KR20110073100A - Manufacturing method of the nano-structure on galvanized steel surface - Google Patents
Manufacturing method of the nano-structure on galvanized steel surface Download PDFInfo
- Publication number
- KR20110073100A KR20110073100A KR1020090130269A KR20090130269A KR20110073100A KR 20110073100 A KR20110073100 A KR 20110073100A KR 1020090130269 A KR1020090130269 A KR 1020090130269A KR 20090130269 A KR20090130269 A KR 20090130269A KR 20110073100 A KR20110073100 A KR 20110073100A
- Authority
- KR
- South Korea
- Prior art keywords
- steel sheet
- hot
- molten metal
- pressure plasma
- plated steel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/78—Pretreatment of the material to be coated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F4/00—Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
- C23F4/04—Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00 by physical dissolution
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/4697—Generating plasma using glow discharges
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
본 발명은 용융도금 단계 및 저압 플라즈마 처리단계를 포함하는 용융금속도금강판의 제조방법에 관한 것으로서, 상기 용융도금 공정 및 저압 플라즈마 처리공정을 복합적으로 연결하여, 용융도금강판 표면에 매우 치밀하고 균일한 나노 구조체를 형성시키는 방법을 제공하고자 한다.The present invention relates to a method for manufacturing a molten metal plated steel sheet comprising a hot dip plating step and a low pressure plasma treatment step, by combining the hot dip plating process and the low pressure plasma treatment process in combination, very dense and uniform to the surface of the hot dip plated steel sheet It is intended to provide a method of forming a nanostructure.
최근 들어 금속, 반도체, 부도체 표면에 나노 구조체(Nano-structure)를 형성하여 차세대 표면처리제품에 적용하려는 연구는 전세계적으로 매우 활발하게 진행 중이다. 이에 따라 철강산업 분야에서도 나노 구조물을 이용하여 기계적 성질 및 표면 개질 등을 개선하려는 노력이 시도되고 있다.Recently, research on forming nano-structures on metal, semiconductor and non-conductor surfaces and applying them to next-generation surface treatment products has been actively conducted worldwide. Accordingly, efforts are being made in the steel industry to improve mechanical properties and surface modification using nanostructures.
본 발명은 용융아연도금 공정과 플라즈마 공정을 복합적으로 연결하여, 용융도금 강판 표면에 나노 구조체를 매우 치밀하고 균일하게 형성시키는 방법을 제공하고자 한다.The present invention is to provide a method of connecting the hot-dip galvanizing process and the plasma process complex, to form a very dense and uniform nanostructure on the surface of the hot-dip plated steel sheet.
표면에 나노 구조체를 형성하는 방법은 크게 두 가지 형태로 구분할 수 있다. 그 중 하나는 Bottom-Up 방식으로, 화상이나 기상 증착 또는 폴리머 나노 입자 등을 대상 표면 위에 분포시킨 후 다양한 자기 조립(Self-Assembly) 현상을 이용하여 표면 구조를 형성하는 방법이다. 일반적으로 이러한 나노 구조체는 대상 표면의 물질과는 다른 화학적 성분이 증착(Deposition) 또는 코팅(Coating)되기 때문에 다중 막 구조(Multilayer)의 형태를 나타낸다. 위의 방법은 대량생산 시 대면적 위에 나노 구조체를 균일하게 형성시키기에는 부적합하며, 다중 막 구조이므로 부차적인 재료 비용, 여타 공정 및 설비, 긴 제조시간이 요구되므로 고속(약 100mpm)의 실제 생산공정에 적용하기는 어렵다.Methods of forming nanostructures on a surface can be divided into two types. One of them is a bottom-up method, in which an image, vapor deposition, or polymer nanoparticles are distributed on a target surface, and a surface structure is formed using various self-assembly phenomena. In general, such nanostructures have a multi-layered structure due to deposition or coating of chemical components different from those on the target surface. The above method is not suitable for uniformly forming nanostructures on large areas in mass production, and because it is a multi-layered structure, additional material costs, other processes and equipment, and long manufacturing times are required, so the actual production process at high speed (about 100mpm) is required. It is difficult to apply to.
이와 다른 나노 구조체 제조방법으로는 Top-Down 방식이 있다. 전자 빔, 레이저 빔, 고출력 X-선, 집속(Focused) 이온 빔 등을 이용한 식각(Etching)을 통하여 원하는 나노 구조체를 인위적으로 대상 표면 위에 형성시키는 방법이다. 위의 방법은 감광제(photo resistor), 마스크(mask) 등을 사용하여 개개의 나노 구조체를 순차적으로 제조함으로 정밀도는 우수하나, 역시 대용량의 표면적에 나노 구조체를 형성하는 데는 기술적인 한계가 있다.Another nanostructure manufacturing method is a Top-Down method. It is a method of artificially forming a desired nanostructure on a target surface by etching using an electron beam, a laser beam, high power X-rays, a focused ion beam, and the like. The above method is excellent in precision by manufacturing individual nanostructures sequentially using photo resistors, masks, etc., but there are also technical limitations in forming nanostructures on large surface areas.
상기 기술에 대한 대안으로서, 1999년 S. Facsko에 의해 비활성 기체의 이온빔 플라즈마를 이용하여 GaSb 반도체 표면에 나노 크기의 양자점(Quantum Dot)을 매우 고르게 대면적으로 형성하는 것이 제안되었다[S. Facsco et al. Science 285, 1551 (1999)]. 이온빔을 이용한 위의 방법은 단결정 금속 표면에 대해서도 매우 활발한 연구가 이루어져, 나노 선(Nano Wire), 나노 점(Nano Dot), 나노 구멍(Nano Hole) 등의 형성이 가능하게 되었으며 이에 대한 이론적 원리 규명이 가능해졌다[G. Costantini et al, Phys. Rev. Lett. 86, 838 (2001), T. C. Kim et al. Phys. Rev. Lett 92, 246104 (2004)]. 그러나 위의 방법의 경우 고진공(10-5 Torr 이하) 상태에서의 이온빔 플라즈마가 필요하여 고가의 설비가 추가로 필요하며 유지 보수가 어려우며, 수 초 정도의 단시간에 나노 구조체를 표면에 형성시키기에는 용이하지 않아 실제의 산업에 적용하기에는 제약이 따른다.As an alternative to this technique, it was proposed in 1999 by S. Facsko to form nanoscale quantum dots on a GaSb semiconductor surface very evenly using an ion beam plasma of an inert gas [S. Facsco et al . Science 285, 1551 (1999). The above method using ion beam has been very active on the surface of single crystal metal, and it is possible to form Nano Wire, Nano Dot, Nano Hole, etc. This is possible [G. Costantini et al, Phys. Rev. Lett. 86, 838 (2001), TC Kim et al. Phys. Rev. Lett 92, 246104 (2004). However, the above method requires an ion beam plasma in a high vacuum (10 -5 Torr or less) state, requires additional expensive equipment, is difficult to maintain, and is easy to form the nanostructure on the surface in a short time of several seconds. As a result, there are limitations in applying it to the actual industry.
본 발명은 용융도금강판 표면에 비활성 기체와 산소, 메탄, 실란 가스 등과 같은 표면개질제를 플라즈마(Plasma) 처리하여, 수초 내에 용융도금강판 표면 위에 나노 구조체(Nano-structure)를 매우 치밀하게 제조하여 백색도가 우수한 강판을 제조할 수 있는 동시에 표면을 친수성 및 소수성으로 개질하는 방법을 제공하는 것을 목적으로 한다. 본 발명에 의하면 용융도금강판의 표면에 매크로 크기의 수지상 스팽글 조직을 파괴하지 않으면서, 매우 미세한 나노 구조체를 스팽글 조직 내에 고르게 분포시켜 다기능성의 용융도금강판을 제조하는 것이 가능하다.The present invention is plasma-treated with an inert gas and surface modifiers such as oxygen, methane, silane gas, etc. on the surface of the hot-dip galvanized steel sheet, so that the nano-structure on the surface of the hot-dip galvanized steel sheet is very dense in a few seconds, the whiteness It is an object of the present invention to provide a method for producing a steel sheet having a high quality and at the same time modifying the surface into hydrophilic and hydrophobic. According to the present invention, it is possible to produce a multifunctional hot-dip galvanized steel sheet by evenly distributing very fine nanostructures in the sequined tissue without destroying the macroscopic dendritic sequined tissue on the surface of the hot-dip galvanized steel sheet.
본 발명은 위의 제안된 기술들과는 달리, 수 Torr의 비활성 이온 저압 플라즈마를 이용한다는 점에서 고진공을 요하지 않으므로 위의 기존 기술과는 차별되며 수 초 내에 나노 구조체를 형성하므로 실질적인 연속 공정상에 응용이 가능하다. 저에너지 저압 플라즈마 이온의 식각과 원자들의 표면 확산 현상 사이의 평형을 이용하면 자기조립적(Self-Assembly)으로 매우 치밀하고 균일한 나노 구조체를 용융도금강판 표면 위에 제조할 수 있으므로 강판의 접착력 및 도장성을 향상시킬 수 있다. 또한 이온빔 조사된 표면은 특유의 백색을 나타내며 표면 백색도가 기존의 용융도금강판에 비해 우수하다.Unlike the proposed techniques, the present invention does not require high vacuum in that it uses inert ion-low pressure plasma of several Torr, which is different from the existing technique and forms nanostructures within a few seconds. It is possible. The equilibrium between the etching of low-energy low-pressure plasma ions and the surface diffusion of atoms enables self-assembly to produce very dense and uniform nanostructures on the surface of the hot-dip galvanized steel sheet. Can improve. In addition, the ion beam irradiated surface exhibits a distinctive white color and the surface whiteness is superior to that of a conventional hot dip steel sheet.
본 발명의 또 다른 특징은 용융도금강판의 표면개질이 가능하다는 것이다. 비활성 기체에 산소를 첨가하여 플라즈마를 발생시켰을 경우는 친수성이 향상된 표면을 제조할 수 있으며, 메탄, 실란 등의 기체를 첨가 시에는 소수성이 향상된 표면을 제공할 수 있다.Another feature of the present invention is that it is possible to modify the surface of the hot-dip steel sheet. When oxygen is added to the inert gas to generate a plasma, a surface having improved hydrophilicity can be prepared, and when a gas such as methane or silane is added, a surface having improved hydrophobicity can be provided.
본 발명은 단결정 반도체나 금속이 아닌 용융도금강판에 적용한다는 점에서 종래의 기술과 이온빔 플라즈마의 적용 대상이 상이하다. 또한 이전에 냉연강판의 탈지나 열연 스케일 제거를 위해 적용되는 플라즈마 기술 (US 0190449) 과는 적용 분야 및 목적 측면에서 다르다. The present invention differs from the prior art in that it is applied to a hot dip galvanized steel sheet rather than a single crystal semiconductor or metal. It is also different from the plasma technology (US 0190449) previously applied for degreasing or removing hot rolled scales of cold rolled steel sheets in terms of application and purpose.
따라서 용융도금강판 위에 저압 플라즈마를 이용하여 나노 구조체를 제조하는 본 발명은 용융도금 공정과 플라즈마 공정을 연속적으로 연계시키는 새로운 공정을 제시한다는 점에서 독창성을 갖는다.Therefore, the present invention, which manufactures a nanostructure using low pressure plasma on a hot dip galvanized steel sheet, is unique in that it presents a new process that continuously links the hot dip plating process with the plasma process.
본 발명에 의하면 고진공을 요하지 않고, 수 초 내에 나노 구조체를 형성함으로써 실질적인 연속 공정상에 응용이 가능하며, 강판의 접착력 및 도장성을 향상시킬 수 있고, 우수한 백색도를 얻을 수 있다. 또한, 저 에너지 비활성기체, 산소, 메탄, 실란 가스 등의 플라즈마 공정을 용융도금공정 후단에 연결하여 수십~수백 마이크로 미터 크기의 구조를 파괴함 없이, 내부에 수백 나노미터 크기의 나노 구조체를 매우 고르게 형성시키며 표면 개질 조절이 가능한 다기능성 용융도금강판의 제조가 가능하다는 장점이 있다.According to the present invention, the nanostructure is formed within a few seconds without requiring high vacuum, so that the nanostructure can be applied in a substantially continuous process, and the adhesion and coating property of the steel sheet can be improved, and excellent whiteness can be obtained. In addition, by connecting plasma processes such as low energy inert gas, oxygen, methane and silane gas to the end of the hot dip plating process, nanostructures of several hundred nanometers inside are evenly distributed without destroying structures of tens to hundreds of micrometers. There is an advantage that it is possible to manufacture a multi-functional hot-dip galvanized steel sheet that can form and control the surface modification.
본 발명은 용융도금 단계; 및 저압 플라즈마 처리단계를 포함하는 용융금속도금강판의 제조방법에 관한 것이다.The present invention is a hot-dip plating step; And it relates to a method of manufacturing a molten metal plated steel sheet comprising a low pressure plasma treatment step.
본 발명에서, 저압 플라즈마 처리단계는 10-2 내지 20 torr에서 수행될 수 있고, 구체적으로는 1 내지 15 torr, 보다 구체적으로는 5 내지 10 torr에서 수행될 수 있다. In the present invention, the low pressure plasma treatment step may be performed at 10 −2 to 20 torr, specifically 1 to 15 torr, and more specifically 5 to 10 torr.
본 발명의 저압 플라즈마 처리단계에서, 0.1 내지 10 keV의 이온 에너지를 줄 수 있고, 구체적으로는 0.5 내지 5keV의 이온 에너지를 줄 수 있다. 또한, 글로우 방전법 또는 절연체 방전법을 사용할 수 있으나, 이로 제한되지 않는다.In the low pressure plasma treatment step of the present invention, the ion energy of 0.1 to 10 keV can be given, and specifically, the ion energy of 0.5 to 5 keV can be given. In addition, a glow discharge method or an insulator discharge method may be used, but is not limited thereto.
본 발명의 저압 플라즈마 처리단계에서, 비활성기체 및 표면개질제를 사용하여 강판 표면에 나노구조체를 형성할 수 있다. 본 발명의 방법으로 제조된 나노구조체는 약 10 내지 500nm의 직경을 가지며, 보다 구체적으로는 20 내지 300nm이다.In the low pressure plasma treatment step of the present invention, an inert gas and a surface modifier may be used to form nanostructures on the surface of the steel sheet. Nanostructures produced by the method of the present invention have a diameter of about 10 to 500 nm, more specifically 20 to 300 nm.
이 때 비활성기체로는 헬륨(He), 네온(Ne), 아르곤(Ar), 크립톤(Kr), 제논(Xe) 또는 라돈(Rn)이 사용될 수 있으나, 실질적으로 비활성인 기체라면 제한없이 사용될 수 있다. In this case, helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe) or radon (Rn) may be used as the inert gas, but any inert gas may be used without limitation. have.
또한, 표면개질제로는 산소, 메탄, 실란 가스 등이 사용될 수 있는데, 예컨대 비활성기체에 산소와 같은 친수성 표면개질제를 첨가하여 플라즈마를 발생시킨 경우 친수성이 향상된 표면을 제조할 수 있으며, 메탄, 실란 가스와 같은 소수성 표면개질제를 첨가하여 플라즈마를 발생시킨 경우 소수성이 향상된 표면을 제조할 수 있다.In addition, oxygen, methane, silane gas, etc. may be used as the surface modifier. For example, when a plasma is generated by adding a hydrophilic surface modifier such as oxygen to an inert gas, a surface having improved hydrophilicity may be prepared. When the plasma is generated by adding a hydrophobic surface modifier such as, it is possible to produce a surface with improved hydrophobicity.
본 발명은 도금강판의 백색도 향상을 위하여 저압플라스마 처리단계를 포함한다.The present invention includes a low pressure plasma treatment step to improve the whiteness of the plated steel sheet.
본 발명에서 용융금속도금강판에 사용되는 용용금속으로는 용융아연, 합금화 용융아연, 용융 Zn-Al-Mg 계합금, 용융알루미늄, 용융 Zn-Al계 합금, 용융 Al-Si-Mg계 합금 등이 있으나, 이로 제한되지 않는다. As the molten metal used in the molten metal plated steel sheet in the present invention, molten zinc, alloyed molten zinc, molten Zn-Al-Mg alloy, molten aluminum, molten Zn-Al alloy, molten Al-Si-Mg alloy However, it is not limited thereto.
본 발명에서, 용융도금 및 저압 플라즈마 공정을 연계함으로써 나노 구조체가 형성된 용융도금강판을 제조하는 기술의 모식도는 도 1에 도시한 바와 같다. In the present invention, a schematic diagram of a technique for manufacturing a hot-dip galvanized steel sheet having a nanostructure formed by linking the hot-dip and low-pressure plasma process is as shown in FIG.
본 발명에서, 용융도금공정은 냉간 압연재를 소둔 후 처리하는 일반적인 공정을 따른다. 예컨대, 도금욕(1) 온도는 450~470℃, 도금욕 조성은 아연에 0.1~0.3%의 알루미늄을 함유하게 할 수 있다. 도금욕을 통과한 강판은 도금조 상단에 위치한 공기 혹은 질소를 사용하는 개스 와이퍼(2)에 의해 예컨대, 80~600 g/m2 범위로 도금 부착량을 조절한 후 냉각 처리(4)를 거칠 수 있으며, 필요에 따라 냉각 처리 전 응고 반응을 촉진하여 미세 스팽글을 형성하는 대전 인산염 처리 또는 소지강판과 도금층을 합금화 처리(3)하는 공정을 거칠 수도 있다. 용융도금강판의 합금화 처리시 온도는 예컨대 500℃ 내외로써 도금층은 아연과 10% 내외의 철을 함유한 합금층으로 변화하게 되며, 용접성 및 도장성이 우수한 합금화 도금강판을 제조할 수 있다. 냉각 후 스킨 패스 처리(5) 및 텐숀 레벨링(6)에 의하여 형상 교정 및 강판에 매크로한 조직(texture)의 제공이 가능하다. In the present invention, the hot dip plating process follows the general process of annealing the cold rolled material. For example, the plating bath (1) temperature is 450 ~ 470 ℃, the plating bath composition can be made to contain 0.1 to 0.3% aluminum in zinc. The steel sheet passed through the plating bath can be subjected to cooling treatment (4) after adjusting the coating weight in the range of 80 to 600 g / m 2 , for example, by a gas wiper (2) using air or nitrogen located at the top of the plating bath. It is also possible to undergo a process of advancing the solidification reaction prior to the cooling treatment to form a fine sequin, or to alloy (3) the base steel sheet and the plating layer, if necessary. In the alloying process of the hot-dip galvanized steel sheet, the temperature is, for example, about 500 ° C., and the plating layer is changed into an alloy layer containing zinc and about 10% of iron, and an alloyed steel sheet having excellent weldability and paintability can be manufactured. After cooling, skin pass treatment 5 and tension leveling 6 enable shape correction and the provision of macroscopic texture to the steel sheet.
이후 강판은 플라즈마 처리를 거치게 된다. 플라즈마 공정 전후에는 진공 잠금장치(7,9)가 필요하며, 진공도는 예컨대 약 10 Torr이며 이러한 저압 플라즈마(8)는 양쪽에 구성된 전극들에 유도된 고전압(0.5 ~ 5kV)에 의해 비활성 기체인 Ne, Ar, Xe 등이 이온화 되면서 형성될 수 있다. 플라즈마 장치는 글로우 방전(Glow Discharge) 및 절연체 방전(Dielectric Barrier Discharge) 등의 방식을 사용할 수 있다. 이러한 플라즈마는 진공펌프 장치와 비활성 기체의 흐름을 조절하여 지속적으로 제공될 수 있다. The steel sheet is then subjected to a plasma treatment. Vacuum locks 7 and 9 are required before and after the plasma process, and the degree of vacuum is, for example, about 10 Torr. This low pressure plasma 8 is a Ne gas which is inert gas by high voltage (0.5 to 5 kV) induced at the electrodes configured at both sides. , Ar, Xe and the like may be formed while being ionized. The plasma apparatus may use a method such as glow discharge and dielectric barrier discharge. Such plasma may be provided continuously by controlling the flow of the vacuum pump apparatus and inert gas.
플라즈마 공정 처리 이후에는 용융도금강판 표면에 수십에서 수백 나노미터(nm) 크기의 나노 구조체가 매우 균밀하고 치밀하게 형성될 수 있다. 플라즈마 생성 기체는 비활성 기체에 산소 혹은 CH4 기체와 같은 표면개질제를 혼합하여 사용함으로써 표면을 친수성이나 소수성으로 개질할 수 있다. 이 후 필요에 따라 크롬산 처리, 수지 코팅 혹은 방청유 처리 등의 후처리(10)를 실시하고 텐숀 릴(11)에서 용융도금강판을 코일 형태로 감게 된다. 본 발명에 의한 나노구조체 형성 방법은 용융아연도금, 합금화 용융아연도금, 용융 Zn-Al-Mg계 합금도금, 용융알루미늄도금, 용융 Zn-Al계 합금도금, 용융 Al-Si-Mg계 합금도금 등 용융금속을 이용한 연속도금에 활용 가능하다. After the plasma process, nanostructures of several tens to hundreds of nanometers (nm) in size may be formed on the surface of the hot dip galvanized steel sheet in a very dense and dense manner. The plasma generating gas may be modified to be hydrophilic or hydrophobic by mixing a surface modifying agent such as oxygen or CH 4 gas with an inert gas. Thereafter, if necessary, after treatment 10 such as chromic acid treatment, resin coating, or rust preventive oil treatment is performed, and the hot-dip steel sheet is wound in a coil form in the tension reel 11. Nanostructure forming method according to the present invention is hot dip galvanized, alloyed hot dip galvanized, hot dip Zn-Al-Mg-based alloy plating, hot dip aluminum plating, hot dip Zn-Al alloy plating, hot dip Al-Si-Mg alloy plating It can be used for continuous plating using molten metal.
이하, 본 발명에 따르는 실시예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples according to the present invention, but the scope of the present invention is not limited to the examples given below.
<실시예 1>≪ Example 1 >
탄소 0.04%, 망간 0.2%, 실리콘 0.01% 이하를 함유한 저탄소 냉연강판 (1.5mm X 1200mm) 소재를 도금욕 460oC 에서 도금 부착량 120 g/m2로 용융아연도금 처리한 후, 고전압 대전 인산염 처리를 하여, 평균 스팽글 크기를 약 80 mm로 제조 하였다. 그 후 글로우 방전을 Ar 분위기, 9 Torr 진공도 내에서 Ar 이온 에너지 700eV로 1초 동안 실시하였다. 그림 2는 실시예의 표면 FE-SEM 사진을 나타내며, 표면 스팽글 조직 내에 약 100 ~ 200 nm 크기의 나노구조체가 용융아연도금강판 표면에 매우 고르게 형성되며 백색도가 우수하였다.Carbon 0.04%, manganese 0.2%, low-carbon cold-rolled steel sheet containing silicon less than 0.01% (1.5mm X 1200mm) material for the plating bath 460 o and then a coating weight 120 g / m 2 in C hot-dip galvanizing process, the high voltage charged phosphate The treatment gave an average sequin size of about 80 mm. Thereafter, glow discharge was performed for 1 second with Ar ion energy of 700 eV in Ar atmosphere and 9 Torr vacuum degree. Figure 2 shows the surface FE-SEM image of the embodiment, the nanostructures of about 100 ~ 200 nm size in the surface sequins are formed very evenly on the surface of the hot-dip galvanized steel sheet and excellent whiteness.
<실시예 2><Example 2>
탄소 0.04%, 망간 0.2%, 실리콘 0.01% 이하를 함유한 저탄소 냉연강판 (0.7mm X 1000mm) 소재를 도금욕 460oC 에서 도금 부착량 90 g/m2로 용융아연도금 처리한 후, 롤 조도가 1.0 mm 내외인 스킨 패스 밀로 1.0% 연신을 주어 압연처리 하였다. 그 후 글로우 방전을 Ar 분위기, 9 Torr 진공도 내에서 Ne 이온 에너지 700eV로 1초 동안 실시하였다. 그림 3은 실시예의 표면 FE-SEM 사진을 나타내며, 스킨 패스 처리된 매크로 조직 내에 약 50 nm 크기의 나노구조체가 용융아연도금강판 표면에 매우 고르게 형성되며 백색도가 우수하였다.Carbon 0.04%, manganese 0.2%, after the coating weight hot-dip galvanizing treatment to 90 g / m 2 low-carbon cold-rolled steel sheet containing silicon less than 0.01% (0.7mm X 1000mm) material in a plating bath 460 o C, the roll roughness It was rolled with 1.0% elongation with a skin pass mill around 1.0 mm. Thereafter, glow discharge was performed for 1 second with Ne ion energy of 700 eV in Ar atmosphere and 9 Torr vacuum degree. Figure 3 shows the surface FE-SEM image of the example, in which the nanostructures of about 50 nm size were formed very evenly on the surface of the hot-dip galvanized steel sheet in the skin pass-treated macrostructure and had excellent whiteness.
도 1은 연속용융도금 공정 및 저압 플라즈마 처리공정의 모식도이다.1 is a schematic diagram of a continuous hot dip plating process and a low pressure plasma treatment process.
도 2는 실시예 1에 대한 FE-SEM(X 10000)표면 사진이다.2 is a surface photograph of the FE-SEM (X 10000) for Example 1. FIG.
도 3은 실시예 2에 대한 FE-SEM(X 10000)표면 사진이다.3 is a surface photograph of FE-SEM (X 10000) for Example 2. FIG.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090130269A KR101132665B1 (en) | 2009-12-23 | 2009-12-23 | Manufacturing Method of the Nano-Structure on Galvanized Steel Surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090130269A KR101132665B1 (en) | 2009-12-23 | 2009-12-23 | Manufacturing Method of the Nano-Structure on Galvanized Steel Surface |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110073100A true KR20110073100A (en) | 2011-06-29 |
KR101132665B1 KR101132665B1 (en) | 2012-04-03 |
Family
ID=44403929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090130269A KR101132665B1 (en) | 2009-12-23 | 2009-12-23 | Manufacturing Method of the Nano-Structure on Galvanized Steel Surface |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101132665B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230060738A (en) * | 2021-10-28 | 2023-05-08 | 전북대학교산학협력단 | Methods of treating surfaces of hot dipped galvanized iron to enhance the adhesiveness |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06336662A (en) * | 1993-05-28 | 1994-12-06 | Kawasaki Steel Corp | Continuous manufacture of galvanized steel sheet |
JP5309317B2 (en) | 2006-09-08 | 2013-10-09 | 古河電気工業株式会社 | Method and apparatus for producing carbon nanostructure |
-
2009
- 2009-12-23 KR KR1020090130269A patent/KR101132665B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230060738A (en) * | 2021-10-28 | 2023-05-08 | 전북대학교산학협력단 | Methods of treating surfaces of hot dipped galvanized iron to enhance the adhesiveness |
Also Published As
Publication number | Publication date |
---|---|
KR101132665B1 (en) | 2012-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7914851B2 (en) | Method of manufacturing hot-dipped galvanized steel sheet | |
JP6713932B2 (en) | Aluminum foil, electronic device, roll-to-roll aluminum foil, and method for manufacturing aluminum foil | |
JP2014501334A (en) | High corrosion resistant hot dip galvanized steel sheet and method for producing the same | |
KR102109243B1 (en) | Multi-layered zinc alloy plated steel material having excellent spot weldability and corrosion resistance | |
JPWO2019159794A1 (en) | Surface-treated steel sheet for battery container and method for manufacturing surface-treated steel sheet for battery container | |
CN116288109A (en) | Hot dip coated steel strip with improved surface appearance and method of making same | |
US20200080199A1 (en) | Corrosion resistant metal and metal alloy coatings containing supersaturated concentrations of corrosion inhibiting elements and methods and systems for making the same | |
DE10039375A1 (en) | Corrosion-protected steel sheet and process for its manufacture | |
KR101132665B1 (en) | Manufacturing Method of the Nano-Structure on Galvanized Steel Surface | |
WO2012091409A2 (en) | Plating method and zinc plating process | |
JP5816703B2 (en) | Hot-dip galvanized steel sheet with excellent deep drawability and extremely low temperature joint brittleness resistance and method for producing the same | |
Kumar et al. | Modern coating processes and technologies | |
Escobar et al. | Identification of the mechanism that confers superhydrophobicity on 316L stainless steel | |
US20200207285A1 (en) | Method for manufacturing real aluminum using aluminum alloy capable of being applied to coil-to-uncoil process, and vehicle interior part | |
DE4438608C2 (en) | Process for coating an aluminum substrate | |
ES2261976T3 (en) | PROCEDURE FOR THE ELECTROLYTIC DEPOSITION OF MAGNESIUM OR MAGNESIUM-CINC ON GALVANIZED SHEET. | |
KR101523849B1 (en) | Method of fabricating metal-carbon composite particle | |
JP2011122240A (en) | Bent member, and method for producing the same | |
TW200521245A (en) | A hot-rolled steel sheet excellent in chemical treatmen and a method for producing the same | |
KR101560918B1 (en) | HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING NANO WIRE ON THE SURFACE AND METHOD FOR MANUFACTURING THE SAME | |
Aghajani et al. | Corrosion Behavior of Anodized Al Coated by Physical Vapor Deposition Method on Cu–10Al–13Mn Shape Memory Alloy | |
KR100830116B1 (en) | Manufacturing method of galvanized sheet steels with high strength | |
CN111587298A (en) | Hot-rolled hot-dip galvanized steel sheet having excellent surface appearance and method for manufacturing same | |
JP6008066B2 (en) | Heat-treated steel product having high strength and excellent chemical conversion treatment and method for producing the same | |
JP2938658B2 (en) | Multi-layer alloy plated steel sheet and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160325 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170324 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180327 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190327 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20200310 Year of fee payment: 9 |