KR20110071638A - Case for electrochemical device with a flame retardant and heat resistant material and electrochemical device comprising thereof - Google Patents

Case for electrochemical device with a flame retardant and heat resistant material and electrochemical device comprising thereof Download PDF

Info

Publication number
KR20110071638A
KR20110071638A KR1020090128260A KR20090128260A KR20110071638A KR 20110071638 A KR20110071638 A KR 20110071638A KR 1020090128260 A KR1020090128260 A KR 1020090128260A KR 20090128260 A KR20090128260 A KR 20090128260A KR 20110071638 A KR20110071638 A KR 20110071638A
Authority
KR
South Korea
Prior art keywords
flame retardant
electrochemical device
phosphite
layer
heat
Prior art date
Application number
KR1020090128260A
Other languages
Korean (ko)
Other versions
KR101183557B1 (en
Inventor
이헌영
고재훈
김재범
서희영
이재훈
김지수
Original Assignee
주식회사 이아이지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이아이지 filed Critical 주식회사 이아이지
Priority to KR1020090128260A priority Critical patent/KR101183557B1/en
Priority to PCT/KR2010/009157 priority patent/WO2011078554A2/en
Publication of KR20110071638A publication Critical patent/KR20110071638A/en
Application granted granted Critical
Publication of KR101183557B1 publication Critical patent/KR101183557B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/128Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only inorganic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/122Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE: An exterior for an electrochemical device is provided to ensure heat resistance when the temperature of a battery abnormally rises by inside or outside causes and to prevent the firing and explosion of the battery. CONSTITUTION: An exterior for an electrochemical device comprises one or more constitution layers and includes a flame retardant material and a heat resistant material as a compositional component, a coating composition or a compositional component and coating composition. The exterior comprises a compositional layer selected from the group consisting of a base material layer(1), a lamination layer(2) and a cast layer(3).

Description

난연 물질 및 내열 물질이 포함되어 안전성이 향상된 전기 화학 소자용 외장재 및 상기 외장재를 구비한 전기 화학 소자{CASE FOR ELECTROCHEMICAL DEVICE WITH A FLAME RETARDANT AND HEAT RESISTANT MATERIAL AND ELECTROCHEMICAL DEVICE COMPRISING THEREOF}CASE FOR ELECTROCHEMICAL DEVICE WITH A FLAME RETARDANT AND HEAT RESISTANT MATERIAL AND ELECTROCHEMICAL DEVICE COMPRISING THEREOF}

본 발명은 하나 이상의 구성층을 구비하는 전기 화학 소자용 외장재에 있어서, 상기 외장재의 구성층을 이루는 구성성분, 코팅성분 또는 구성성분 및 코팅성분으로서 난연 물질 및 내열 물질이 포함되어 안전성이 향상된 것이 특징인 전기 화학 소자용 외장재 및 상기 외장재를 구비한 전기 화학 소자에 관한 것이다. The present invention is an electrochemical device packaging material having at least one component layer, comprising a flame retardant material and a heat-resistant material as a component, a coating component or a coating component constituting the constituent layer of the packaging material is characterized by improved safety The present invention relates to an external electrochemical device exterior material and an electrochemical device having the exterior material.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 방전 전압의 리튬 이차전지에 대해 많은 연구가 행해졌고 또한 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices have increased, the demand for secondary batteries as energy sources has been rapidly increasing. Many researches have been conducted on lithium secondary batteries with high energy density and discharge voltage among such secondary batteries. .

리튬 이차전지는 리튬 이온의 삽입 및 탈리가 가능한 물질을 양극(cathode) 및 음극(anode)에 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전 해액을 충전시켜 제조하며, 리튬 이온이 상기 양극 및 음극에서 삽입 및 탈리될 때의 산화반응, 환원반응에 의하여 전기적 에너지를 생성한다.A lithium secondary battery is manufactured by using a material capable of inserting and detaching lithium ions in a cathode and an anode, and filling an organic electrolyte or a polymer electrolyte between the cathode and the anode, and lithium ions as the anode. And electrical energy is generated by an oxidation reaction and a reduction reaction when inserted and detached from the cathode.

리튬 이차 전지가 과충전되면 양극으로부터 과잉의 리튬이 나오고 음극으로 과잉의 리튬이 삽입되면서 음극 표면에 반응성이 매우 큰 리튬 금속이 석출되고 양극 또한 열적으로 불안정한 상태가 되며, 전해액으로 사용하는 유기 용매의 분해반응으로 인한 급격한 발열반응으로 전지가 발화, 폭발하는 등의 안전성 문제가 생긴다.When the lithium secondary battery is overcharged, excess lithium comes out from the positive electrode and excess lithium is inserted into the negative electrode, and very reactive lithium metal is precipitated on the surface of the negative electrode, and the positive electrode also becomes thermally unstable. The sudden exothermic reaction caused by the reaction causes safety problems such as battery ignition and explosion.

또, 일반적으로 가연성 비수계 전해액을 사용하는 리튬 이차 전지는 전지 내부 온도 상승시 전해액의 분해 반응에 의한 가연성 가스, 전해액과 전극의 반응에 따른 가연성 가스, 양극의 분해에 의한 산소의 발생 등에 의해 폭발하거나 화재가 발생하는 문제점을 가지고 있다.In general, a lithium secondary battery using a flammable non-aqueous electrolyte may explode due to the generation of flammable gas due to the decomposition reaction of the electrolyte when the temperature inside the battery rises, flammable gas due to the reaction between the electrolyte and the electrode, and generation of oxygen due to decomposition of the anode. Or fire occurs.

못 관통, 압착, 충격, 고온 노출 등의 경우, 전지 내부의 양극과 음극은 내부에서 국부적으로 단락이 생긴다. 이때 국부적으로 과도한 전류가 흐르게 되고 이 전류로 인해 발열이 생긴다. 국부적인 단락으로 인한 단락 전류의 크기는 저항에 반비례하므로 단락 전류는 저항이 낮은 쪽으로 많이 흐르게 된다. 이때, 단락 부분을 중심으로 국부적으로 매우 높은 발열이 생기게 된다. 전지 내부에 발열이 생길 경우 전지 내부를 구성하고 있는 양극, 음극 및 전해액이 서로 반응하거나 연소하 게 되는데 이 반응은 매우 큰 발열 반응이므로 결국 발화되거나 폭발하게 된다. In the case of nail penetration, crimping, impact, and high temperature exposure, the positive and negative electrodes inside the battery are locally shorted. At this time, locally excessive current flows and heat is generated by this current. Since the magnitude of the short circuit current due to local short circuit is inversely proportional to the resistance, the short circuit current flows much toward the lower resistance. At this time, a very high heat generation is generated locally around the short circuit portion. When heat is generated inside the battery, the positive electrode, the negative electrode, and the electrolyte constituting the inside of the battery react or burn with each other. This reaction is a very large exothermic reaction and eventually ignites or explodes.

따라서, 이와 같은 경우 전지 내부에서 급격한 발열과 이에 따른 발화가 생기지 않게 해야 하며, 발화 위험성의 원인인 과충전을 예방하고, 물리적 변형에 따른 내부 쇼트 등을 예방하기 위한 다양한 방법들이 제시되고 있다. 그러나, 이러한 예방 수단에도 불구하고 발화를 예방하거나, 적어도 발화가 개시되었을 때 그것의 진행을 억제할 수 있는 별도의 수단이 요구된다. 리튬 이차 전지는 어시스트 자전거, 전동 스쿠터, 전기 자동차나 하이브리드차에 탑재하는 차량 탑재용 전지나 전자 기기의 비상용 전원으로서 유망시되고 있다. 차량 탑재용 전지에는 장기간의 고온 고습 환경(예를 들면, 60 ℃ 이상, 상대 습도 90% 이상)에서 급속 충전하고, 고출력 방전하는 것이 요구됨에 따라 특히 대용량 전지에서는 발화에 따른 위험성과 고온에 노출됨에 따른 내열성 확보가 더욱 심각하게 대두된다. Therefore, in this case, various methods for preventing rapid heat generation and ignition according to the inside of the battery, preventing overcharging as a cause of ignition risk, and preventing internal short due to physical deformation have been proposed. However, despite such preventive measures, there is a need for a separate means capable of preventing ignition or at least inhibiting its progress when ignition has commenced. BACKGROUND ART Lithium secondary batteries are promising as emergency power sources for on-board batteries and electronic devices mounted on assist bicycles, electric scooters, electric vehicles, and hybrid vehicles. In-vehicle batteries are required to be rapidly charged in a long-term high temperature and high humidity environment (for example, 60 ° C. or higher and 90% or higher relative humidity) and to be discharged at high power. As a result, securing heat resistance is more serious.

여러 분야에서 발화의 예방 및 억제를 목적으로 소재의 일부에 난연제를 첨가하는 기술이 널리 사용되고 있다. 예를 들어, 플라스틱 복합체에 첨가된 난연제는 발화시 소화 가스를 발생시키거나 용융되어 복합체의 표면에 산소를 차단하는 피막을 형성하는 등의 방법으로 발화를 억제한다. 따라서, 발화 예방 및 억제의 측면에서 난연제의 사용은 매우 효과적임이 입증되어 있다.In many fields, a technique of adding a flame retardant to a part of a material for the purpose of preventing and suppressing ignition has been widely used. For example, the flame retardant added to the plastic composites suppresses ignition by generating extinguishing gas upon ignition or melting to form a film that blocks oxygen on the surface of the composite. Therefore, the use of flame retardants in terms of prevention and suppression of ignition has proven very effective.

전지 분야에서도 이러한 난연제의 사용을 통해 발화를 예방 및 억제하기 위 한 방법들이 다수 제시된 바 있다. 예를 들어, 일본특허공개 제1992-84870호에는 전해액에 인산 에스테르를 첨가하는 방법이 제시되어 있고, 일본특허공개 제1999-154535호에는 인산 암모늄을 음극 또는 전극에 포함시키는 방법이 제시되어 있다. 이러한 방법들은 실제로 우수한 발화억제능을 제공하지만, 전지의 주요 작동요소(functional element)들에 직접 첨가됨으로 인해 전지 성능의 저하를 피할 수 없는 문제점을 가지고 있다.In the battery field, a number of methods for preventing and suppressing ignition through the use of such flame retardants have been proposed. For example, Japanese Patent Laid-Open No. 1992-84870 discloses a method of adding phosphate ester to an electrolyte solution, and Japanese Patent Laid-Open No. 1999-154535 discloses a method of including ammonium phosphate in a cathode or an electrode. These methods actually provide excellent fire suppression ability, but have a problem in that deterioration of battery performance is inevitable due to the direct addition to the main functional elements of the battery.

또한, 전지 내부에 사용되는 분리막에 내열 특성을 향상시키기 위해 내열성이 있는 물질을 분리막 표면에 코팅하거나, 내열성이 있는 층이 존재하는 다층 분리막을 만드는 방법등 여러 시도가 있었으나, 이러한 방법들 역시 전지 내부에 직접 첨가됨으로 인해 전지 성능의 저하를 피할 수 없는 문제점을 가지고 있었다. In addition, in order to improve heat resistance of the separator used in the battery, there have been various attempts such as coating a material having heat resistance on the surface of the separator or making a multilayer separator having a heat resistant layer. Due to the direct addition to the had a problem that inevitable degradation of battery performance.

따라서, 전해액, 양극 또는 음극 활물질 등에 직접 첨가되지 않으면서 난연 물질 및 내열 물질의 사용에 의해 우수한 난연 효과 및 내열 효과를 발휘할 수 있는 기술에 대한 필요성이 높은 실정이다.Therefore, there is a high need for a technology that can exhibit excellent flame retardant effect and heat resistance effect by using a flame retardant material and a heat resistant material without being directly added to an electrolyte, a positive electrode or a negative electrode active material.

본 발명은 상기와 같은 종래 문제점을 해결하기 위하여, 난연 물질 및 내열 물질을 전기 화학 소자의 외장재에 구성성분 및/또는 코팅성분으로 도입하면, 외부 또는 내부 요인에 의해 전지의 온도가 비정상적으로 상승할 경우 내열 특성을 나타낼 뿐만 아니라, 온도가 더욱 상승할 경우 발생하는 전지의 발화 및 폭발을 억제할 수 있고, 이로 인하여 전지의 안전성 향상 효과가 탁월하다는 것을 확인할 수 있었다.In order to solve the conventional problems as described above, when the flame-retardant material and the heat-resistant material is introduced into the exterior material of the electrochemical device as a component and / or a coating component, the temperature of the battery abnormally rise due to external or internal factors In addition to exhibiting heat resistance in case, it is possible to suppress the ignition and explosion of the battery generated when the temperature is further increased, thereby confirming that the effect of improving the safety of the battery is excellent.

이에 본 발명은 앞서 설명한 바와 같은 안전성 향상 효과를 도모할 수 있는 난연 물질 및 내열 물질이 포함된 외장재 및 상기 외장재를 구비하는 전기 화학 소자를 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide an exterior material containing a flame retardant material and a heat resistant material and an electrochemical device having the exterior material, which can achieve the safety improvement effect as described above.

본 발명은 하나 이상의 구성층을 구비하는 전기 화학 소자용 외장재에 있어서, 상기 외장재의 구성층을 이루는 구성성분, 코팅성분, 또는 구성성분 및 코팅성분으로서, 난연 물질 및 내열 물질을 함유하여 안전성이 향상된 것이 특징인 전기 화학 소자용 외장재를 제공한다. The present invention is an electrochemical device packaging material having at least one component layer, comprising a flame retardant material and a heat-resistant material as a component, a coating component, or a component and a coating component constituting the component layer of the packaging material is improved safety It provides an electrochemical device exterior material characterized in that.

본 발명에서 상기 외장재는 기재 층, 라미네이션 층(Lamination layer) 및 캐스트 층(cast layer)으로 구성된 군에서 선택된 1종 이상의 구성층을 구비하는 것을 특징으로 한다.In the present invention, the packaging material is characterized by having at least one component layer selected from the group consisting of a base layer, a lamination layer (cast layer) and a cast layer (cast layer).

본 발명에서 상기 난연 물질은 할로겐계 난연제, 인계 난연제, 질소계 난연제 및 무기화합물 난연제로 구성된 그룹에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징으로 한다.In the present invention, the flame retardant material is characterized in that one or more mixtures selected from the group consisting of halogen-based flame retardant, phosphorus-based flame retardant, nitrogen-based flame retardant and inorganic compound flame retardant.

본 발명에서 상기 할로겐계 난연제는 트리브로모 페녹시에탄, 테트라 브로모 비스페놀-A (TBBA), 옥타브로모 디페닐에테르 (OBDPE), 브롬화 에폭시, 브롬화 폴리 카보네이트 올리고모, 염소화 파라핀, 염소화 폴리에틸렌 및 지환족 염소계 난연제로 구성된 그룹에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징으로 한다.In the present invention, the halogen flame retardant is tribromo phenoxyethane, tetra bromo bisphenol-A (TBBA), octabromo diphenyl ether (OBDPE), brominated epoxy, brominated polycarbonate oligomo, chlorinated paraffin, chlorinated polyethylene and alicyclic It is characterized in that one or more mixtures selected from the group consisting of a group chlorine-based flame retardant.

본 발명에서 상기 인계 난연제는 적인, 인산 암모늄 등의 phosphates, phosphine oxide, phosphine oxide diols, phosphites, phosphonates, triaryl phosphate, alkyldiaryl phosphate, trialkyl phosphate 및 resorcinaol bisdiphenyl phosphate (RDP) 로 구성된 그룹에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징으로 한다.In the present invention, the phosphorus flame retardant is one or two selected from the group consisting of phosphates such as ammonium phosphate, phosphine oxide, phosphine oxide diols, phosphites, phosphonates, triaryl phosphate, alkyldiaryl phosphate, trialkyl phosphate and resorcinaol bisdiphenyl phosphate (RDP) It is characterized by the above mixture.

본 발명에서 상기 질소계 난연제는 멜라민, 멜라민 포스페이트 및 멜라민 시아누레이트로 구성된 그룹에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징 으로 한다.In the present invention, the nitrogen-based flame retardant is characterized in that one or more mixtures selected from the group consisting of melamine, melamine phosphate and melamine cyanurate.

본 발명에서 상기 무기화합물 난연제는 수산화알루미늄, 수산화마그네슘, 산화안티몬, 수산화주석, 산화주석, 산화몰리브덴, 지르코늄화합물, 붕산염 및 칼슘염으로 구성된 그룹에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징으로 한다.The inorganic compound flame retardant in the present invention is characterized in that one or more mixtures selected from the group consisting of aluminum hydroxide, magnesium hydroxide, antimony oxide, tin hydroxide, tin oxide, molybdenum oxide, zirconium compound, borate and calcium salt.

본 발명에서 상기 내열 물질은 구리계 내열제 또는 포스파이트계 내열제인 것을 특징으로 한다.In the present invention, the heat-resistant material is characterized in that the copper-based heat-resistant agent or phosphite-based heat-resistant agent.

본 발명에서 상기 포스파이트계 내열제는 비스(2,6-디-테르트-부틸-4-메틸페닐)펜타에르트리톨-디-포스파이트, 테트라키스[메틸렌-3-(라우릴티오) 프로피오네이트]메탄, 트리페닐포스파이트, 트리라우릴포스파이트, 트리스 (노닐페닐)포스파이트, 트리-이소-옥틸-포스파이트, 트리올레일포스파이트, 트리스(2,4-디-터셔리-부틸페닐)포스파이트, 디페닐-노닐페닐-포스파이트, 페닐-디-이소데실-포스파이트 및 트리라우릴-트리-티오-포스파이트로부터 선택되는 것을 특징으로 한다. In the present invention, the phosphite-based heat-resistant agent is bis (2,6-di-tert-butyl-4-methylphenyl) pentaertritol-di-phosphite, tetrakis [methylene-3- (laurylthio) prop Cypionate] methane, triphenylphosphite, trilauryl phosphite, tris (nonylphenyl) phosphite, tri-iso-octyl-phosphite, trioleyl phosphite, tris (2,4-di-tertiary- Butylphenyl) phosphite, diphenyl-nonylphenyl-phosphite, phenyl-di-isodecyl-phosphite and trilauryl-tri-thio-phosphite.

본 발명은 상기에 기재된 외장재를 사용하는 전기 화학 소자를 제공한다. The present invention provides an electrochemical device using the packaging material described above.

본 발명에서 상기 전기 화학 소자는 리튬 이차 전지인 것을 특징으로 한다.In the present invention, the electrochemical device is characterized in that the lithium secondary battery.

이하 본 발명을 상세히 설명할 것이며, 전기 화학 소자 중 전지, 특히 리튬 이차 전지를 예로 들어 설명할 것이나, 반드시 이에 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail, and a battery, particularly a lithium secondary battery, of the electrochemical device will be described as an example, but is not necessarily limited thereto.

오늘날 난연 물질(FR) 마켓은 화학적 및/또는 물리적 수단에 의해 연소 과정을 방해하는 작용을 하는 제품으로 구성된다. 기계적으로, 이들 난연제는 가스상, 응축상 또는 이들 양쪽 상태인 물품을 연소하는 동안 작용하는 것으로 제시되어 왔다. 외장재의 구성층 중 어느 하나 이상의 표면에 코팅되거나 구성층 어느 하나 이상의 구성 성분으로써 포함된 난연 물질은 전지 내부에서의 단락 기타 원인으로 인한 발화 또는 폭발의 위험성을 차단한다. 또한, 본 발명에서는 난연 물질을 전지 내부에 첨가하지 않고 외장재에 투입하므로, 전지 내부에서의 화학 반응 및 리튬 이온 전도성에 영향을 주지 않아 전지의 성능 저하를 방지할 수 있다. Today's flame retardant (FR) market consists of products that act to disrupt the combustion process by chemical and / or physical means. Mechanically, these flame retardants have been suggested to act during the combustion of articles in gaseous, condensed or both states. Flame retardant materials coated on or contained as a component of any one or more of the components of the packaging material block the risk of fire or explosion due to short circuits or other causes within the cell. In addition, in the present invention, since the flame-retardant material is added to the exterior material without adding the inside of the battery, the performance of the battery can be prevented without affecting the chemical reaction and the lithium ion conductivity inside the battery.

상기와 같은 작용을 할 수 있는 난연 물질은 외장재의 구성성분 및/또는 코팅성분으로 사용할 수 있으며, 이때 난연 물질은 당 업계에서 알려진 통상적인 난연 물질을 제한없이 사용할 수 있다. 또는 이러한 성분을 함유한 입자를 사용할 수도 있다. Flame retardant material that can act as described above can be used as a component and / or coating component of the exterior material, wherein the flame retardant material can be used without limitation, conventional flame retardant materials known in the art. Alternatively, particles containing these components may be used.

구체적으로 사용되는 난연성 성분("난연제: frame retardant")의 종류는 특별히 한정되는 것은 아니며, 예를 들어, 할로겐계 난연제, 인계 난연제, 질소계 난 연제 및 무기화합물 난연제 등이 사용될 수 있으며, 경우에 따라서는 이들의 하나 또는 둘 이상의 혼합물의 형태로 사용될 수도 있다. 최근 환경문제로 인해 할로겐계 난연제를 규제하고 비할로겐계 난연제을 사용하려는 움직임이 있는데 특히 자동차 산업에 있어서 환경적인 문제는 중요한 사안으로 생각되고 있다. 현재, 이 기술 분야에서 사용되고 있는 난연제로는 무기산화물, 질소계 난연제, 인계 난연제 등이 비할로겐계 난연제로 사용되고 있다. The type of flame retardant ("flame retardant") specifically used is not particularly limited, and examples thereof include halogen flame retardants, phosphorus flame retardants, nitrogen flame retardants and inorganic compound flame retardants. It may therefore be used in the form of one or a mixture of two or more thereof. Recently, due to environmental problems, there is a movement to regulate halogen-based flame retardants and to use non-halogen-based flame retardants. In particular, environmental problems are considered to be important in the automobile industry. Currently, as the flame retardant used in the technical field, inorganic oxides, nitrogen-based flame retardants, phosphorus-based flame retardants and the like are used as non-halogen flame retardants.

할로겐계 난연제는 일반적으로 기체상에서 발생하는 라디칼을 실질적으로 안정화시킴으로써 난연 효과를 발휘한다. 할로겐계 난연제의 예로는, 트리브로모 페녹시에탄, 테트라 브로모 비스페놀-A (TBBA), 옥타브로모 디페닐에테르 (OBDPE), 브롬화 에폭시, 브롬화 폴리 카보네이트 올리고모, 염소화 파라핀, 염소화 폴리에틸렌, 지환족 염소계 난연제 등을 들 수 있다.Halogen-based flame retardants generally exhibit a flame retardant effect by substantially stabilizing radicals occurring in the gas phase. Examples of halogen-based flame retardants include tribromo phenoxyethane, tetra bromo bisphenol-A (TBBA), octabromo diphenyl ether (OBDPE), brominated epoxy, brominated polycarbonate oligomo, chlorinated paraffin, chlorinated polyethylene, alicyclic Chlorine-based flame retardants and the like.

인계 난연제는 일반적으로 열분해에 의해 폴리메타인산을 생성하고 이것이 보호층을 형성하거나 폴리메타인산이 생성될 때의 탈수작용에 의해서 생성되는 탄소 피막이 산소를 차단함으로써 난연 효과를 발휘한다. 인계 난연제의 예로는, 적인, 인산 암모늄 등의 phosphates, phosphine oxide, phosphine oxide diols, phosphites, phosphonates, triaryl phosphate, alkyldiaryl phosphate, trialkyl phosphate, resorcinaol bisdiphenyl phosphate (RDP) 등을 들 수 있다.Phosphorus-based flame retardants generally produce a polymethic acid by pyrolysis, and the carbon film produced by dehydration when it forms a protective layer or when polymethic acid is produced exerts a flame retardant effect. Examples of phosphorus-based flame retardants include phosphates such as red, ammonium phosphate, phosphine oxide, phosphine oxide diols, phosphites, phosphonates, triaryl phosphate, alkyldiaryl phosphate, trialkyl phosphate, resorcinaol bisdiphenyl phosphate (RDP), and the like.

질소계 난연제는 멜라민, 멜라민 포스페이트 및 멜라민 시아누레이트 등을 들 수 있으며, 이 중에서 바람직하게는 멜라민 시아누레이트가 선택될 수 있다.Nitrogen-based flame retardants include melamine, melamine phosphate and melamine cyanurate, and among these, melamine cyanurate may be preferably selected.

무기화합물 난연제는 일반적으로 열에 의해 분해되어, 물, 이산화탄소, 이산화황, 염화수소 등의 불연성 가스를 방출하고 흡열반응을 유발함으로써, 가연성 가스를 희석시켜 산소의 접근을 방지하고, 흡열반응에 의해 냉각 및 열분해 생성물의 생성을 감소시켜 난연 효과를 발휘한다. 그러한 무기 화합물 난연제의 예로는, 수산화알루미늄, 수산화마그네슘, 산화안티몬, 수산화주석, 산화주석, 산화몰리브덴, 지르코늄화합물, 붕산염, 칼슘염 등을 들 수 있다.Inorganic compound flame retardants are generally decomposed by heat, releasing incombustible gases such as water, carbon dioxide, sulfur dioxide and hydrogen chloride and causing endothermic reactions, thereby diluting the combustible gases to prevent oxygen access and cooling and pyrolysis by endothermic reactions. Reduce the production of the product to exert a flame retardant effect. Examples of such inorganic compound flame retardants include aluminum hydroxide, magnesium hydroxide, antimony oxide, tin hydroxide, tin oxide, molybdenum oxide, zirconium compounds, borate salts, calcium salts, and the like.

상기 난연제 중 특히 바람직하게는 인산 암모늄계 난연제를 사용할 수 있다. 경우에 따라서는, 상기에 예시한 난연제들을 혼합해서 사용할 수 있으며, 또한, 난연 상승효과를 유도하는 기타의 첨가제를 더 포함할 수도 있다.Among the above flame retardants, an ammonium phosphate flame retardant may be particularly preferably used. In some cases, the above-described flame retardants may be mixed and used, and may further include other additives for inducing a flame retardant synergistic effect.

또한, 본 발명에서 내열 특성을 부여하기 위하여 구리계 내열제를 포함할 수 있으며, 표면 처리된 구리 화합물을 사용할 수 있다. 본 발명의 구리계 내열제는 난연 물질 100 중량부에 대하여 10 내지 30 중량부로 첨가할 수 있다. 10 중량부 이상 30 중량부 이하인 경우에는 향상된 내열 특성을 확보할 수 있다. In addition, in order to impart heat resistance in the present invention may include a copper-based heat-resistant agent, it is possible to use a surface-treated copper compound. The copper-based heat resistant agent of the present invention may be added in an amount of 10 to 30 parts by weight based on 100 parts by weight of the flame retardant material. In the case of 10 parts by weight or more and 30 parts by weight or less, improved heat resistance characteristics can be ensured.

한편, 본 발명에서 장기 내열 특성을 강화할 수 있도록, 상기 구리계 내열제 와 함께 장기 내열성의 시너지 효과가 있는 포스파이트계 내열제를 추가로 포함할 수 있다. 포스파이트계 내열제로는 비스(2,6-디-테르트-부틸-4-메틸페닐)펜타에르트리톨-디-포스파이트, 테트라키스[메틸렌-3-(라우릴티오) 프로피오네이트]메탄, 트리페닐포스파이트, 트리라우릴포스파이트, 트리스 (노닐페닐)포스파이트, 트리-이소-옥틸-포스파이트, 트리올레일포스파이트, 트리스(2,4-디-터셔리-부틸페닐)포스파이트, 디페닐-노닐페닐-포스파이트, 페닐-디-이소데실-포스파이트, 또는 트리라우릴-트리-티오-포스파이트 등으로부터 선택된 것을 사용할 수 있다. 이 중 바람직하게는 비스(2,6-디-테르트-부틸-4-메틸페닐)펜타에르트리톨-디-포스파이트를 사용할 수 있다. 본 발명의 포스파이트계 내열제는 난연 물질 100 중량부에 대하여 3 내지 30 중량부로 첨가할 수 있다. 3 중량부 이상 30 중량부 이하인 경우에는 향상된 내열 특성을 확보할 수 있다. On the other hand, in order to enhance the long-term heat resistance in the present invention, in addition to the copper-based heat-resistant agent may further include a phosphite-based heat-resistant agent having a synergistic effect of long-term heat resistance. Examples of the phosphite-based heat resistant agent include bis (2,6-di-tert-butyl-4-methylphenyl) pentatritol-di-phosphite and tetrakis [methylene-3- (laurylthio) propionate] methane , Triphenyl phosphite, trilauryl phosphite, tris (nonylphenyl) phosphite, tri-iso-octyl- phosphite, trioleyl phosphite, tris (2,4-di-tertiary-butylphenyl) Pit, diphenyl-nonylphenyl-phosphite, phenyl-di-isodecyl-phosphite, trilauryl-tri-thio-phosphite and the like can be used. Of these, bis (2,6-di-tert-butyl-4-methylphenyl) pentatritriol-di-phosphite can be preferably used. The phosphite heat resistant agent of the present invention may be added in an amount of 3 to 30 parts by weight based on 100 parts by weight of the flame retardant material. In the case of 3 parts by weight or more and 30 parts by weight or less, improved heat resistance characteristics can be ensured.

본 발명의 난연 물질 및 내열 물질은 전지 외장재를 구성하는 하나 이상의 구성층의 구성 성분으로서 포함되거나 또는 상기 하나 이상의 구성층 표면의 일부 또는 전부에 코팅층을 형성하는 방법으로 포함될 수도 있으며, 상기 구성 성분 및 코팅 성분에 모두 포함될 수 있다. The flame retardant material and the heat resistant material of the present invention may be included as a constituent of one or more constituent layers constituting the battery envelope or by a method of forming a coating layer on part or all of the surface of the one or more constituent layers, All may be included in the coating component.

전지의 외장재는 캔 형, 파우치 형 등이 될 수 있으며, 파우치 형일 경우에는 기재 층, 외장재 외측 및 내측의 라미네이션 층, 캐스트 층 등의 구성층을 포함할 수 있다. The battery packaging material may be a can type, a pouch type, or the like, and, in the case of the pouch type, may include a constituent layer such as a base layer, lamination layers on the outside and inside of the packaging material, and a cast layer.

본 발명의 난연 물질 및 내열 물질이 포함된 전기 화학 소자용 외장재의 상기 캐스트 층은 열접착층으로서, 변성 폴리프로필렌(casted polypropylene: CPP), 폴리 에틸렌(poly ethylene), 폴리 에틸렌 아크릴 산(poly ethylene acrylic acid), 변성 폴리 프로필렌(casted poly propylene), 폴리 우레탄(poly uretan), 폴리 이미드(polyimide) 및 폴리프로필렌과 부틸렌과 에틸렌 삼원공중합체로 이루어진 군에서 선택될 수 있다. 상기 캐스트 층은 하기 기재 층의 다른 면에 대략 30∼80㎛의 두께로 코팅 또는 라미네이팅되어 있다.The cast layer of the electrochemical device exterior material including the flame retardant material and the heat-resistant material of the present invention is a heat-adhesive layer, modified polypropylene (CPP), polyethylene (polyethylene), polyethylene acrylic acid (polyethylene acrylic) acid), modified polypropylene (casted poly propylene), polyurethane (poly uretan), polyimide (polyimide) and may be selected from the group consisting of polypropylene and butylene and ethylene terpolymers. The cast layer is coated or laminated to the other side of the following substrate layer to a thickness of approximately 30-80 μm.

본 발명의 난연 물질 및 내열 물질이 포함된 전기 화학 소자용 외장재의 상기 기재 층은 철(Fe), 탄소(C), 크롬(Cr), 망간(Mn), 니켈(Ni), 알루미늄(Al), 구리(Cu) 및 이들의 합금으로 이루어진 군에서 선택될 수 있으며, 이중 바람직하게는 철(Fe), 알루미늄(Al) 및 알루미늄(Al)의 합금이 선택될 수 있다. 더욱 바람직하게는 알루미늄(Al) 또는 알루미늄(Al)의 합금이 선택될 수 있다. 상기 기재 층이 알루미늄이나 알루미늄(Al)의 합금이 선택될 때는 포장재료의 유연성이 좋아지게 된다. 상기 기재 층은 포장 재료의 적정 두께를 유지하고 외부로부터 수증기, 가스가 침투하는 것을 방지 하며, 전해액의 누수를 방지하는 역할을 한다.The base layer of the electrochemical device packaging material containing the flame retardant material and heat-resistant material of the present invention is iron (Fe), carbon (C), chromium (Cr), manganese (Mn), nickel (Ni), aluminum (Al) It may be selected from the group consisting of copper (Cu) and alloys thereof, and preferably an alloy of iron (Fe), aluminum (Al) and aluminum (Al) may be selected. More preferably, aluminum (Al) or an alloy of aluminum (Al) may be selected. When the substrate layer is selected from aluminum or an alloy of aluminum (Al), flexibility of the packaging material is improved. The base layer maintains an appropriate thickness of the packaging material, prevents water vapor and gas from penetrating from the outside, and serves to prevent leakage of the electrolyte solution.

본 발명의 난연 물질 및 내열 물질이 포함된 전기 화학 소자용 외장재의 상기 라미네이션층은 기재 및 보호층으로 작용하는 것으로, 나일론 또는 폴리에틸렌 테레프탈레이트 (polyethylene terephthalate)에서 선택될 수 있다.The lamination layer of the electrochemical device exterior material including the flame retardant material and the heat resistant material of the present invention serves as a substrate and a protective layer, and may be selected from nylon or polyethylene terephthalate.

본 발명의 난연 물질 및 내열 물질이 상기 외장재 구성층의 구성 성분으로 포함될 경우에는 기재 층, 내측 라미네이션층, 캐스트 층 중 어느 하나 이상의 층을 형성하는 공정에서 상기 층을 형성하는 재료에 상기 난연 물질 및 내열 물질을 혼합함으로써 포함될 수 있고, 상기 난연 물질 및 내열 물질이 외장재 구성층의 코팅층으로 포함될 경우에는 기재 층과 내측 라미네이션 층의 사이, 내측 라미네이션 층과 캐스트 층 사이, 캐스트 층의 표면에 코팅층을 형성할 수 있다. When the flame retardant material and the heat resistant material of the present invention are included as a constituent of the packaging material constituting layer, the flame retardant material and the material forming the layer in the process of forming any one or more layers of a base layer, an inner lamination layer, and a cast layer. It can be included by mixing the heat-resistant material, when the flame-retardant material and the heat-resistant material is included as the coating layer of the packaging material layer between the base layer and the inner lamination layer, between the inner lamination layer and the cast layer, to form a coating layer on the surface of the cast layer can do.

본 발명의 난연 물질 및 내열 물질이 상기 외장재 구성층의 구성 성분으로 포함될 경우에는 난연 물질 및 내열 물질을 내포하는 구성층의 기재는 그 자체가 화학작용을 유발하지 않으면서 난연 물질 및 내열 물질을 안정하게 보호 할 수 있는 것이라면 특별히 한정되는 것은 아니다. 그러한 필름 기재의 예로는, 폴리에틸렌, 폴리프로필렌, 폴리우레탄, 플루오린계 폴리머 등을 들 수 있으며, 바람직하게는 그 자체로 난연성을 나타내는 폴리우레탄 등이 사용될 수 있다. 구성층에서의 난연 물질 및 내열 물질의 함량은 구성층 전체 중량을 기준으로 20 내지 90 중량%인 것이 바람직하다. When the flame retardant material and the heat resistant material of the present invention are included as a constituent of the packaging material constituting layer, the substrate of the constituent layer containing the flame retardant material and the heat resistant material stabilizes the flame retardant material and the heat resistant material without causing chemical reaction by itself. If it can protect it, it is not specifically limited. Examples of such film substrates include polyethylene, polypropylene, polyurethane, fluorine-based polymers, and the like, and preferably polyurethanes having flame retardancy per se can be used. The content of the flame retardant material and the heat resistant material in the constituent layer is preferably 20 to 90% by weight based on the total weight of the constituent layer.

난연 물질 및 내열 물질을 포함하는 구성층은 간단한 제조방법에 의해 제조될 수 있다. 예를 들어, 열가소성 수지를 필름 기재로서 사용하는 경우에는, 열가 소성 수지의 용융물에 난연 물질 및 내열 물질을 블랜딩한 후 이를 이미 준비된 외장재의 표면에 도포한 후 고화시킴으로써 제조할 수 있다. 또한, 열경화성 수지를 기재로서 사용하는 경우에는, 열경화성 수지를 용매에 용해시키고 여기에 난연 물질 및 내열 물질을 혼합하고 이를 이미 준비된 외장재의 표면에 도포하여 필름의 형태로 만든 후 용매를 제거하거나, 또는 열경화성 수지의 중합시 또는 중합전에 난연 물질 및 내열 물질을 첨가하여 난연 물질 및 내열 물질이 포함된 형태의 중합체를 이미 준비된 외장재의 표면에 도포하여 필름의 형태로 제조할 수도 있다. 난연 및 내열 필름의 두께는 난연 및 내열 필름을 전지의 내부에 부가하였을 때, 전지의 구성에 영향을 미치지지 않는 범위라면 특별히 제한되는 것은 아니다.The constituent layer comprising the flame retardant material and the heat resistant material can be manufactured by a simple manufacturing method. For example, when using a thermoplastic resin as a film base material, it can manufacture by blending a flame-retardant material and a heat resistant material in the melt of a thermoplastic resin, apply | coating it to the surface of the already prepared exterior material, and solidifying it. In addition, when the thermosetting resin is used as a substrate, the thermosetting resin is dissolved in a solvent, a flame retardant material and a heat resistant material are mixed therein, and applied to the surface of an already prepared exterior material in the form of a film to remove the solvent, or A flame retardant material and a heat resistant material may be added during or before the polymerization of the thermosetting resin to prepare a polymer in the form of a film containing the flame retardant material and the heat resistant material. The thickness of the flame-retardant and heat-resistant film is not particularly limited as long as the flame-retardant and heat-resistant film is added to the inside of the battery as long as it does not affect the configuration of the battery.

또한 상기 난연 물질 및 내열 물질 이외에 난연 및 내열 효과의 상승을 유도하는 기타의 첨가제를 더 포함할 수 있으며, 상기 기타의 첨가제로는 실리콘계 첨가제, 염소계 난연상승제, 인계 난연상승제 및 멜라민계 화합물이 있으며 열가소성 또는 열경화성 폴리머에 상기 첨가제를 첨가시 난연 및 내열 효과를 상승시키는 효과가 있으며, 열 방출, 일산화탄소와 같은 유독성 기체 및 연기의 방출을 감소시킬 수 있다. In addition to the flame retardant material and heat-resistant material may further include other additives that induce an increase in the flame retardant and heat resistance effect, the other additives are silicone-based additives, chlorine-based flame-retardant, phosphorus-based flame retardant and melamine-based compounds In addition, when the additive is added to the thermoplastic or thermosetting polymer, the flame retardant and heat resistance effects are increased, and heat emission and emission of toxic gases such as carbon monoxide and smoke can be reduced.

본 발명은 하나 이상의 구성층을 구비하는 전기 화학 소자용 외장재에 있어서, 상기 외장재의 구성층을 이루는 구성성분, 코팅성분, 또는 구성성분 및 코팅성 분으로서, 난연 물질 및 내열 물질을 함유하는 전기 화학 소자용 외장재를 이용하여, 과충전이나 외부로부터의 가열에도 불구하고 발화의 위험을 낮추어서 안전성을 부여하는 전기 화학 소자용 외장재를 제공할 수 있다.The present invention provides an electrochemical device packaging material having one or more constituent layers, wherein the constituent layers, coating components, or constituents and coating components constituting the constituent layers of the packaging material include an electrochemical containing a flame retardant material and a heat resistant material. By using the device exterior material, it is possible to provide an electrochemical device exterior material which gives safety by lowering the risk of ignition despite overcharge or heating from the outside.

이하, 본 발명을 다음의 실시예 및 비교예에 의하여 구체적으로 나타낸다. Hereinafter, this invention is shown concretely by the following Example and a comparative example.

[실시예 1]  Example 1

1-1. 전기 화학 소자용 외장재의 제조1-1. Manufacture of exterior materials for electrochemical devices

외장재 제조시 할로겐계 난연제인 테트라 브로모 비스페놀-A(TBBA) 100 중량부에 대해서 구리계 내열제인 CuI 10 중량부 및 포스파이트계 내열제인 비스(2,6-디-테르트-부틸-4-메틸페닐)펜타에르트리톨-디-포스파이트 5 중량부를 혼합한 조성물을 캐스트층의 내측을 도 2a와 같은 구조로 코팅한 후 건조하여 상기 외장재를 제조하였다. (도 2a 참조)10 parts by weight of CuI, a copper-based heat-resistant agent, and bis (2,6-di-tert-butyl-4-, a phosphite-based heat resistant agent, based on 100 parts by weight of tetrabromo bisphenol-A (TBBA), a halogen-based flame retardant, in the manufacture of the exterior material 5 wt parts of methylphenyl) pentaerythritol-di-phosphite was mixed with the inside of the cast layer in the same structure as in FIG. 2A and dried to prepare the exterior material. (See Figure 2A)

1-2. 전지 제조 1-2. Battery manufacturing

(음극 제조)(Cathode production)

음극활물질인 탄소 분말과 바인더인 폴리비닐리덴플루오라이드(PVDF), 도전제를 91: 4: 5 의 중량비로 혼합한 후, NMP에 분산시켜 음극 혼합물 슬러리를 제조하였다. 이 음극 혼합물 슬러리를 음극 집전체로 두께가 10 ㎛인 Cu 포일(foil)의 단면에 콤마 갭을 200 ㎛으로 하여 균일하게 도포한 후 건조하였다. 이 때, 도포 속도(Coating speed)는 3 m/분이었다. 건조된 전극을 샘플링하여 안전성을 측정하였다.Carbon powder as a negative electrode active material, polyvinylidene fluoride (PVDF) as a binder, and a conductive agent were mixed in a weight ratio of 91: 4: 5, and then dispersed in NMP to prepare a negative electrode mixture slurry. This negative electrode mixture slurry was uniformly applied to a cross section of a Cu foil having a thickness of 10 μm with a negative electrode current collector with a comma gap of 200 μm and then dried. At this time, the coating speed was 3 m / min. The dried electrode was sampled to measure safety.

(양극 제조)(Anode manufacturing)

양극활물질인 리튬 코발트 복합산화물, 도전제인 카본, 결합제인 PVDF 를 95: 2.5: 2.5 중량비로 혼합한 후 용제인 NMP에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20 ㎛인 양극 집전체의 Al 박막에 도포하였으며, 상기 음극과 동일한 방법으로 코팅 및 건조하였다A positive electrode mixture slurry was prepared by mixing lithium cobalt composite oxide as a positive electrode active material, carbon as a conductive agent, and PVDF as a binder in a 95: 2.5: 2.5 weight ratio, and then adding it to NMP as a solvent. The positive electrode mixture slurry was applied to an Al thin film of a positive electrode current collector having a thickness of 20 μm, and coated and dried in the same manner as the negative electrode.

(전지 제조)(Battery manufacturing)

스택 모양의 음극과 양극을 순서대로 적층하여 폴리머셀을 제작하였고, 이를 상기 실시예 1-1에서 제조된 외장재(가로 34 mm×세로 43 mm×두께 36 mm) 속에 적절하게 내장되도록 하고 집전체로부터 니켈로 된 음극 리드를 알루미늄으로 된 양극 리드를 모아서 용접 후 외부 탭과 용접하여 셀 밖으로 리드선을 빼냈다. 제조된 전지에 전해액을 주입하였으며, 이 전해액은 EC와 EMC가 1:2의 부피비로 혼합된 용매와 전해질로 LiPF6 액을 사용하였다.Stacked negative electrode and positive electrode were laminated in order to produce a polymer cell, which was properly embedded in the exterior material (34 mm × 43 mm × 36 mm thick) manufactured in Example 1-1, and then from the current collector. The nickel lead was collected by welding the aluminum lead, and then welded with the outer tab to remove the lead wire out of the cell. An electrolyte was injected into the prepared battery, and LiPF6 was used as a solvent and an electrolyte in which EC and EMC were mixed in a volume ratio of 1: 2.

상기와 같이 제조된 전지는 정전류로 4.2V까지 충전되었다. 전해액 2차 전지의 표준 용량은 950 mAh 이고, 4.2V에서 3V까지 정전류로 1C(950 mA/h), 0.2C (190mA/h)의 속도로 효율을 측정한 후, 전지의 안전성 시험을 진행하였다.The battery prepared as described above was charged to 4.2V with a constant current. The standard capacity of the electrolyte secondary battery was 950 mAh, and the efficiency was measured at a rate of 1 C (950 mA / h) and 0.2 C (190 mA / h) at a constant current from 4.2 V to 3 V, followed by a safety test of the battery. .

[실시예 2][Example 2]

외장재 제조시 인계 난연제인 phosphites 100 중량부에 대해서 구리계 내열제인 CuI 10 중량부 및 포스파이트계 내열제인 비스(2,6-디-테르트-부틸-4-메틸페닐)펜타에르트리톨-디-포스파이트 5 중량부를 혼합한 조성물을 코팅하는 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 외장재 및 이를 구비하는 리튬 이차 전지를 제조하였다. (도 2b 참조)10 parts by weight of CuI, a copper-based heat-resistant agent, and bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol-di-, 100 parts by weight of copper-based heat-resistant Except for coating a composition containing 5 parts by weight of phosphite, the same method as in Example 1 was carried out to prepare a packaging material and a lithium secondary battery having the same. (See Figure 2b)

[실시예 3]Example 3

외장재 제조시 질소계 난연제인 멜라민 시아누레이트 100 중량부에 대해서 구리계 내열제인 CuI 10 중량부 및 포스파이트계 내열제인 비스(2,6-디-테르트-부틸-4-메틸페닐)펜타에르트리톨-디-포스파이트 5 중량부를 혼합한 조성물을 코팅하는 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 외장재 및 이를 구 비하는 리튬 이차 전지를 제조하였다. (도 2c 참조)10 parts by weight of CuI, a copper-based heat-resistance agent, and bis (2,6-di-tert-butyl-4-methylphenyl) pentaert, a copper-based heat-resisting agent, and 100 parts by weight of melamine cyanurate, a nitrogen-based flame retardant, in the manufacture of the exterior material Except for coating a composition in which 5 parts by weight of the lithol-di-phosphite was mixed, the same method as in Example 1 was carried out to prepare a packaging material and a lithium secondary battery having the same. (See Figure 2c)

[실시예 4]Example 4

외장재 제조시 무기화합물 난연제인 산화안티몬 100 중량부에 대해서 구리계 내열제인 CuI 10 중량부 및 포스파이트계 내열제인 비스(2,6-디-테르트-부틸-4-메틸페닐)펜타에르트리톨-디-포스파이트 5 중량부를 혼합한 조성물을 코팅하는 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 외장재 및 이를 구비하는 리튬 이차 전지를 제조하였다. (도 2d 참조)10 parts by weight of CuI, a copper-based heat-resistance agent, and bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol- 100 parts by weight of antimony oxide, an inorganic compound flame retardant, and a phosphite heat-resistant agent Except for coating a composition containing 5 parts by weight of di-phosphite, the same method as in Example 1 was carried out to prepare a packaging material and a lithium secondary battery having the same. (See FIG. 2D)

[비교예 1] Comparative Example 1

난연 물질 및 내열 물질을 사용하지 않은 통상적인 알루미늄 외장재를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 외장재 및 이를 구비하는 리튬 이차 전지를 제조하였다. (도 1 참조)Except for using a conventional aluminum packaging material without using a flame-retardant material and heat-resistant material, the same method as in Example 1 was carried out to prepare a packaging material and a lithium secondary battery having the same. (See Fig. 1)

[[ 실험예Experimental Example 1] 전지의 안정성 평가방법을 위한 난연성 평가 1] Flame retardancy evaluation for battery stability evaluation method

< 1. UL94 시험법 ><1.UL94 test method>

본 발명에서 실시한 난연성 평가는 UL 94(Underwrites Laboratories Incorporation)의“기계부품용 플라스틱 물질의 연소성 시험”을 수직상(V0)에서 수행하는 것을 기준으로 하였다. 사용된 시험분획의 두께는 1/16인치와 1/32인치이다.The flame retardancy evaluation carried out in the present invention was based on the UL 94 (Underwrites Laboratories Incorporation) "combustibility test of plastic materials for mechanical parts" performed in the vertical phase (V0). The test fractions used were 1/16 inch and 1/32 inch thick.

본 발명에 의해 제조된 조성물은 다음 기준을 만족할 때 UL94 V0로 분류하였다; 치수 127 ×12.7 ×1.6mm를 갖는 5개 시편으로 된 세트에 불꽃(19mm높이)을 직접 닿게 하여 각각 두 번에 걸쳐 10초 동안 유지시킨 후, 10초 이상 동안 불꽃 연소시켜 어떤 시편도 연소되지 않아야 한다. 5개 시편의 각 세트에 10번의 불꽃 적용을 위해 전체 불꽃 연소시간은 50초를 초과하지 않아야 한다.Compositions prepared by the present invention were classified as UL94 V0 when the following criteria were met; A set of five specimens of dimensions 127 × 12.7 × 1.6 mm shall be in direct contact with the flame (19 mm height) and held for two seconds each for 10 seconds and then flame burned for at least 10 seconds to not burn any specimen. do. For 10 sparks applied to each set of 5 specimens, the total flame burn time shall not exceed 50 seconds.

어떤 시편도 불꽃 입자가 떨어지지 않아야 하고, 클램프로 죈 데까지 불꽃에 연소되거나 또는 연소가 더 진행되는 시편이 없어야 하고, 시험불꽃의 두번째 제거후 30초 이상의 연소가 지속되는 시편이 없어야 한다.None of the specimens shall be free of spark particles, no flammable or more flammable specimen until clamped, and no flammable specimen lasting more than 30 seconds after the second removal of the test flame.

UL94 V1로의 분류는 시편당 불꽃연소시간이 30초 이상을 초과하지 않고, 5개의 시편으로 된 각 세트에 10번의 불꽃적용을 위한 전체 불꽃 연소 시간이 250초를 초과하지 않는 것을 요구한다. 연소 진행은 60초 이상 지속되지 않아야 한다. 다른 기준은 상기 언급한 조건과 같다. The classification to UL94 V1 requires that the flame burn time per specimen does not exceed 30 seconds and that the total flame burn time for 10 flame applications in each set of five specimens does not exceed 250 seconds. The combustion progress should not last longer than 60 seconds. Other criteria are the same as those mentioned above.

UL94 V1의 분류를 위한 다른 기준을 만족시키면서 불꽃 입자들이 떨어지는 시편을 갖는 재료는 UL94 V2로 분류하였다.Materials with specimens from which spark particles fell while satisfying other criteria for classification of UL94 V1 were classified as UL94 V2.

본 발명에 따라 난연 물질 및 내열 물질이 구성된 외장재를 구비하는 리튬 이차 전지의 난연성을 평가하기 위하여, 상기와 같은 기준에 근거하여 실시예 1 내지 4에서 제조된 리튬 이차 전지를 사용하였으며, 대조군으로 난연 물질 및 내열 물질을 사용하지 않고 당업계에 알려진 통상적인 방법에 따라 제조된 비교예 1의 리튬 이차 전지를 사용하였고 난연성 검사는 상업적으로 가장 많이 사용되는 UL94 시험법에 따라 시행되었다. In order to evaluate the flame retardancy of the lithium secondary battery having a flame retardant material and a heat-resistant material according to the present invention, a lithium secondary battery prepared in Examples 1 to 4 based on the above criteria, was used as a control The lithium secondary battery of Comparative Example 1, which was prepared according to conventional methods known in the art without using materials and heat-resistant materials, was used, and the flame retardancy test was carried out according to the most commonly used UL94 test method.

본 실험에서는 상기의 UL94 시험의 등급에 따라 난연성의 합격 여부를 판정한 결과 비교예 1의 경우는 상기 UL 94에서 규정하는 등급에 해당하지 않아서 난연성 기준을 만족하지 못하였으나, 실시예 1 내지 4의 경우는 상기 UL 94 에서 분류하는 V0 내지 V2 등급에 해당하여 우수한 난연성을 나타내었다.In this experiment, as a result of determining the passability of the flame retardant according to the grade of the UL94 test, Comparative Example 1 did not satisfy the flame retardancy criteria because it does not correspond to the grade prescribed by the UL 94, but of Examples 1 to 4 The case showed excellent flame retardancy corresponding to the V0 to V2 grade classified in UL 94.

< 2. 산소지수 평가 ><2. Oxygen Index Evaluation>

상기 실시예 1 내지 4 및 비교예 1에서 제조된 전기 화학 소자용 외장재의 난연성은 산소지수 값으로도 평가될 수 있다.Flame retardancy of the electrochemical device exterior materials prepared in Examples 1 to 4 and Comparative Example 1 can also be evaluated by the oxygen index value.

산소지수는 인화 연소에 필요한 산소의 최소 농도를 부피 %로 나타낸 수치이다. 연소가 지속되기 위해서는 산소가 필요하므로 연소시 필요한 산소량을 측정하 면 각종 재료의 연소성을 알 수 있다. 산소지수 값이 높을수록 인화성이 낮다. 실시예 1 내지 4 및 비교예 1의 시료를 각각 일정크기로 절단하여 난연성 유닛(flammability unit)을 사용하여 산소지수 값을 측정하였다. 시료가 타지 않으면 산소의 농도를 증가시키나, 시료의 연소가 일어나면 산소의 농도를 감소시키기 때문에 산소지수의 값은 작게 나타난다. Oxygen index is the volume percentage of the minimum concentration of oxygen required for flammable combustion. Oxygen is required for sustained combustion, so measuring the amount of oxygen required for combustion can reveal the combustibility of various materials. The higher the oxygen index value, the lower the flammability. The samples of Examples 1 to 4 and Comparative Example 1 were each cut to a certain size, and the oxygen index values were measured using a flammability unit. If the sample does not burn, the oxygen concentration is increased. However, if the sample is burned, the oxygen concentration is decreased.

본 발명에 따른 실시예 1 내지 4의 경우 비교예 1에 비해 산소지수 값이 훨씬 높다는 것을 확인할 수 있었으며 이는 인화성이 낮은 것을 의미한다. 따라서, 본 발명에 따른 실시예 1 내지 4의 경우에는 종래 전기 화학 소자용 외장재와 비교하여 발화에 대해 연소를 억제 또는 완화시켜 열적 안정성이 확보된 난연 물질을 포함하는 전기 화학 소자용 외장재를 제공할 수 있었다. 이는 발화성의 위험이 큰 리튬 이온전지의 발화 및 폭발을 억제할 수 있어서, 기존 전기 화학 소자용 외장재에 비해, 본 발명의 전기 화학 소자용 외장재는 안정성을 확보할 수 있는 전지 포장재료로 활용이 가능할 것이다.In the case of Examples 1 to 4 according to the present invention, it was confirmed that the oxygen index value is much higher than that of Comparative Example 1, which means that the flammability is low. Accordingly, in the case of Examples 1 to 4 according to the present invention, it is possible to provide an electrochemical device exterior material including a flame retardant material that is thermally secured by suppressing or mitigating combustion compared to conventional electrochemical device exterior materials. Could. This can suppress the ignition and explosion of the lithium ion battery, which has a high risk of ignition, and thus, the electrochemical device exterior material of the present invention can be used as a battery packaging material to secure stability, compared to the existing electrochemical device exterior material. will be.

< 3. Hot box 실험 ><3. Hot box experiment>

실시예 1 내지 4에서 제조된 리튬 이차 전지를 사용하였으며, 대조군으로 난연 물질을 포함하지 않은 비교예 1의 리튬 이차 전지를 사용하여 실험을 수행하였다. The lithium secondary batteries prepared in Examples 1 to 4 were used, and the experiment was performed using the lithium secondary battery of Comparative Example 1, which did not include a flame retardant material as a control.

각 전지들을 150℃의 고온에서 각각 1시간 동안 보존하였으며, 이후 전지의 상태를 확인하였다. 실험 결과, 난연 물질을 사용하지 않고 통상적인 방법에 따라 제조된 외장재를 구비하는 비교예 1의 리튬 이차 전지는 온도가 150℃까지 상승한 경우 발화 또는 폭발이 발생한 반면에, 난연 물질이 함유된 실시예 1 내지 4의 전지는 온도가 120℃를 지나면서 외장재에 포함된 난연 물질이 발화를 억제하여 열폭주를 보이지 않아서 안정성 향상 효과가 우수한 것으로 나타났다. (표 1 참조)Each battery was stored for 1 hour at a high temperature of 150 ℃, after which the state of the battery was confirmed. As a result of the experiment, the lithium secondary battery of Comparative Example 1 provided with a packaging material manufactured according to a conventional method without using a flame retardant material had an ignition or explosion when the temperature was raised to 150 ° C., while the embodiment contained a flame retardant material. The battery of 1 to 4 was shown that the flame retardant material contained in the exterior material to suppress the ignition as the temperature passes 120 ℃ does not show thermal runaway, excellent stability stability effect. (See Table 1)

< 4. 과충전 실험 ><4. Overcharge test>

실시예 1 내지 4에서 제조된 리튬 이차 전지 및 비교예 1의 리튬 이차 전지들을 12V/1C의 조건으로 충전하였으며, 이후 전지의 상태를 확인하였다.The lithium secondary batteries prepared in Examples 1 to 4 and the lithium secondary batteries of Comparative Example 1 were charged under the conditions of 12V / 1C, and then the state of the batteries was confirmed.

상기 Hot box 실험 결과와 마찬가지로, 난연 물질을 함유하는 실시예 1 내지 실시예 4의 전지는 비교예 1의 리튬 이차 전지에 비해 우수한 안전성 향상 효과를 가짐을 확인할 수 있었다. (표 1 참조)Like the hot box test results, it was confirmed that the battery of Examples 1 to 4 containing the flame retardant material had an excellent safety improvement effect compared to the lithium secondary battery of Comparative Example 1. (See Table 1)

< 5. 관통 실험 >5. Penetration Experiment

실시예 1 내지 4에서 제조된 리튬 이차 전지 및 비교예 1의 리튬 이차 전지들을 사용하여 관통 실험(nail penetration 테스트)를 수행하였으며, 이후 전지의 상태를 확인하였다.The penetration test (nail penetration test) was performed using the lithium secondary batteries prepared in Examples 1 to 4 and the lithium secondary batteries of Comparative Example 1, and then the state of the battery was confirmed.

상기 Hot box 실험 및 과충전 실험 결과와 마찬가지로, 난연 물질을 함유하는 실시예 1 내지 실시예 4의 전지는 비교예 1의 리튬 이차 전지에 비해 탁월한 안전성 향상 효과를 나타냄을 재차 확인할 수 있었다. (표 1 참조)As with the hot box test and the overcharge test results, it was confirmed that the battery of Examples 1 to 4 containing the flame retardant material showed an excellent safety improvement effect compared to the lithium secondary battery of Comparative Example 1. (See Table 1)

시험항목Test Items 조건Condition 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 비교예 1Comparative Example 1 Hot boxHot box 150℃
1 시간
150 ℃
1 hours
안정stability 안정stability 안정stability 안정stability 불안정Instability
과충전 실험Overcharge Experiment 12V/1C12V / 1C 안정stability 안정stability 안정stability 안정stability 불안정Instability 관통 실험Penetration Experiment 안정stability 안정stability 안정stability 안정stability 불안정Instability

[실험예 2] 전지의 안정성 평가를 위한 내열성 평가 Experimental Example 2 Evaluation of Heat Resistance for Evaluation of Battery Stability

< 1. TMA(열변형분석)를 이용한 내열성(TMA) 실험 ><1.TMA test using TMA (thermal strain analysis)>

상기 실시예 1 내지 4 및 비교예에 대해서에 대해, 승온 속도 5℃/min으로 1.8mmφ의 평면 압자에 2Kgf/cm2 의 압력을 가하고, TMA(열변형 온도) 곡선을 측정하여, 이에 의해 바늘 진입 온도(℃)를 구하여 내열성 정도를 확인하였다. For Examples 1 to 4 and Comparative Examples, a pressure of 2 Kgf / cm 2 was applied to a planar indenter of 1.8 mm phi at a temperature increase rate of 5 ° C / min, and a TMA (heat deformation temperature) curve was measured to thereby obtain a needle. The entry temperature (° C.) was obtained and the degree of heat resistance was confirmed.

실험 결과 상기 실시예들에서는 내열성의 요건에 부합하는 온도 범위에 해당하였으나, 비교예 1은 내열성 기준에 부합하는 온도 범위에 해당하지 않음을 확인할 수 있었다. As a result of the experiment, the examples corresponded to a temperature range corresponding to the requirements of the heat resistance, but Comparative Example 1 did not correspond to the temperature range corresponding to the heat resistance criteria.

도 1은 비교예 1에 사용된 리튬 폴리머 전지에 사용되는 일반적인 파우치형 외장재의 단면이다.1 is a cross-sectional view of a general pouch-type exterior material used for the lithium polymer battery used in Comparative Example 1. FIG.

도 2는 실시예 1 내지 4에 기재된 알루미늄 기재와 내측 라미네이션 층 사이에 난연 물질 및 내열 물질이 코팅된 전기 화학 소자용 외장재의 단면 구조이다.FIG. 2 is a cross-sectional structure of an electrochemical device packaging material coated with a flame retardant material and a heat resistant material between the aluminum substrate and the inner lamination layer described in Examples 1 to 4. FIG.

<도면 부호의 간단한 설명>&Lt; Brief Description of Drawings &

1 : 알루미늄 기재1: aluminum base

2 : 내측 라미네이션 층(Inner lamination layer)2: inner lamination layer

3 : 캐스트 층(Cast layer)3: cast layer

4 : 외측 라미네이션 층(Outer lamination layer)4: outer lamination layer

5 : 할로겐계 난연제, 구리계 내열제 및 포스파이트 내열제의 혼합조성물5: mixed composition of halogen flame retardant, copper heat resistant agent and phosphite heat resistant agent

6 : 인계 난연제, 구리계 내열제 및 포스파이트 내열제의 혼합조성물6: Mixed composition of phosphorus flame retardant, copper heat resistant agent and phosphite heat resistant agent

7 : 질소계 난연제, 구리계 내열제 및 포스파이트 내열제의 혼합조성물7: Mixture of nitrogen flame retardant, copper heat resistant agent and phosphite heat resistant agent

8 : 무기화합물계 난연제, 구리계 내열제 및 포스파이트 내열제의 혼합조성물8: Mixed composition of inorganic compound flame retardant, copper heat resistant agent and phosphite heat resistant agent

Claims (11)

하나 이상의 구성층을 구비하는 전기 화학 소자용 외장재에 있어서,In an electrochemical device packaging material having at least one component layer, 상기 외장재의 구성층을 이루는 구성 성분, 코팅 성분, 또는 구성 성분 및 코팅 성분으로서 난연 물질 및 내열 물질을 함유하는 것을 특징으로 하는 안전성이 향상된 전기 화학 소자용 외장재. A safety material-enhanced electrochemical device packaging material comprising a flame retardant material and a heat-resistant material as a constituent component, a coating component, or a component and a coating component constituting the constituent layer of the packaging material. 제1항에 있어서,The method of claim 1, 상기 외장재는 기재 층, 라미네이션 층(Lamination layer) 및 캐스트 층(cast layer)으로 구성된 군에서 선택된 1종 이상의 구성층을 구비하는 것을 특징으로 하는 안전성이 향상된 전기 화학 소자용 외장재. The exterior material is an improved safety material for an electrochemical device characterized in that it comprises at least one component layer selected from the group consisting of a base layer, a lamination layer (cast layer) and a cast layer (cast layer). 제1항에 있어서, The method of claim 1, 상기 난연 물질은 할로겐계 난연제, 인계 난연제, 질소계 난연제 및 무기화합물 난연제로 구성된 그룹에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 안전성이 향상된 전기 화학 소자용 외장재. The flame retardant material is a safety-enhanced electrochemical device packaging material, characterized in that one or more mixtures selected from the group consisting of halogen-based flame retardant, phosphorus-based flame retardant, nitrogen-based flame retardant and inorganic compound flame retardant. 제3항에 있어서,The method of claim 3, wherein 상기 할로겐계 난연제는 트리브로모 페녹시에탄, 테트라 브로모 비스페놀-A (TBBA), 옥타브로모 디페닐에테르 (OBDPE), 브롬화 에폭시, 브롬화 폴리 카보네이트 올리고모, 염소화 파라핀, 염소화 폴리에틸렌 및 지환족 염소계 난연제로 구성된 그룹에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 안전성이 향상된 전기 화학 소자용 외장재. The halogen flame retardant is tribromo phenoxyethane, tetra bromo bisphenol-A (TBBA), octabromo diphenyl ether (OBDPE), brominated epoxy, brominated polycarbonate oligomo, chlorinated paraffin, chlorinated polyethylene and cycloaliphatic chlorine flame retardant Exterior material for improved safety safety electrochemical device, characterized in that one or more mixtures selected from the group consisting of. 제3항에 있어서,The method of claim 3, wherein 상기 인계 난연제는 적인, 인산 암모늄 등의 phosphates, phosphine oxide, phosphine oxide diols, phosphites, phosphonates, triaryl phosphate, alkyldiaryl phosphate, trialkyl phosphate 및 resorcinaol bisdiphenyl phosphate (RDP) 로 구성된 그룹에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 안전성이 향상된 전기 화학 소자용 외장재. The phosphorus flame retardant is one or more mixtures selected from the group consisting of phosphates such as ammonium phosphate, phosphine oxide, phosphine oxide diols, phosphites, phosphonates, triaryl phosphate, alkyldiaryl phosphate, trialkyl phosphate and resorcinaol bisdiphenyl phosphate (RDP) Exterior material for improved safety electrochemical device, characterized in that. 제3항에 있어서,The method of claim 3, wherein 상기 질소계 난연제는 멜라민, 멜라민 포스페이트 및 멜라민 시아누레이트로 구성된 그룹에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 안전성이 향상된 전기 화학 소자용 외장재. The nitrogen-based flame retardant is an improved safety material for an electrochemical device, characterized in that one or more mixtures selected from the group consisting of melamine, melamine phosphate and melamine cyanurate. 제3항에 있어서,The method of claim 3, wherein 상기 무기화합물 난연제는 수산화알루미늄, 수산화마그네슘, 산화안티몬, 수산화주석, 산화주석, 산화몰리브덴, 지르코늄화합물, 붕산염 및 칼슘염으로 구성된 그룹에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 안전성이 향상된 전기 화학 소자용 외장재. The inorganic compound flame retardant is one or more mixtures selected from the group consisting of aluminum hydroxide, magnesium hydroxide, antimony oxide, tin hydroxide, tin oxide, molybdenum oxide, zirconium compound, borate and calcium salt Exterior material for chemical devices. 제1항에 있어서,The method of claim 1, 상기 내열 물질은 구리계 내열제 또는 포스파이트계 내열제인 것을 특징으로 하는 안전성이 향상된 전기 화학 소자용 외장재. Wherein the heat-resistant material is a copper-based heat-resistant agent or a phosphite-based heat resistance agent characterized in that the improved safety for the electrochemical device. 제 8항에 있어서,The method of claim 8, 상기 포스파이트계 내열제가 비스(2,6-디-테르트-부틸-4-메틸페닐)펜타에르트리톨-디-포스파이트, 테트라키스[메틸렌-3-(라우릴티오) 프로피오네이트]메탄, 트리페닐포스파이트, 트리라우릴포스파이트, 트리스 (노닐페닐)포스파이트, 트리-이소-옥틸-포스파이트, 트리올레일포스파이트, 트리스(2,4-디-터셔리-부틸페닐)포스파이트, 디페닐-노닐페닐-포스파이트, 페닐-디-이소데실-포스파이트, 및 트리라 우릴-트리-티오-포스파이트로 구성되는 그룹에서 선택되는 것을 특징으로 하는 안전성이 향상된 전기 화학 소자용 외장재. The phosphite-based heat-resistant agent is bis (2,6-di-tert-butyl-4-methylphenyl) pentaerthritol-di-phosphite, tetrakis [methylene-3- (laurylthio) propionate] methane , Triphenyl phosphite, trilauryl phosphite, tris (nonylphenyl) phosphite, tri-iso-octyl- phosphite, trioleyl phosphite, tris (2,4-di-tertiary-butylphenyl) For enhanced safety electrochemical devices, characterized in that it is selected from the group consisting of pit, diphenyl-nonylphenyl-phosphite, phenyl-di-isodecyl-phosphite, and trilauryl-tri-thio-phosphite Exterior materials. 제1항 내지 제9항 중 어느 한 항에 기재된 외장재를 사용한 전기 화학 소자. An electrochemical device using the packaging material according to any one of claims 1 to 9. 제 10항에 있어서,The method of claim 10, 상기 전기 화학 소자는 리튬 이차 전지인 것을 특징으로 하는 전기 화학 소자. The electrochemical device is an electrochemical device, characterized in that the lithium secondary battery.
KR1020090128260A 2009-12-21 2009-12-21 Case for electrochemical device with a flame retardant and heat resistant material and electrochemical device comprising thereof KR101183557B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090128260A KR101183557B1 (en) 2009-12-21 2009-12-21 Case for electrochemical device with a flame retardant and heat resistant material and electrochemical device comprising thereof
PCT/KR2010/009157 WO2011078554A2 (en) 2009-12-21 2010-12-21 Material for covering an electrochemical device, including a fire retardant material and heat-resistant material for improved safety, and electrochemical device including the covering material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090128260A KR101183557B1 (en) 2009-12-21 2009-12-21 Case for electrochemical device with a flame retardant and heat resistant material and electrochemical device comprising thereof

Publications (2)

Publication Number Publication Date
KR20110071638A true KR20110071638A (en) 2011-06-29
KR101183557B1 KR101183557B1 (en) 2012-09-17

Family

ID=44196295

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090128260A KR101183557B1 (en) 2009-12-21 2009-12-21 Case for electrochemical device with a flame retardant and heat resistant material and electrochemical device comprising thereof

Country Status (2)

Country Link
KR (1) KR101183557B1 (en)
WO (1) WO2011078554A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130064031A (en) * 2011-12-07 2013-06-17 주식회사 엘지화학 Secondary battery with improved safety
KR101408166B1 (en) * 2013-07-03 2014-06-17 한밭대학교 산학협력단 Method for fabricating pouch fiber for lithium secondary battery
KR20170017511A (en) * 2015-08-07 2017-02-15 에스케이이노베이션 주식회사 Lithium secondary battery
US10044070B2 (en) 2014-01-28 2018-08-07 Lg Chem, Ltd. Battery module
CN110311064A (en) * 2019-06-19 2019-10-08 华富(江苏)锂电新技术有限公司 A kind of lithium ion battery cylindrical shell and preparation method thereof with heating function
WO2021244166A1 (en) * 2020-06-01 2021-12-09 Oppo广东移动通信有限公司 Flame retardant coating, electronic device battery cover plate, and electronic device
US11682809B2 (en) 2018-08-29 2023-06-20 Lg Energy Solution, Ltd. Pouch-type secondary battery and pouch for secondary battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7296893B2 (en) 2017-07-17 2023-06-23 ノームズ テクノロジーズ インコーポレイテッド Phosphorus-containing electrolyte
CN113454824A (en) * 2019-03-29 2021-09-28 三井化学株式会社 Lithium ion battery pack
CN110183931A (en) * 2019-05-28 2019-08-30 苏州宇量电池有限公司 A kind of fire proofing and preparation method of lithium battery mould group
CN114207933A (en) * 2019-07-19 2022-03-18 株式会社村田制作所 Battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100307450B1 (en) * 1999-01-26 2001-09-26 김순택 Lithium Secondary Battery Employing Plastic Housing
CN1922260B (en) * 2004-02-24 2011-05-25 株式会社艾迪科 Flame retardant composition with enhanced fluidity, flame retardant resin composition and molding thereof
KR101025415B1 (en) * 2007-08-24 2011-03-28 주식회사 엘지화학 Case for electrochemical device, preparation method thereof, and electrochemical device comprsing the same
KR100877392B1 (en) 2007-11-12 2009-01-07 주식회사 코오롱 Tube extrudable polyamide composition with a good flammability and long term heat stability
KR101471666B1 (en) * 2008-04-24 2014-12-10 주식회사 엘지화학 Wrapping material for Secondary Batteries and Secondary Batteries comprising the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130064031A (en) * 2011-12-07 2013-06-17 주식회사 엘지화학 Secondary battery with improved safety
KR101408166B1 (en) * 2013-07-03 2014-06-17 한밭대학교 산학협력단 Method for fabricating pouch fiber for lithium secondary battery
US10044070B2 (en) 2014-01-28 2018-08-07 Lg Chem, Ltd. Battery module
KR20170017511A (en) * 2015-08-07 2017-02-15 에스케이이노베이션 주식회사 Lithium secondary battery
US10818885B2 (en) 2015-08-07 2020-10-27 Sk Innovation Co., Ltd. Lithium secondary battery
KR20230022909A (en) * 2015-08-07 2023-02-16 에스케이온 주식회사 Lithium secondary battery
US11682809B2 (en) 2018-08-29 2023-06-20 Lg Energy Solution, Ltd. Pouch-type secondary battery and pouch for secondary battery
CN110311064A (en) * 2019-06-19 2019-10-08 华富(江苏)锂电新技术有限公司 A kind of lithium ion battery cylindrical shell and preparation method thereof with heating function
WO2021244166A1 (en) * 2020-06-01 2021-12-09 Oppo广东移动通信有限公司 Flame retardant coating, electronic device battery cover plate, and electronic device

Also Published As

Publication number Publication date
KR101183557B1 (en) 2012-09-17
WO2011078554A3 (en) 2011-11-17
WO2011078554A2 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
KR101183557B1 (en) Case for electrochemical device with a flame retardant and heat resistant material and electrochemical device comprising thereof
Liu et al. Materials for lithium-ion battery safety
Wang et al. Fire-extinguishing organic electrolytes for safe batteries
Wang et al. Challenges and opportunities to mitigate the catastrophic thermal runaway of high‐energy batteries
RU2343592C1 (en) Small battery block with fire-protective adhesive part
KR101471666B1 (en) Wrapping material for Secondary Batteries and Secondary Batteries comprising the same
Han et al. Incombustible polymer electrolyte boosting safety of solid‐state lithium batteries: a review
US11050284B2 (en) Electrolyte, a battery including the same, and methods of reducing electrolyte flammability
Rana et al. Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack
Chen et al. Abuse‐tolerant electrolytes for lithium‐ion batteries
JP5656521B2 (en) Non-aqueous electrolyte battery
KR101595607B1 (en) Secondary battery with improved safety
Pfrang et al. Safety of rechargeable energy storage systems with a focus on Li-ion technology
JP2012186011A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
Yang et al. Safer solid‐state lithium metal batteries: Mechanisms and strategies
JP2012059404A5 (en)
Zhang et al. Pathways to next‐generation fire‐safe alkali‐ion batteries
Zhao et al. In Situ Fabricated Non‐Flammable Quasi‐Solid Electrolytes for Li‐Metal Batteries
Zhai et al. Customized design of electrolytes for high-safety and high-energy-density lithium batteries
KR20060034181A (en) Lithium secondary battery having frame retardant film
Du et al. Side Reactions/Changes in Lithium‐Ion Batteries: Mechanisms and Strategies for Creating Safer and Better Batteries
US20230083006A1 (en) Flame-Retardant Composite Pad, Method for Manufacturing Same, and Secondary Battery Module and Secondary Battery Pack Comprising Such Composite Pad
KR101930487B1 (en) Electrode lead or aluminum pouch for secondary battery with improved thermal resistance and secondary battery comprising same
KR101449787B1 (en) Secondary battery with improved safety
Mishra et al. Glory of Fire Retardants in Li‐Ion Batteries: Could They Be Intrinsically Safer?

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150826

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170925

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200130

Year of fee payment: 8