-05-02 Voltea B.V. Evaporative recirculation cooling water system, method of operating an evaporative recirculation cooling water system
US8920622B2 (en) * 2011-09-16 2014-12-30 Ut Battelle, Llc Increasing ion sorption and desorption rates of conductive electrodes
EP2692698B1 (en) * 2012-08-02 2015-01-14 Voltea B.V. A method and an apparatus to remove ions
US20140091039A1 (en) 2012-09-28 2014-04-03 General Electric Company System and method for the treatment of hydraulic fracturing backflow water
CN103332811B (zh) * 2013-04-22 2014-07-02 康静 苦咸水淡化工艺方法及其应用装置
US9859066B2 (en) 2013-05-24 2018-01-02 Atlantis Technologies Atomic capacitor
US9633798B2 (en) 2013-05-24 2017-04-25 Atlantis Technologies Atomic capacitor
EP3067325A4 (en) 2013-11-07 2017-01-11 Fujifilm Corporation Ion exchange membrane electrode assembly, method for manufacturing same, and capacitor demineralization device
US10246345B2 (en) 2015-12-30 2019-04-02 General Electric Company Water desalination system and method for fast cooling saline water using turbines
IT201600080955A1 (it) * 2016-08-02 2018-02-02 Idropan Dellorto Depuratori S R L Apparecchiatura per la purificazione di un liquido e metodo di funzionamento di detta apparecchiatura
CN107416948A (zh) * 2017-08-28 2017-12-01 刘铁林 镍基石墨烯场效应水体矿化装置
US10787378B2 (en) 2018-05-30 2020-09-29 Atlantis Technologies Spirally wound electric double layer capacitor device and associated methods
CN109970247A (zh) * 2019-04-16 2019-07-05 江苏科技大学 一种能量可回收智能混合电容器除盐系统
CN111793574A (zh) * 2020-05-27 2020-10-20 协赛(山东)生物科技有限公司 一种无废弃营养物的微生物质生产方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620597A (en) * 1990-04-23 1997-04-15 Andelman; Marc D. Non-fouling flow-through capacitor
US6309532B1 (en) * 1994-05-20 2001-10-30 Regents Of The University Of California Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes
US5425858A (en) * 1994-05-20 1995-06-20 The Regents Of The University Of California Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes
JP4090635B2 (ja) * 1999-08-24 2008-05-28 オルガノ株式会社 通液型コンデンサの通液方法及び装置
JP4093386B2 (ja) * 1999-08-24 2008-06-04 オルガノ株式会社 通液型コンデンサの通液方法及び装置
US6580598B2 (en) * 2001-02-15 2003-06-17 Luxon Energy Devices Corporation Deionizers with energy recovery
US6709560B2 (en) * 2001-04-18 2004-03-23 Biosource, Inc. Charge barrier flow-through capacitor
US6795298B2 (en) * 2001-09-07 2004-09-21 Luxon Energy Devices Corporation Fully automatic and energy-efficient deionizer
EP1348670A1 (en) 2002-03-27 2003-10-01 Luxon Energy Devices Corporation Fully automatic and energy-efficient capacitive deionizer
JP2003285066A (ja) * 2002-03-27 2003-10-07 Luxon Energy Devices Corp エネルギー回収をともなう純水装置
JP2003285067A (ja) * 2002-03-27 2003-10-07 Yukin Kagi Kofun Yugenkoshi 全自動・省エネルギーの脱イオン装置
TW200427634A (en) * 2002-10-25 2004-12-16 Inventqjaya Sdn Bhd Fluid deionization system
GB2428065B (en) * 2004-05-28 2008-12-31 Bp Exploration Operating Desalination method
WO2006031732A2 (en) * 2004-09-13 2006-03-23 University Of South Carolina Water desalination process and apparatus
US20080105551A1 (en) 2005-12-14 2008-05-08 Shengxian Wang Supercapacitor desalination devices and methods of making the same
US7981268B2 (en) 2006-01-23 2011-07-19 Lawrence Livermore National Security, Llc Deionization and desalination using electrostatic ion pumping
US20080035548A1 (en) * 2006-08-01 2008-02-14 Quos, Inc. Multi-functional filtration and ultra-pure water generator
AU2007345554B2 (en) * 2007-02-01 2012-07-19 General Electric Company Desalination method and device comprising supercapacitor electrodes
US7974076B2 (en) * 2007-02-01 2011-07-05 General Electric Company Desalination device and associated method

Also Published As

Publication number Publication date
WO2010048065A1 (en) 2010-04-29
TWI527766B (zh) 2016-04-01
US20100102009A1 (en) 2010-04-29
TW201029935A (en) 2010-08-16
CN102196999B (zh) 2014-12-24
CA2739938A1 (en) 2010-04-29
CN102196999A (zh) 2011-09-21
JP5503661B2 (ja) 2014-05-28
CA2739938C (en) 2014-03-18
EP2349934A1 (en) 2011-08-03
JP2012506767A (ja) 2012-03-22
KR101298853B1 (ko) 2013-08-23
US8333887B2 (en) 2012-12-18
BRPI0914053A2 (pt) 2015-11-03

Similar Documents

Publication Publication Date Title
KR101298853B1 (ko) 수성 액체의 정수 방법 및 시스템
JP5503727B2 (ja) 脱塩装置からイオン性化学種を除去する方法
US9487417B2 (en) Operating method of an apparatus for purifying a fluid and apparatus for purifying fluid
AU2007345554B2 (en) Desalination method and device comprising supercapacitor electrodes
US8715477B2 (en) Apparatus and process for separation and selective recomposition of ions
US20080185346A1 (en) Desalination device and associated method
CN105417635B (zh) 用于净化流体的装置和通过其净化流体的方法
US20150315043A1 (en) Apparatus and corresponding method for purifying a fluid
KR20150008348A (ko) 하이브리드 해수 담수화 시스템
US9932253B2 (en) Apparatus for purifying a fluid and method for purifying a fluid, in particular by means of the aforesaid apparatus
KR20170034953A (ko) 직렬형 축전식 탈염장치 및 그 제조방법
KR101068664B1 (ko) 하이브리드형 담수화 장치, 이를 이용한 담수화 방법 및 재생 방법
KR101637539B1 (ko) 교차흐름을 이용한 흐름전극장치와 이를 이용한 축전식 탈염장치
US20160122211A1 (en) Method and device to remove ions from an electrolytic media, such as water desalination, using suspension of divided materials in a flow capacitor
EP2640669A1 (en) Flow-through condenser cell for purifying a fluid

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160727

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee