KR20110070557A - Air purification apparatus using nanometal/photocatalyst sol - Google Patents

Air purification apparatus using nanometal/photocatalyst sol Download PDF

Info

Publication number
KR20110070557A
KR20110070557A KR1020090127415A KR20090127415A KR20110070557A KR 20110070557 A KR20110070557 A KR 20110070557A KR 1020090127415 A KR1020090127415 A KR 1020090127415A KR 20090127415 A KR20090127415 A KR 20090127415A KR 20110070557 A KR20110070557 A KR 20110070557A
Authority
KR
South Korea
Prior art keywords
weight
parts
nanometal
photocatalyst
air
Prior art date
Application number
KR1020090127415A
Other languages
Korean (ko)
Other versions
KR101153362B1 (en
Inventor
김종순
남기우
정희록
양성봉
유미선
Original Assignee
(주)엔지텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엔지텍 filed Critical (주)엔지텍
Priority to KR1020090127415A priority Critical patent/KR101153362B1/en
Publication of KR20110070557A publication Critical patent/KR20110070557A/en
Application granted granted Critical
Publication of KR101153362B1 publication Critical patent/KR101153362B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/167Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using catalytic reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: An air purification apparatus using nanometal/photocatalyst sol reacting to an LED(Light emitting Diode) lamp is provided to increase saturated adsorption efficiency of a filter by using a filter coated with the nanometal/photocatalyst sol filter to thereby improve purification efficiency. CONSTITUTION: An air purification apparatus using nanometal/photocatalyst sol reacting to an LED lamp adsorbs impurities contained in the air using an adsorbent. The air purification apparatus decomposes the adsorbed impurities by optical activity of nanometal/photocatalyic coating layer coated on the surface of the adsorbent. A light source which generates the optical activity is an LED lamp. The nanometal/photocatalytic coating layer is a nanometal/photocatalyst slurry composition. An alcoholometer organic solvent of 10-30 parts by weight, water of 50-70 parts by weight, titanium precursor of 5-15 parts by weight, a transition metal of 0.5-10 parts by weight, nitric acid of 0.5-5 parts by weight, and chelate stabilizer of 0.1-5 parts by weight are mixed in a reactor. The mixture is agitated at a temperature of 60°C-90°C to form the nanometal/photocatalyst slurry composition.

Description

엘이디 램프에 반응하는 나노금속/광촉매 졸을 이용한 공기정화장치{air purification apparatus using nanometal/photocatalyst sol}Air purification apparatus using nanometal / photocatalyst sol reacting to LED lamp

본 발명은 공기 정화장치에 관한 것으로, 더욱 상세하게는, 395~400㎚ 파장대의 엘이디(LED) 램프에 반응하여 광활성되어 오염물질을 분해시키는 나노금속/광촉매 졸이 코팅된 흡착제 필터를 이용한 엘이디 램프에 반응하는 나노금속/광촉매 졸을 이용한 공기정화장치에 관한 것이다. The present invention relates to an air purifier, and more particularly, to an LED lamp using a nanometal / photocatalyst sol-coated adsorbent filter that is photoactive and decomposes pollutants in response to an LED lamp in the wavelength range of 395 to 400 nm. The present invention relates to an air purifier using nanometal / photocatalyst sol.

일반적으로, 일반적으로 도장, 건조, 인쇄, 접착공정 혹은 드라이크리닝, 휘발유 및 경유의 주유과정에서는 다량의 휘발성 유기화합물이 배출되며, 법적으로 이러한 공정 혹은 시설에 대해 휘발성 유기화합물이 대기 중으로 방출되지 않도록 규제를 하고 있다. Generally, large amounts of volatile organic compounds are emitted during painting, drying, printing, bonding, or dry cleaning, gasoline and diesel, and legally to ensure that no volatile organic compounds are released into the atmosphere for these processes or facilities. It is regulated.

휘발성 유기화합물은 대기 중에 다량으로 배출되면, 악취의 원인이 될 뿐 아니라 햇빛과 산화질소 화합물(NOx)과 함께 반응하여 광화학 스모그를 형성하여, 인간에게는 눈을 따갑게 하고 심할 경우 호흡기 질병을 일으키기도 한다. 또한 식물에도 나쁜 영향을 주는 것으로 알려져 있다. Volatile organic compounds are not only a source of odor when they are released into the atmosphere, but also react with sunlight and nitric oxide compounds (NOx) to form photochemical smog, which can cause eye irritation in humans and, in severe cases, respiratory illness. . It is also known to adversely affect plants.

특히, 인쇄소, 가구제작, 기계 및 선박 제조, 자동차 수리 등에 있어서 발생 되는 휘발성 유기화합물은 흡착탑을 이용하여 처리하도록 대기환경보전법의 도장시설에 대한 THC(Total Hydrocarbon Concentration, 총탄화수소농도) 규제에 명시하고 있다. In particular, volatile organic compounds generated in printing shops, furniture manufacturing, machinery and ship manufacturing, and automobile repairs are specified in the THC (Total Hydrocarbon Concentration) regulation for coating facilities under the Atmospheric Conservation Act. have.

현재 국내의 휘발성 유기화합물 배출시설에 의무적으로 설치하도록 되어 있는 활성탄 흡착탑은 활성탄을 담을 수 있도록 철 구조물로 되어 있는 용기로, 그 속에 주로 입자상으로 되어 있는 활성탄을 채우고, 옆 쪽 혹은 아래쪽에서 휘발성 유기화합물이 함유된 공기를 주입하여, 활성탄에 의해 휘발성 유기화합물을 흡착시킴으로써 정화된 공기가 위쪽에서 빠져나올 수 있도록 제작된 장치이다. Currently, activated carbon adsorption tower, which is mandatory to be installed in domestic volatile organic compound discharge facility, is a container made of steel structure to hold activated carbon, filled with activated carbon mainly in the form of particles, and volatile organic compound from the side or the bottom. It is an apparatus manufactured so that the purified air can escape from the upper part by injecting this containing air and adsorbing a volatile organic compound with activated carbon.

현재 시중에서 판매되고 있는 활성탄 흡착탑은 구조가 단순하고 또한 사용되는 활성탄 역시 값이 싸다는 장점이 있지만, 휘발성 유기화합물의 배출량이 많을 경우 단시간에 활성탄의 흡착능이 포화(파과)되어 휘발성 유기화합물의 농도가 저감되지 않은 상태에서 그대로 대기 중에 배출되기도 한다. 실제로 대부분의 흡착탑의 경우 정기적으로 활성탄을 교체하고 있지만, 일부 사업장의 경우 활성탄이 포화(파괴)되어 있는 채 흡착탑이 사용되고 있는 상황이다. The activated carbon adsorption tower currently on the market has the advantage of simple structure and low cost of activated carbon. However, when the amount of volatile organic compounds is emitted, the activated carbon adsorption capacity is saturated (breakthrough) in a short time. May be released into the atmosphere without being reduced. In fact, most of the adsorption towers are regularly replaced with activated carbon, but some of them are using activated carbons with activated carbon saturated.

흡착탑의 충진물인 활성탄과 이를 수납하는 흡착탑은, 휘발성 유기화합물의 처리 비용으로 볼 때, 소각법, 축열식 소각법, 미생물 처리법 등 다른 처리장치에 비해 저렴하지만, 활성탄을 교체할 때 발생하는 비용은 사업장 측에 많은 부담이 되고 있다. Activated carbon, which is the filler of the adsorption column, and the adsorption tower that accommodates it are cheaper than other treatment devices such as incineration, regenerative incineration, and microbial treatment, considering the cost of treating volatile organic compounds. There is much burden on the side.

따라서 흡착탑에 있어서 활성탄의 처리용량을 증가시켜 활성탄의 사용기간을 늘리도록 함으로써 활성탄 교체비용을 삭감할 필요가 있다. Therefore, it is necessary to reduce the cost of replacing activated carbon by increasing the processing capacity of activated carbon in the adsorption column so as to increase the service life of activated carbon.

활성탄의 수명을 늘려주는 방법으로는 주기적으로 열풍이나 스팀을 활성탄에 불어주어 흡착된 휘발성 유기화합물 내보내는 방법, 활성탄을 전기적인 방법으로 가열하여 흡착된 휘발성 물질을 내보내는 방법, 활성탄에 촉매를 도포하여 흡착된 휘발성 유기화합물을 천천히 산화분해시키는 방법, 광촉매를 활성탄에 도포하고 자외선 등을 비추어 활성탄에 흡착된 휘발성 유기화합물을 산화시켜 제거하는 방법이 알려져 있다. 그러나 이러한 방법은 전열선이나, 스팀을 생성하는 장치를 장착하게 됨으로써 흡착탑의 가격을 올릴 뿐 아니라 스팀이나 열을 발생시키기 위해 많은 에너지가 소비되는 단점이 있다. 또한 저온촉매는 휘발성 유기화합물를 산화시켜 제거하는 반응속도가 낮기 때문에 활성탄의 흡착능을 재생하기에는 많은 시간이 걸린다는 점, 또한 광촉매의 경우 자외선 램프의 사용이 따라야 한다는 단점이 있었다. In order to extend the life of activated carbon, hot air or steam is blown out to activated carbon periodically to release the adsorbed volatile organic compounds, the activated carbon is heated electrically to release the adsorbed volatile substances, and the activated carbon is coated with adsorption A method of slowly oxidatively decomposing volatile organic compounds and a method of applying a photocatalyst to activated carbon and irradiating ultraviolet rays or the like to oxidize and remove volatile organic compounds adsorbed on activated carbon are known. However, this method has a disadvantage in that a heating wire or a device for generating steam not only raises the price of the adsorption tower but also consumes a lot of energy to generate steam or heat. In addition, the low-temperature catalyst has a low reaction rate for oxidizing and removing volatile organic compounds, and thus, it takes a long time to regenerate the adsorption capacity of activated carbon, and in the case of the photocatalyst, the use of an ultraviolet lamp has a disadvantage.

따라서 사용이 간편하고 경제적인 파장이 395~400nm 인 LED를 이용하고, 단파장 LED의 빛에 잘 활성화되는 광촉매를 도포한 입상 활성탄을 개발하여 흡착제인 활성탄의 흡착수명을 크게 증가시킴으로서 활성탄의 교체주기를 늘려줄 수 있는 방법이 개발되어야 한다. Therefore, it is easy to use and economical wavelength of 395 ~ 400nm LED, developed granular activated carbon coated with a photocatalyst that is well activated in the light of short wavelength LED to increase the adsorption life of the activated carbon as an adsorbent to increase the replacement cycle of activated carbon Ways to increase should be developed.

따라서, 본 발명은 상기한 종래기술들의 문제점을 해결하기 위해 안출된 것으로, 엘이디(LED) 램프의 빛에 휘발성 유기화합물 등을 효과적으로 분해시켜 주는 나노금속/광촉매 졸을 흡착제 필터 표면에 도포하여 엘이디(LED) 램프에 의해 흡착제 필터 표면에 도포된 나노금속/광촉매가 흡착제 필터에 흡착된 휘발성 유기화합물 등을 지속적으로 분해 제거시킴으로써 흡착제 필터의 휘발성 유기화합물 등에 대한 흡착능을 증가되도록 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸을 이용한 공기정화장치를 제공하는 것을 목적으로 한다.Accordingly, the present invention has been made to solve the above problems of the prior art, by applying a nano-metal / photocatalyst sol that effectively decomposes the volatile organic compounds in the light of the LED (LED) on the surface of the adsorbent filter LED ( The nano metal / photocatalyst coated on the surface of the adsorbent filter by LED lamp continuously decomposes and removes the volatile organic compound adsorbed on the adsorbent filter, thereby increasing the adsorption capacity for the volatile organic compound of the adsorbent filter. An object of the present invention is to provide an air purifier using a metal / photocatalyst sol.

상기한 목적을 달성하기 위한 본 발명은, 불순물이 포함된 공기가 유입되어 불순물이 흡착제에 흡착되고, 흡착된 불순물은 흡착제의 표면에 코팅된 나노금속/광촉매 코팅층의 광활성에 의해 분해되는 공기정화장치에 있어서, 상기 광활성을 일으키는 광원은 엘이디(LED)램프이고, 상기 나노금속/광촉매 코팅층은, 알콜계 유기용제 10~30 중량부와, 수성용매로서 물 50~70 중량부와, 티타늄 전구체 5~15 중량부와, 금속 전구체로서는 전이금속 0.5~10 중량부와, 촉매로서 질산 0.5~5 중량부 및 킬레이트 안정제 0.1~5 중량부를 반응기에서 혼합하고, 60℃~90℃의 온도에서 교반시킴에 의해 형성된 나노금속/광촉매 슬러리 조성물로 구성된 엘이디 램프에 반응하는 나노금속/광촉매 졸을 이용한 공기정화장치를 기술적 요지로 한다.In order to achieve the above object, the present invention provides an air purifying apparatus in which air containing impurities is introduced and impurities are adsorbed to the adsorbent, and the adsorbed impurities are decomposed by the photoactivity of the nanometal / photocatalyst coating layer coated on the surface of the adsorbent. The light source causing the photoactivity is an LED lamp, and the nanometal / photocatalyst coating layer comprises 10-30 parts by weight of an alcohol-based organic solvent, 50-70 parts by weight of water as an aqueous solvent, and 5-5 parts of a titanium precursor. 15 parts by weight, 0.5 to 10 parts by weight of a transition metal as a metal precursor, 0.5 to 5 parts by weight of nitric acid and 0.1 to 5 parts by weight of a chelating stabilizer as a catalyst are mixed in a reactor and stirred at a temperature of 60 ° C to 90 ° C. An air purifier using a nanometal / photocatalyst sol reacting to an LED lamp composed of the formed nanometal / photocatalyst slurry composition is a technical subject.

여기서, 상기 수성용매는 이온화 처리된 순수(純水)인 것이 바람직하다.Herein, the aqueous solvent is preferably pure water ionized.

상기 티타늄 전구체는 TTIP(Titanium Tetraisopropoxide) 인 것이 바람직하다.The titanium precursor is preferably TTIP (Titanium Tetraisopropoxide).

상기 킬레이트 안정제는 아세틸 아세톤인 것이 바람직하다.It is preferable that the said chelate stabilizer is acetyl acetone.

상기 알콜계 유기용제는 에틸알콜, 이소프로필알콜 중 하나 이상을 포함하는 것이 바람직하다The alcohol-based organic solvent preferably contains at least one of ethyl alcohol and isopropyl alcohol.

상기 전이금속은 아연(Zn), 은(Ag), 구리(Cu) 중 선택된 금속인 것이 바람직하다.The transition metal is preferably a metal selected from zinc (Zn), silver (Ag), and copper (Cu).

상기 코팅층은 스프레이 코팅에 의해 형성되는 것이 바람직하다.The coating layer is preferably formed by spray coating.

이에 따라, 395~400㎚ 파장대의 엘이디(LED) 램프에 반응하여 광활성되어 오염물질을 분해시키는 나노금속/광촉매 졸이 코팅된 필터를 이용하므로 흡착제인 필터의 포화흡착효율이 증가 되어 정화효율이 증가 된다는 이점이 있다. Accordingly, the nanometal / photocatalyst sol coated filter which photoactively decomposes pollutants in response to LED lamps in the wavelength range of 395 to 400 nm is used, thereby increasing the saturation adsorption efficiency of the adsorbent filter, thereby increasing the purification efficiency. There is an advantage.

상기의 구성에 의한 본 발명은 395~400㎚ 파장대의 엘이디(LED) 램프에 반응하여 광활성되어 오염물질을 분해시키는 나노금속/광촉매 졸이 코팅된 필터를 채용하므로 흡착제인 필터의 포화흡착효율이 증가 되어 정화효율이 증가 된다는 효과가 있다. According to the present invention, the saturation adsorption efficiency of the sorbent filter is increased because it adopts a nano metal / photocatalyst sol coated filter which is photoactive and decomposes pollutants in response to an LED lamp in the wavelength range of 395 to 400 nm. As a result, the purification efficiency is increased.

이하 본 발명의 바람직한 실시예 들을 도면을 참조로 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

본 발명에 따른 엘이디 램프에 반응하는 나노금속/광촉매 졸을 이용한 공기 정화장치의 핵심은 흡착제인 활성탄의 표면에 코팅된 나노금속/광촉매 졸인바, 먼저 나노금속/광촉매 졸에 대해 살펴 보기로 한다. The core of the air purifier using a nanometal / photocatalyst sol reacting to the LED lamp according to the present invention is a nanometal / photocatalyst sol coated on the surface of the activated carbon as an adsorbent, first, the nanometal / photocatalyst sol.

Ⅰ. 엘이디 램프에 반응하는 나노금속/광촉매 졸의 제조 방법Ⅰ. Method for preparing nanometal / photocatalyst sol reacting to LED lamp

나노금속/ 광촉매 졸은 아래의 10가지 실시예에 따라 각각 제조하였다.Nanometal / photocatalyst sols were prepared according to the following ten examples.

< 제1실시예 >First Embodiment

본 발명의 제1실시예는, The first embodiment of the present invention,

유기용매로서 에틸알콜 14중량부 및 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 12중량부, 수성용매로서는 이온화처리된 순수(純水) 62중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 아연(Zn) 1중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 14 parts by weight of ethyl alcohol as an organic solvent and 12 parts by weight of isopropyl alcohol (hereinafter referred to as IPA), 62 parts by weight of pure ionized water as an aqueous solvent, and TTIP (Titanium Tetraisopropoxide) as a Ti precursor of a photocatalyst. 10 parts by weight, 1 part by weight of zinc (Zn) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelate stabilizer, It stirred at the speed of 500 rpm. At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다. The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제2실시예 >Second Embodiment

본 발명의 제2실시예는, The second embodiment of the present invention,

유기용매로서 에틸알콜 24중량부, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 아연(Zn) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 24 parts by weight of ethyl alcohol as an organic solvent, 60 parts by weight of pure ionized water as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, and zinc (Zn) in a transition metal as a metal precursor. 5 parts by weight, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a speed of about 500 rpm in the reactor. At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다. The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제3실시예 >Third Embodiment

본 발명의 제3실시예는, The third embodiment of the present invention,

유기용매로서 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 24중량부, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 아연(Zn) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 양 4시간 정도로 교반하였다. 24 parts by weight of isopropyl alcohol (hereinafter referred to as IPA) as an organic solvent, 60 parts by weight of pure ionized water as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, 5 parts by weight of zinc (Zn) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a rate of about 500 rpm in the reactor. . At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred for about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다. The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제4실시예 >Fourth Embodiment

본 발명의 제4실시예는, The fourth embodiment of the present invention,

유기용매로서 에틸알콜 14중량부 및 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 12중량부, 수성용매로서는 이온화처리된 순수(純水) 62중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 은(Ag) 1중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 14 parts by weight of ethyl alcohol as an organic solvent and 12 parts by weight of isopropyl alcohol (hereinafter referred to as IPA), 62 parts by weight of pure ionized water as an aqueous solvent, and TTIP (Titanium Tetraisopropoxide) as a Ti precursor of a photocatalyst. 10 parts by weight, 1 part by weight of silver (Ag) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer, It stirred at the speed of 500 rpm. At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다. The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제5실시예 > Fifth Embodiment

본 발명의 제5실시예는, The fifth embodiment of the present invention,

유기용매로서 에틸알콜 24중량부, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 은(Ag) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 24 parts by weight of ethyl alcohol as an organic solvent, 60 parts by weight of pure ionized water as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, and silver (Ag) in transition metal as a metal precursor. 5 parts by weight, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a speed of about 500 rpm in the reactor. At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다. The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제6실시예 >Sixth Embodiment

본 발명의 제6실시예는, In a sixth embodiment of the present invention,

유기용매로서 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 24중량부, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 은(Ag) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 양 4시간 정도로 교반하였다. 24 parts by weight of isopropyl alcohol (hereinafter referred to as IPA) as an organic solvent, 60 parts by weight of pure ionized water as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, 5 parts by weight of silver (Ag) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a speed of about 500 rpm in the reactor. . At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred for about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다. The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제7실시예 >Seventh Embodiment

본 발명의 제7실시예는, The seventh embodiment of the present invention,

유기용매로서 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 26중량부, 수성용매로서는 이온화처리된 순수(純水) 62중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 구 리(Cu) 1중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 26 parts by weight of isopropyl alcohol (hereinafter referred to as IPA) as an organic solvent, 62 parts by weight of pure ionized water as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, 1 part by weight of copper (Cu) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a speed of about 500 rpm in the reactor. I was. At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다. The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제8실시예 >Eighth Embodiment

본 발명의 제8실시예는, An eighth embodiment of the present invention,

유기용매로서 에틸알콜 24중량부와, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 구리(Cu) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 24 parts by weight of ethyl alcohol as an organic solvent, 60 parts by weight of pure water ionized as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, and copper (Cu) in a transition metal as a metal precursor. 5 parts by weight, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a rate of about 500 rpm in the reactor. At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다. The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제9실시예 ><Ninth Embodiment>

본 발명의 제9실시예는, In a ninth embodiment of the present invention,

유기용매로서 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 24중량부, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 구리(Cu) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~81℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 24 parts by weight of isopropyl alcohol (hereinafter referred to as IPA) as an organic solvent, 60 parts by weight of pure ionized water as an aqueous solvent, 10 parts by weight of titanium tetraisopropoxide (TTIP) as a Ti precursor of a photocatalyst, 5 parts by weight of copper (Cu) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 part by weight of acetyl acetone as a chelating stabilizer were added to the reactor, followed by stirring at a speed of about 500 rpm in the reactor. . At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 81 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조되었다. The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

< 제10실시예 >Tenth Embodiment

본 발명의 제10실시예는, In a tenth embodiment of the present invention,

유기용매로서 에틸알콜 12중량부 및 이소프로필 알콜(Isopropylalcohol, 이하 IPA라 함.) 12중량부, 수성용매로서는 이온화처리된 순수(純水) 60중량부와, 광촉매의 Ti 전구체로서 TTIP(Titanium Tetraisopropoxide) 10중량부와, 금속전구체로서 전이금속 중 구리(Cu) 5중량부와, 촉매로서 질산은 2N(Normal) 농도 1중량부와, 킬레이트 안정제로서 아세틸 아세톤 0.5중량부를 반응기에 투입한 다음 반응기에서 약 500rpm 의 속도로 교반시켰다. 이때 반응기는 약 70℃~80℃의 온도를 유지한 상태이며 교반시간은 약 4시간 정도로 교반하였다. 12 parts by weight of ethyl alcohol and 12 parts by weight of isopropyl alcohol (hereinafter referred to as IPA) as an organic solvent, 60 parts by weight of pure ionized water as an aqueous solvent, and TTIP (Titanium Tetraisopropoxide) as a Ti precursor of the photocatalyst. 10 parts by weight, 5 parts by weight of copper (Cu) in the transition metal as a metal precursor, 1 part by weight of 2N (Normal) concentration of silver nitrate as a catalyst, and 0.5 parts by weight of acetyl acetone as a chelating stabilizer, It stirred at the speed of 500 rpm. At this time, the reactor was maintained at a temperature of about 70 ℃ ~ 80 ℃ and the stirring time was stirred about 4 hours.

상기의 과정에 의해 반응이 진행되어 나노금속/광촉매 콜로이드 용액이 제조 되었다. The reaction proceeded by the above process to prepare a nanometal / photocatalyst colloidal solution.

상기 실시예들의 첨가량 성분 물성표를 아래의 표 1에 나타내었으며 첨가량은 중량단위이다.Table 1 below shows the physical properties of the additive amounts of the above examples, and the amount is in weight units.

Figure 112009078659761-PAT00001
Figure 112009078659761-PAT00001

상기의 실시예들에 의해 제조된 1차입자들에 대한 TEM 사진에 의하면 나노사이즈 크기로 나타났다. 특히 실시예 9의 1차 입자로 형성된 Cu/TiO2 는 입자사이즈가 도 1에 나타난 바와 같이 3~5㎚사이즈로 나타남을 알 수 있다. TEM photographs of the primary particles prepared by the above examples showed nano-size. In particular Cu / TiO 2 formed from the primary particles of Example 9 It can be seen that the particle size is shown in 3 ~ 5nm size as shown in FIG.

다음은 상기 실시예들에 대한 XRD 측정을 하였으며, 상기 실시예 들 중 제3실시예, 제6실시예, 제9실시예들에 대한 XRD 측정결과를 도 2에 나타내었다. 상기 도 2에 나타나 바와 같이, 제3, 제6, 제9실시예에 의한 조성물은 도 2에 나타난 아나타제 타입의 TiO2의 XRD 패턴과 유사한바, 제3, 제6, 제9실시예에 의한 조성물은 아나타제 타입의 광촉매가 형성되었음을 알 수 있다. 나머지도 이와 유사한 결과가 나타났다. Next, the XRD measurement was performed for the above embodiments, and the XRD measurement results for the third, sixth, and ninth embodiments of the examples are shown in FIG. 2. As shown in FIG. 2, the composition according to the third, sixth, and ninth embodiments is similar to the XRD pattern of the anatase type TiO 2 shown in FIG. 2, and according to the third, sixth, and ninth embodiments The composition can be seen that anatase type photocatalyst was formed. The rest was similar.

다음은 상기 실시예들에 대한 엘이디램프에 대한 광활성 분해실험을 하였으며 광활성 분해 효율이 우수한 것을 알 수 있었다.Next, the photoactive decomposition experiments were carried out on the LED lamps for the above embodiments, and the photoactive decomposition efficiency was found to be excellent.

도 3은 나노금속/광촉매 졸의 오염물질 제거효율을 나타낸 도로서, 상기 제9실시예의 나노금속/광촉매 졸을 사용하였으며, 나머지도 유사한 결과가 나타났다. 3 is a view showing the removal efficiency of the contaminants of the nanometal / photocatalyst sol, the nanometal / photocatalyst sol of the ninth embodiment was used, the rest was similar results.

상기 제9실시예의 나노금속/광촉매(Cu/TiO2)를 STS(7cm×7cm) 표면에 0.3g을 코팅하였으며, 오염물질로서 TCE(Trichloroehtylene)을 분해 제거하였다.0.3g of the nanometal / photocatalyst (Cu / TiO 2 ) of the ninth embodiment was coated on the surface of STS (7cm × 7cm), and TCE (Trichloroehtylene) was decomposed and removed as a contaminant.

반응용기는 HDPE 3.4L용기에 초기 농도를 98ppm으로 하였다. The reaction vessel had an initial concentration of 98 ppm in a 3.4 L HDPE container.

엘이디(LED) 0.068W 4개를 광촉매 표면과의 거리를 4㎝로 두고서 분해 반응을 실시하였다. 분석기기로서는 ppb RAE 3000(USA) 분석기기를 사용하였다.Four 0.068 W of LEDs (LED) were subjected to decomposition reaction at a distance of 4 cm from the photocatalyst surface. As an analyzer, ppb RAE 3000 (USA) analyzer was used.

비교예로서 아무런 코팅을 하지 않은 것을 사용하였다.As a comparative example, no coating was used.

상기의 실험결과를 도 3에 나타내었으며, 도 3에 나타난 바와 같이, 결과적으로 395~400㎚에 광활성을 나타내어 TCE가 분해되는 것을 확인할 수 있었다.The results of the experiment are shown in FIG. 3, and as shown in FIG. 3, it was confirmed that TCE was decomposed by showing photoactivity at 395-400 nm.

상기에서 제조된 나노금속/광촉매 졸을 활성탄에 코팅한바, 코팅밥법은 아래와 같다. When the nano-metal / photocatalyst sol prepared above is coated on activated carbon, the coating rice method is as follows.

Ⅱ. 나노금속/광촉매 졸의 활성탄 코팅II. Activated Carbon Coating of Nanometal / Photocatalyst Sol

상기 실시예들 중 9실시예에서 제조된 나노금속/광촉매 졸을 흡착제인 활성탄에 코팅한바, 코팅방법은 아래와 같다. The nanometal / photocatalyst sol prepared in Example 9 was coated on activated carbon as an adsorbent, and the coating method was as follows.

먼저 활성탄은 공기용 입상 활성탄(입경 ~2mm, 길이 ~5mm의 원통모양)을 사용하였으며, 나노금속/광촉매 스러리(혼합용액, slurry)를 스프레이(분무, spray)에 의하여 활성탄의 표면에 도포(코팅, coating)하는 방법에 의해 제조하였으며, 입상 활성탄 100g당 10g의 나노금속/광촉매가 도포되도록 도포하였다. 에멀젼(유액, 현탁액, emulsion) 상태의 나노금속/광촉매가 도포된 입상 활성탄은 건조기(전기 oven) 속에서 200℃, 1시간동안 건조된다. First, activated carbon was used as granular activated carbon (cylindrical shape of particle size ~ 2mm, length ~ 5mm), and nanometal / photocatalyst slurry (mixture, slurry) was applied to the surface of activated carbon by spraying (spraying) Coating, coating) was applied so that 10g of nano-metal / photocatalyst per 100g of granular activated carbon was applied. The granular activated carbon coated with the nanometal / photocatalyst in an emulsion (emulsion, suspension, emulsion) is dried at 200 ° C. for 1 hour in an electric oven.

입상 활성탄(activated charcoal chip)의 광촉매 도포 방법은 Photocatalyst application method of activated charcoal chip

1) 넓은 접시에 활성탄 칩을 1단으로 하여 넓게 300g 펼쳐 놓는다.1) Spread 300 g of activated carbon chips in a wide dish.

2) 나노금속/광촉매 30g을 스프레이 코팅법으로 적당한 분사압력으로 코팅한다.2) Coat 30g of nano metal / photocatalyst with proper spray pressure by spray coating method.

3) 코팅시 골고루 코팅될 수 있도록 활성탄 칩을 흔들어 준다.3) Shake the activated carbon chip so that it can be evenly coated.

4) 열처리는 200℃에서 1시간 건조처리하며, 식은 후 완전히 밀봉한다.4) Heat treatment is dried for 1 hour at 200 ℃, and completely sealed after cooling.

상기의 과정을 통하여 나노금속/광촉매가 코팅된 활성탄 칩이 완성되었으며, 상기 활성탄 칩을 필터로 사용한 공기정화장치를 완성하였으며 이에 대해서는 아래에 설명한다.Through the above process, a nano metal / photocatalyst coated activated carbon chip was completed, and an air purifier using the activated carbon chip as a filter was completed, which will be described below.

Ⅲ. 공기정화장치III. Air purifier

도 4 및 도 5는 본원발명의 공기정화장치의 개략도로써, 밀폐된 하우징(100)이 형성되고, 하우징(100)에는 휘발성 유기화합물 등의 불순물이 포함된 외부의 공기가 유입되는 유입구(101)가 형성되어 있으며, 그 반대측에는 정화된 공기를 외부로 배출시키는 배출구(102)가 형성되어 있다. 4 and 5 are schematic views of the air purifying apparatus of the present invention, in which a sealed housing 100 is formed, and the inlet 101 through which the outside air containing impurities such as volatile organic compounds is introduced into the housing 100. Is formed, and the opposite side is formed with an outlet 102 for discharging the purified air to the outside.

그리고 하우징(100)의 내부에는 상기에서 설명한 나노금속/광촉매가 코팅된 활성탄 필터(111)을 수용하는 그물망(110)이 상기 하우징(100) 내부에 가로방향으로 설치된다. 상기 그물망(110)은 상기 하우징(100)에 착탈되게 설치되어 활성탄 필터(111)의 흡착능력이 떨어지면 그물망(110)을 분리하여 활성탄 필터(111)를 교체한 후, 재 설치할 수 있다. In addition, the inside of the housing 100 is provided with a mesh 110 for accommodating the above-described activated carbon filter 111 coated with the nanometal / photocatalyst in the horizontal direction inside the housing 100. The mesh 110 is detachably installed in the housing 100, and when the adsorption capacity of the activated carbon filter 111 falls, the mesh 110 may be separated and the activated carbon filter 111 may be replaced, and then reinstalled.

또한 상기 하우징(100) 내부에는 지지틀(120)이 형성되고 상기 지지틀(120)에는 다수개의 엘이디 램프(130)가 설치된다. 상기 지지틀(120)은 상기 활성탄 필터(111)가 설치된 그물망(110)과 소정 이격되게 설치된다. In addition, a support frame 120 is formed inside the housing 100, and a plurality of LED lamps 130 are installed on the support frame 120. The support frame 120 is installed to be spaced apart from the net network 110 in which the activated carbon filter 111 is installed.

그리고 공기정화 장치에는 필요 시, 도5와 같이, 공기 이송용 팬(140)을 설치하여도 무방하다If necessary, the air purifying fan 140 may be installed in the air purifying apparatus as shown in FIG. 5.

상기의 구성에 대한 작동효과는 후술하는 바와 같다. The operation effect on the above configuration is as described later.

먼저 유기화합물 등의 불순물이 포함된 외부의 공기가 유입구(101)를 통하여 유입되면, 불순물이 상기 활성탄 필터(111)에 흡착된다. 그리고 엘이디 램프(130)에서는 광이 조사되는 바, 상기 활성탄 필터(111)에 코팅된 나노금속/광촉매가 광활성되어 상기 활성탄 필터(111)에 오염되어 있던 휘발성 유기 화합물 등의 악취오염물을 분해하여 제거시키게 되어 활성탄 필터(111)의 포화흡착효율을 증가시킬 수 있다. First, when external air containing impurities such as organic compounds is introduced through the inlet 101, the impurities are adsorbed onto the activated carbon filter 111. When the LED lamp 130 is irradiated with light, the nanometal / photocatalyst coated on the activated carbon filter 111 is photoactivated to decompose and remove odor pollutants such as volatile organic compounds contaminated in the activated carbon filter 111. It is possible to increase the saturation adsorption efficiency of the activated carbon filter 111.

한편 정화된 공기는 상기 배출구(102)를 통하여 외부로 배출된다. Meanwhile, the purified air is discharged to the outside through the discharge port 102.

여기서 흡착제를 활성탄 필터로 설명하였으나 다른 흡착제를 사용하여도 무방하며 본 발명의 범주에 속함은 자명하다 할 것이다. Here, the adsorbent is described as an activated carbon filter, but other adsorbents may be used, and it will be obvious that the adsorbent falls within the scope of the present invention.

도 1은 본 발명의 제9실시예에 따라 제조된 나노금속/광촉매의 TEM 사진을 나타낸 도이고, 1 is a view showing a TEM photograph of a nanometal / photocatalyst prepared according to the ninth embodiment of the present invention,

도 2는 본 발명의 제3실시예, 제6실시예, 제9실시예들에 따라 제조된 나노금속/광촉매에 대한 XRD 측정결과를 나타낸 도이고, FIG. 2 is a diagram showing XRD measurement results for nanometals / photocatalysts prepared according to Examples 3, 6, and 9 of the present invention.

도 3은 본 발명의 제9실시예에 따라 제조된 나노금속/광촉매의 오염물질 제거효율을 나타낸 도이다. 3 is a view showing the pollutant removal efficiency of the nano-metal / photocatalyst prepared according to the ninth embodiment of the present invention.

도 4는 본 발명에 일실시예에 따른 공기 정화장치의 개략도이고,4 is a schematic diagram of an air purifier according to an embodiment of the present invention;

도 5는 본 발명의 다른 실시예에 따른 공기정화장치의 개략도이다. 5 is a schematic diagram of an air purifying apparatus according to another embodiment of the present invention.

< 도면의 주요부분에 대한 부호의 설명 >Description of the Related Art

100 : 하우징 101 : 유입구100 housing 101 inlet

102 : 배출구 110 : 그물망102: outlet 110: the net

111 : 활성탄필터 120 : 지지틀111: activated carbon filter 120: support frame

130 : 엘이디램프 140 : 이송용팬130: LED lamp 140: transfer fan

Claims (7)

불순물이 포함된 공기가 유입되어 불순물이 흡착제에 흡착되고, 흡착된 불순물은 흡착제의 표면에 코팅된 나노금속/광촉매 코팅층의 광활성에 의해 분해되는 공기정화장치에 있어서, In the air purifying apparatus in which air containing impurities is introduced and impurities are adsorbed to the adsorbent, and the adsorbed impurities are decomposed by the photoactivity of the nanometal / photocatalyst coating layer coated on the surface of the adsorbent. 상기 광활성을 일으키는 광원은 엘이디(LED)램프이고, The light source causing the photoactivity is an LED (LED) lamp, 상기 나노금속/광촉매 코팅층은, The nano metal / photocatalyst coating layer, 알콜계 유기용제 10~30 중량부와, 수성용매로서 물 50~70 중량부와, 티타늄 전구체 5~15 중량부와, 금속 전구체로서는 전이금속 0.5~10 중량부와, 촉매로서 질산 0.5~5 중량부 및 킬레이트 안정제 0.1~5 중량부를 반응기에서 혼합하고, 60℃~90℃의 온도에서 교반시킴에 의해 형성된 나노금속/광촉매 슬러리 조성물임을 특징으로 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸을 이용한 공기정화장치.10 to 30 parts by weight of an alcohol-based organic solvent, 50 to 70 parts by weight of water as an aqueous solvent, 5 to 15 parts by weight of a titanium precursor, 0.5 to 10 parts by weight of a transition metal as a metal precursor, and 0.5 to 5 parts by weight of nitric acid as a catalyst. Parts and 0.1-5 parts by weight of a chelate stabilizer in the reactor, and the nanometal / photocatalyst sol reacting to the LED lamp characterized in that the nanometal / photocatalyst slurry composition formed by stirring at a temperature of 60 ℃ ~ 90 ℃ Purifier. 제1항에 있어서, 상기 수성용매는 이온화 처리된 순수(純水)임을 특징으로 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸을 이용한 공기정화장치.The air purifier using the nanometal / photocatalyst sol according to claim 1, wherein the aqueous solvent is ionized pure water. 제2항에 있어서, 상기 티타늄 전구체는 TTIP(Titanium Tetraisopropoxide) 임을 특징으로 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸을 이용한 공기정화장치.The air purifier of claim 2, wherein the titanium precursor is TTIP (Titanium Tetraisopropoxide). 제3항에 있어서, 상기 킬레이트 안정제는 아세틸 아세톤임을 특징으로 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸을 이용한 공기정화장치.The air purifier of claim 3, wherein the chelate stabilizer is acetyl acetone. 제1항 내지 제4항 중 어느 하나의 항에 있어서, 상기 알콜계 유기용제는 에틸알콜, 이소프로필알콜 중 하나 이상을 포함함을 특징으로 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸을 이용한 공기정화장치.According to any one of claims 1 to 4, wherein the alcohol-based organic solvent is air using a nano-metal / photocatalyst sol reacting to the LED lamp, characterized in that it comprises at least one of ethyl alcohol, isopropyl alcohol. Purifier. 제5항에 있어서, 상기 전이금속은 아연(Zn), 은(Ag), 구리(Cu) 중 선택된 금속임을 특징으로 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸을 이용한 공기정화장치.The air purifier of claim 5, wherein the transition metal is a metal selected from zinc (Zn), silver (Ag), and copper (Cu). 7. 제6항에 있어서, 상기 코팅층은 스프레이 코팅에 의해 형성됨을 특징으로 하는 엘이디 램프에 반응하는 나노금속/광촉매 졸을 이용한 공기정화장치.The air purifier using the nanometal / photocatalyst sol according to claim 6, wherein the coating layer is formed by spray coating.
KR1020090127415A 2009-12-18 2009-12-18 air purification apparatus using nanometal/photocatalyst sol KR101153362B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090127415A KR101153362B1 (en) 2009-12-18 2009-12-18 air purification apparatus using nanometal/photocatalyst sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090127415A KR101153362B1 (en) 2009-12-18 2009-12-18 air purification apparatus using nanometal/photocatalyst sol

Publications (2)

Publication Number Publication Date
KR20110070557A true KR20110070557A (en) 2011-06-24
KR101153362B1 KR101153362B1 (en) 2012-06-05

Family

ID=44402048

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090127415A KR101153362B1 (en) 2009-12-18 2009-12-18 air purification apparatus using nanometal/photocatalyst sol

Country Status (1)

Country Link
KR (1) KR101153362B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091343A (en) * 2016-05-28 2016-11-09 赣州安宏环保科技有限公司 Stacking dish dress nanometer colloid hydrogel air depurator
KR101686014B1 (en) * 2016-02-16 2016-12-13 주식회사 오일시티 Oxygen Reaction Catalyst Composition and Method for Preparing the Same
WO2017122899A1 (en) * 2016-01-15 2017-07-20 이엔에프씨 주식회사 Oxygen reaction catalyst composition and preparation method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100913622B1 (en) * 2007-12-28 2009-08-26 포항공과대학교 산학협력단 Method to synthesize mesoporous titania for photocatalytic hydrogen production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122899A1 (en) * 2016-01-15 2017-07-20 이엔에프씨 주식회사 Oxygen reaction catalyst composition and preparation method therefor
KR101686014B1 (en) * 2016-02-16 2016-12-13 주식회사 오일시티 Oxygen Reaction Catalyst Composition and Method for Preparing the Same
WO2017142160A1 (en) * 2016-02-16 2017-08-24 주식회사 오일시티 Oxygen reaction catalyst composition and preparation method therefor
CN106091343A (en) * 2016-05-28 2016-11-09 赣州安宏环保科技有限公司 Stacking dish dress nanometer colloid hydrogel air depurator

Also Published As

Publication number Publication date
KR101153362B1 (en) 2012-06-05

Similar Documents

Publication Publication Date Title
Belhouchet et al. Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites
Aram et al. Metronidazole and Cephalexin degradation by using of Urea/TiO2/ZnFe2O4/Clinoptiloite catalyst under visible-light irradiation and ozone injection
Zhu et al. The degradation of formaldehyde using a Pt@ TiO2 nanoparticles in presence of visible light irradiation at room temperature
Sun et al. Room-light-induced indoor air purification using an efficient Pt/N-TiO2 photocatalyst
CN101574652B (en) Loaded photo-catalyst and preparation method and use thereof
JP2600103B2 (en) Photocatalytic filter and method for producing the same
US6221259B1 (en) Process and catalyst for photocatalytic conversion of contaminants
Muangmora et al. Titanium dioxide and its modified forms as photocatalysts for air treatment
CN109011868A (en) A kind of catalyst system and its application and purification method and purification system
KR101153362B1 (en) air purification apparatus using nanometal/photocatalyst sol
Mahjoub et al. Low temperature one-pot synthesis of Cu-doped ZnO/Al2O3 composite by a facile rout for rapid methyl orange degradation
Kaur Synergistic effect of biochar impregnated with ZnO nano-flowers for effective removal of organic pollutants from wastewater
CN109414647B (en) Method for low-temperature gas cleaning and catalyst used for method
KR200296828Y1 (en) Air purifying filter device for vehicle air conditioner using photocatalytic filters and adsorbent photocatalytic filters
KR20030033545A (en) Photocatalytic system and method for the removal of volatile organic compounds
JP2007117911A (en) Catalyst for decomposing organic chlorine compound and method for removing organic chlorine compound using the same
Lin et al. Simultaneous removal of volatile organic compounds from cooking oil fumes by using gas-phase ozonation over Fe (OH) 3 nanoparticles
KR20110090271A (en) Activated carbon coated nanometal/photocatalyst sol
CN209333501U (en) A kind of VOCs exhaust-gas efficient purification device
CN110917842A (en) Multiple-effect-in-one organic waste gas purification method and system
CN102698734A (en) Amorphous tantalic acid photocatalyst for decomposing benzene pollutants and preparation method for amorphous tantalic acid photocatalyst
RU2465046C1 (en) Composite adsorption-catalytic material for photocatalytic oxidation
JP2019536611A (en) Low temperature gas cleaning method using ozone and catalytic bag filter for use in this method
KR100502838B1 (en) Air treatment apparatus using photocatalytic filter and adsorption photocatalytic filter and use thereof
KR100478803B1 (en) Processing methode for air purification and equipment therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee