KR20110071377A - Method for fabricating back contact type hetero-junction solar cell - Google Patents
Method for fabricating back contact type hetero-junction solar cell Download PDFInfo
- Publication number
- KR20110071377A KR20110071377A KR1020090127931A KR20090127931A KR20110071377A KR 20110071377 A KR20110071377 A KR 20110071377A KR 1020090127931 A KR1020090127931 A KR 1020090127931A KR 20090127931 A KR20090127931 A KR 20090127931A KR 20110071377 A KR20110071377 A KR 20110071377A
- Authority
- KR
- South Korea
- Prior art keywords
- conductivity type
- junction region
- solar cell
- type
- layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000012535 impurity Substances 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 229910021419 crystalline silicon Inorganic materials 0.000 claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 150000002500 ions Chemical class 0.000 claims description 10
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 8
- 239000006193 liquid solution Substances 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 abstract description 13
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 230000006798 recombination Effects 0.000 abstract description 3
- 238000005215 recombination Methods 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- 230000004888 barrier function Effects 0.000 abstract 1
- 230000005611 electricity Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
- H01L31/0682—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Sustainable Development (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
본 발명은 후면전계형 이종접합 태양전지의 제조방법에 관한 것으로서, 보다 상세하게는 후면의 n 도핑영역과 p 도핑영역을 형성함에 있어서 별도의 마스크 작업이 요구되지 않으며, 이종접합형 태양전지와 후면전계형 태양전지를 접목시켜 태양전지의 광전변환효율을 극대화시킬 수 있는 후면전계형 이종접합 태양전지의 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a back-field heterojunction solar cell, and more particularly, in forming an n-doping region and a p-doping region on the back side, a separate mask operation is not required. The present invention relates to a method of manufacturing a back field type heterojunction solar cell that can maximize photoelectric conversion efficiency of a solar cell by integrating a solar cell.
태양전지는 태양광을 직접 전기로 변환시키는 태양광 발전의 핵심소자로서, 기본적으로 p-n 접합으로 이루어진 다이오드(diode)라 할 수 있다. 태양광이 태양전지에 의해 전기로 변환되는 과정을 살펴보면, 태양전지의 p-n 접합부에 태양광이 입사되면 전자-정공 쌍이 생성되고, 전기장에 의해 전자는 n층으로, 정공은 p층으로 이동하게 되어 p-n 접합부 사이에 광기전력이 발생되며, 태양전지의 양단에 부하나 시스템을 연결하면 전류가 흐르게 되어 전력을 생산할 수 있게 된다. A solar cell is a key element of photovoltaic power generation that converts sunlight directly into electricity, and is basically a diode composed of a p-n junction. In the process of converting sunlight into electricity by solar cells, when solar light is incident on the pn junction of solar cells, electron-hole pairs are generated, and electrons move to n layers and holes move to p layers by the electric field. Photovoltaic power is generated between the pn junctions, and when a load or a system is connected to both ends of the solar cell, current flows to generate power.
일반적인 태양전지는 전면과 후면에 각각 전면전극과 후면전극이 구비되는 구조를 갖는다. 수광면인 전면에 전면전극이 구비됨에 따라, 전면전극의 면적만큼 수광면적이 줄어들게 된다. 이와 같은 수광면적이 축소되는 문제를 해결하기 위해 후면전계형 태양전지가 제안되었다. 후면전계형 태양전지는 태양전지의 후면 상에 (+)전극과 (-)전극을 구비시켜 태양전지 전면의 수광면적을 극대화하는 것을 특징으로 한다. A general solar cell has a structure in which a front electrode and a rear electrode are provided at the front and the rear, respectively. As the front electrode is provided on the front surface of the light receiving surface, the light receiving area is reduced by the area of the front electrode. In order to solve such a problem that the light receiving area is reduced, a rear field type solar cell has been proposed. The back-field solar cell is characterized by maximizing the light receiving area of the solar cell by providing a (+) electrode and a (-) electrode on the back of the solar cell.
한편, 전술한 바와 같이 태양전지는 p-n 접합으로 이루어진 다이오드라 할 수 있는데, 이는 p형 반도체층과 n형 반도체층의 접합 구조로 이루어진다. 통상, p형 기판에 p형 불순물 이온을 주입하여 p형 반도체층을 형성하여(또는 그 반대) p-n 접합을 구현한다. 이와 같이, 태양전지의 p-n 접합을 구성하기 위해서는 필연적으로 불순물 이온이 주입된 반도체층이 요구된다. On the other hand, as described above, the solar cell may be referred to as a diode consisting of a p-n junction, which consists of a junction structure of a p-type semiconductor layer and an n-type semiconductor layer. Generally, p-type impurity ions are implanted into a p-type substrate to form a p-type semiconductor layer (or vice versa) to implement a p-n junction. As such, in order to construct a p-n junction of a solar cell, a semiconductor layer in which impurity ions are inevitably required is required.
그러나, 광전변환에 의해 생성된 전하가 이동 중에 태양전지의 반도체층에 존재하는 침입형 사이트(interstitial sites) 또는 대체형 사이트(substitutional sites)에 포집되어 재결합되는 경우가 발생하며, 이는 태양전지의 광전변환효율에 악영향을 끼친다. 이와 같은 문제를 해결하기 위해, p형 반도체층과 n형 반도체층 사이에 진성층(intrinsic layer)을 구비시키는 이른바, 이종접합형(hetero-junction) 태양전지가 제시되었으며 이를 통해 캐리어(carrier)의 재결합률을 저하시킬 수 있다. However, the charge generated by the photoelectric conversion is trapped and recombined at interstitial sites or substitutional sites existing in the semiconductor layer of the solar cell during the movement, which is caused by the photoelectric of the solar cell. Adversely affect the conversion efficiency. In order to solve this problem, a so-called hetero-junction solar cell having an intrinsic layer between the p-type semiconductor layer and the n-type semiconductor layer has been proposed. The recombination rate can be lowered.
본 발명은 이종접합형 태양전지와 후면전계형 태양전지를 접목시켜 태양전지의 광전변환효율을 극대화시킬 수 있는 후면전계형 이종접합 태양전지의 제조방법을 제공하는데 그 목적이 있다. An object of the present invention is to provide a method for manufacturing a back field heterojunction solar cell that can maximize the photoelectric conversion efficiency of the solar cell by combining the heterojunction solar cell and the back field solar cell.
또한, 후면의 n 도핑영역과 p 도핑영역을 형성함에 있어서, 별도의 마스크 작업이 요구되지 않는 후면전계형 이종접합 태양전지의 제조방법을 제공하는데 본 발명의 다른 목적이 있다. Another object of the present invention is to provide a method of manufacturing a back field-type heterojunction solar cell, in which an n-doped region and a p-doped region are formed on the back surface, which does not require a separate mask operation.
상기의 목적을 달성하기 위한 본 발명에 따른 후면전계형 이종접합 태양전지의 제조방법은 제 1 도전형의 결정질 실리콘 기판을 준비하는 단계 및 상기 기판의 후면 내부에 제 1 도전형의 접합영역과 제 2 도전형의 접합영역을 교번하여 배치되도록 형성하는 단계를 포함하여 이루어진다. According to an aspect of the present invention, there is provided a method of manufacturing a backside field-type heterojunction solar cell according to the present invention, the method comprising: preparing a crystalline silicon substrate of a first conductivity type; And alternatingly forming conductive junction regions.
또한, 상기 제 1 도전형의 접합영역 또는 제 2 도전형의 접합영역을 형성하는 단계는, 상기 기판의 후면 상에 제 1 도전형 또는 제 2 도전형의 불순물을 포함하는 액상의 용액을 스프레이 방법을 통해 도포하여 제 1 도전형 또는 제 2 도전형 불순물층을 형성하는 과정과, 제 1 도전형의 접합영역 또는 제 2 도전형의 접합영역에 상응하는 부위의 기판 후면에 레이저를 조사하여 상기 제 1 도전형 또는 제 2 도전형 불순물층 내의 불순물 이온을 기판 후면 내부로 확산하여 제 1 도전형의 접 합영역 또는 제 2 도전형의 접합영역을 형성하는 과정을 포함하여 구성되는 것을 특징으로 한다. The forming of the junction region of the first conductivity type or the junction region of the second conductivity type may include spraying a liquid solution containing impurities of the first conductivity type or the second conductivity type on a rear surface of the substrate. Forming a first conductive type or a second conductive type impurity layer by applying a light source, and irradiating a laser to a rear surface of a substrate corresponding to a first conductive type junction region or a second conductive type junction region, And diffusing the impurity ions in the first conductive type or the second conductive type impurity layer into the back surface of the substrate to form the first conductive type junction region or the second conductive type junction region.
제 1 도전형의 접합영역과 제 2 도전형의 접합영역을 형성하는 단계 이후에, 상기 기판 전면 상에 진성층과 제 1 도전형의 비정질 실리콘층을 순차적으로 적층하는 단계와, 상기 제 1 도전형의 비정질 실리콘층 상에 반사방지막을 형성하는 단계 및 상기 제 1 도전형의 접합영역과 제 2 도전형의 접합영역 상에 각각 제 1 도전형 전극과 제 2 도전형 전극을 형성하는 단계를 더 포함할 수 있다. After forming the junction region of the first conductivity type and the junction region of the second conductivity type, sequentially stacking an intrinsic layer and an amorphous silicon layer of the first conductivity type on the entire surface of the substrate; Forming an antireflection film on the amorphous silicon layer of the type and forming a first conductive electrode and a second conductive electrode on the junction region of the first conductivity type and the junction region of the second conductivity type, respectively. It may include.
본 발명에 따른 후면전계형 이종접합 태양전지의 제조방법은 다음과 같은 효과가 있다. The manufacturing method of the back-field heterojunction solar cell according to the present invention has the following effects.
국부적 레이저 조사를 통해 p 접합영역과 n 접합영역을 형성함에 따라, 별도의 마스크 작업이 요구되지 않아 공정을 단순화시킬 수 있게 된다. 또한, 태양전지의 후면 상에 (+) 전극과 (-) 전극이 모두 구비됨에 따라 수광면적을 극대화할 수 있으며, 불순물 이온이 주입되지 않은 진성층이 구비됨으로 인해 캐리어의 재결합률을 최소화하여 태양전지의 광전변환효율을 향상시킬 수 있게 된다. As the p junction region and the n junction region are formed through local laser irradiation, a separate mask operation is not required, thereby simplifying the process. In addition, since both the (+) electrode and the (-) electrode are provided on the rear surface of the solar cell, the light receiving area can be maximized, and the intrinsic layer which is not implanted with impurity ions is provided to minimize the recombination rate of the carrier and It is possible to improve the photoelectric conversion efficiency of the battery.
이하, 도면을 참조하여 본 발명의 일 실시예에 따른 후면전계형 이종접합 태양전지의 제조방법을 설명하기로 한다. 도 1은 본 발명의 일 실시예에 따른 후면전 계형 이종접합 태양전지의 제조방법을 설명하기 위한 순서도이고, 도 2a 내지 도 2e는 본 발명의 일 실시예에 따른 후면전계형 이종접합 태양전지의 제조방법을 설명하기 위한 공정 단면도이다. Hereinafter, a method of manufacturing a backside field type heterojunction solar cell according to an embodiment of the present invention will be described with reference to the drawings. 1 is a flowchart illustrating a method of manufacturing a back field heterojunction solar cell according to an embodiment of the present invention, and FIGS. 2A to 2E illustrate a manufacturing of a back field heterojunction solar cell according to an embodiment of the present invention. It is process cross section for demonstrating a method.
도 1 및 도 2a에 도시한 바와 같이 제 1 도전형 예를 들어, n형의 결정질 실리콘 기판(201)을 준비한다. 그런 다음, 상기 기판(201)의 표면에 요철(202)이 형성되도록 텍스쳐링(texturing) 공정을 진행한다(S101). 상기 텍스쳐링 공정은 광흡수를 극대화하기 위한 것이며, 습식 식각 또는 반응성 이온 식각(reactive ion etching) 등의 건식 식각 방법을 이용하여 진행할 수 있다.As shown in Figs. 1 and 2A, a
이어, p 접합영역(204) 및 n 접합영역(206) 형성공정을 진행한다. 상기 p 접합영역(204) 형성공정과 n 접합영역(206) 형성공정은 독립적으로 순차적으로 진행되며, 그 순서는 무관하다. 또한, 상기 p 접합영역(204) 및 n 접합영역(206)은 별도의 마스크 작업 없이 진행된다. Subsequently, a process of forming the
p 접합영역(204) 형성공정을 먼저 진행하는 경우, 도 2b에 도시한 바와 같이 상기 기판(201)의 후면 상에 p형 불순물을 포함하는 액상의 용액을 스프레이 방법을 통해 도포하여 p형 불순물층(203)을 형성한다. 그런 다음, p 접합영역(204)에 상응하는 부위의 기판(201)에 레이저를 조사하여 상기 p형 불순물층(203) 내의 p형 불순물 이온을 기판(201) 내부로 확산시켜 p 접합영역(204)을 형성한다(S102). 이 때, 레이저 조사에 의해 p형 불순물 이온이 기판(201) 내부로 확산됨과 함께 재배열되어 활성화된다. 이어, 기판(201) 후면 상에 잔존하는 p형 불순물층(203)을 제거한다. When the process of forming the
상기 기판(201) 후면 내부에 p 접합영역(204)이 형성된 상태에서, 도 2c에 도시한 바와 같이 기판(201) 후면 상에 n형 불순물을 포함하는 액상의 용액을 스프레이 방법을 통해 도포하여 n형 불순물층(205)을 형성한다. 그런 다음, n 접합영역(206)에 상응하는 부위의 기판(201)에 레이저를 조사하여 상기 n형 불순물층(205) 내의 n형 불순물 이온을 기판(201) 내부로 확산시켜 n 접합영역(206)을 형성한다(S103). 이에 따라, p 접합영역(204)과 n 접합영역(206)이 교번, 배치되도록 형성된다. In the state where the
상기 p 접합영역(204) 및 n 접합영역(206)이 형성된 상태에서, 도 2d에 도시한 바와 같이 상기 기판(201) 전면 상에 불순물 이온이 주입되지 않은 비정질 실리콘 재질의 진성층(207)(intrinsic layer)을 적층한다. 상기 진성층(207)은 플라즈마 강화 화학기상증착법(PECVD, plasma enhanced chemical vapor deposition) 등을 이용하여 형성할 수 있다. In the state where the
그런 다음, 상기 진성층(207) 상에 n형 비정질 반도체층(208)(n+ a-Si:H)을 형성한다. 상기 n형 비정질 반도체층(208)은 비정질 실리콘층의 형성시 n형 불순물 이온을 주입하여 형성할 수 있다. 이와 같은 상태에서, 상기 n형 비정질 반도체층(208) 상에 실리콘 질화막 재질의 반사방지막(209)을 형성한다(S104). 이 때, 상기 반사방지막(209)과 n형 비정질 반도체층(208) 사이의 응력을 완화시키기 위해 상기 반사방지막(209) 형성 전에 실리콘 산화막 재질의 버퍼층을 상기 n형 비정질 실리콘층 상에 형성할 수도 있다. Then, an n-type amorphous semiconductor layer 208 (n + a-Si: H) is formed on the
이어, 도 2e에 도시한 바와 같이 상기 p 접합영역(204)과 n 접합영역(206) 상에 각각 p 전극(210)과 n 전극(211)을 형성하면(S105) 본 발명의 일 실시예에 따른 후면전계형 이종접합 태양전지의 제조방법은 완료된다. Subsequently, as shown in FIG. 2E, when the
도 1은 본 발명의 일 실시예에 따른 후면전계형 이종접합 태양전지의 제조방법을 설명하기 위한 순서도.1 is a flow chart illustrating a method for manufacturing a back-field heterojunction solar cell according to an embodiment of the present invention.
도 2a 내지 도 2e는 본 발명의 일 실시예에 따른 후면전계형 이종접합 태양전지의 제조방법을 설명하기 위한 공정 단면도. 2A to 2E are cross-sectional views illustrating a method of manufacturing a backside field heterojunction solar cell according to an embodiment of the present invention.
<도면의 주요 부분에 대한 설명>Description of the main parts of the drawing
201 : 기판 202 : 요철201: substrate 202: irregularities
203 : p형 불순물층 204 : p 접합영역203: p-type impurity layer 204: p junction region
205 : n형 불순물층 206 : n 접합영역205: n-type impurity layer 206: n junction region
207 : 진성층 208 : n형 비정질 반도체층207: intrinsic layer 208: n-type amorphous semiconductor layer
209 : 반사방지막 210 : p 전극209: antireflection film 210: p electrode
211 : n 전극211: n electrode
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090127931A KR20110071377A (en) | 2009-12-21 | 2009-12-21 | Method for fabricating back contact type hetero-junction solar cell |
PCT/KR2010/009049 WO2011078517A2 (en) | 2009-12-21 | 2010-12-17 | Production method for a back-surface-field type of heterojunction solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090127931A KR20110071377A (en) | 2009-12-21 | 2009-12-21 | Method for fabricating back contact type hetero-junction solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20110071377A true KR20110071377A (en) | 2011-06-29 |
Family
ID=44196264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090127931A KR20110071377A (en) | 2009-12-21 | 2009-12-21 | Method for fabricating back contact type hetero-junction solar cell |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20110071377A (en) |
WO (1) | WO2011078517A2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100590258B1 (en) * | 2002-10-08 | 2006-06-15 | 삼성에스디아이 주식회사 | Method for fabricating solar cell using spray |
US7737357B2 (en) * | 2006-05-04 | 2010-06-15 | Sunpower Corporation | Solar cell having doped semiconductor heterojunction contacts |
KR101370126B1 (en) * | 2008-02-25 | 2014-03-04 | 엘지전자 주식회사 | Method for forming selective emitter of solar cell using annealing by laser of top hat type and Method for manufacturing solar cell using the same |
KR100974221B1 (en) * | 2008-04-17 | 2010-08-06 | 엘지전자 주식회사 | Method for forming selective emitter of solar cell using laser annealing and Method for manufacturing solar cell using the same |
-
2009
- 2009-12-21 KR KR1020090127931A patent/KR20110071377A/en not_active Application Discontinuation
-
2010
- 2010-12-17 WO PCT/KR2010/009049 patent/WO2011078517A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2011078517A2 (en) | 2011-06-30 |
WO2011078517A3 (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101000064B1 (en) | Hetero-junction silicon solar cell and fabrication method thereof | |
US20120279562A1 (en) | Back-surface-field type of heterojunction solar cell and a production method therefor | |
KR20110075200A (en) | Method for fabricating back contact solar cell | |
KR101612133B1 (en) | Metal Wrap Through type solar cell and method for fabricating the same | |
KR101125435B1 (en) | Metal Wrap Through type solar cell | |
KR101238988B1 (en) | Back contact solar cell and method for fabricating the same | |
KR20110071374A (en) | Back contact type hetero-junction solar cell and method of fabricating the same | |
KR101198438B1 (en) | Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof | |
KR20120054828A (en) | Silicon solar cell having ultra high efficiency and preparation method thereof | |
KR20140022508A (en) | Method for fabricating back contact type hetero-junction solar cell | |
Morales-Vilches et al. | Progress in silicon heterojunction solar cell fabrication with rear laser-fired contacts | |
KR20110071377A (en) | Method for fabricating back contact type hetero-junction solar cell | |
KR101089416B1 (en) | Solar cell and method for fabricating the same | |
KR101101438B1 (en) | Front and back contact electric field solar cell and method thereof | |
KR20130048945A (en) | Bi-facial solar cell and method for fabricating the same | |
KR101115104B1 (en) | Solar cell and method for fabricating the same | |
KR101251857B1 (en) | Method for manufacturing bifacial solar cell | |
KR20110071378A (en) | Method for fabricating back contact type hetero-junction solar cell | |
KR101155192B1 (en) | Method for fabricating solar cell | |
KR101101621B1 (en) | Front and back contact electric field solar cell and method thereof | |
KR20120077707A (en) | Localized emitter solar cell and method for manufacturing thereof | |
KR101199214B1 (en) | Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof | |
KR20110071379A (en) | Method for fabricating back contact type hetero-junction solar cell | |
KR20100111064A (en) | Solar cell | |
KR101167444B1 (en) | Bifacial photovoltaic solar cell and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |