KR20110059437A - The catalyst of fe-mg based for fischer-tropsch synthesis, and preparation and application method of the same - Google Patents

The catalyst of fe-mg based for fischer-tropsch synthesis, and preparation and application method of the same Download PDF

Info

Publication number
KR20110059437A
KR20110059437A KR1020090116181A KR20090116181A KR20110059437A KR 20110059437 A KR20110059437 A KR 20110059437A KR 1020090116181 A KR1020090116181 A KR 1020090116181A KR 20090116181 A KR20090116181 A KR 20090116181A KR 20110059437 A KR20110059437 A KR 20110059437A
Authority
KR
South Korea
Prior art keywords
magnesium
potassium
iron
catalyst
copper
Prior art date
Application number
KR1020090116181A
Other languages
Korean (ko)
Other versions
KR101098005B1 (en
Inventor
문동주
강정식
나기풍
박문주
이상득
바만 아와테 쇼바나
이현주
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020090116181A priority Critical patent/KR101098005B1/en
Publication of KR20110059437A publication Critical patent/KR20110059437A/en
Application granted granted Critical
Publication of KR101098005B1 publication Critical patent/KR101098005B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: Iron-magnesium-based catalyst for fischer-tropsch synthesis and methods for manufacturing and using the same are provided to improve the selectivity of C12 or more hydrocarbon and the conversion rate to carbon monoxide in the fischer-tropsch synthesizing reaction. CONSTITUTION: Iron-magnesium-based catalyst includes iron(Fe), magnesium(Mg), copper(Cu), and potassium(K). An ammonium carbonate solution is added to the mixed aqueous solution of iron precursor and magnesium precursor. The pH of the mixed aqueous solution is regulated into neutral pH. The mixed aqueous solution is filtered, cleaned, dried, and sintered to obtain iron-magnesium mixture. Potassium precursor and copper precursor are immerged in the mixed aqueous solution. Drying and sintering operations are followed.

Description

피셔-트롭시 합성용 철-마그네슘계 촉매, 이의 제조 및 응용 기술 {The Catalyst of Fe-Mg Based for Fischer-Tropsch Synthesis, and Preparation and Application Method of the Same}Fischer-Tropsch synthesis iron-magnesium-based catalyst, its preparation and application technology {The Catalyst of Fe-Mg Based for Fischer-Tropsch Synthesis, and Preparation and Application Method of the Same}

본 발명은 피셔-트롭시(Fischer-Tropsch) 공정에 사용되는 철-마그네슘계 촉매, 이의 제조 방법 및 이를 이용한 합성석유의 제조방법에 관한 것으로 철 촉매에 마그네슘, 구리 및 칼륨을 담지한 피셔-트롭시 합성용 촉매, 이의 제조방법과 상기 촉매상에서 합성가스를 이용한 피셔-트롭시 합성반응에 관한 것이다. The present invention relates to an iron-magnesium-based catalyst used in the Fischer-Tropsch process, a method for preparing the same, and a method for preparing synthetic petroleum using the same. And a Fischer-Tropsch synthesis reaction using syngas on the catalyst.

피셔-트롭시 공정은 합성 가스, 즉 수소 및 일산화탄소로부터 탄화수소를 생산하는 방법으로 1923년에 독일의 화학자 피셔(Fischer)와 트롭시(Tropsch)가 합성가스로부터 합성연료를 제조하는 기술을 개발한 데서 처음으로 시작되었다. The Fischer-Tropsch process is a process for producing hydrocarbons from syngas, hydrogen and carbon monoxide, in 1923, when German chemists Fischer and Tropsch developed a technique for producing synthetic fuel from syngas. It started for the first time.

일산화탄소와 수소는 석탄이나 코크스에서 얻은 수성 가스나 천연가스를 주로 사용하는데 피셔-트롭시 합성반응은 넓은 뜻으로는 수성가스로부터 파라핀 및 올레핀계 탄화수소, 알코올 등을 합성하는 방법도 포함된다. 촉매의 종류, 반응온도, 압력 등에 따라 반응 생성물이 다르지만 주반응에는 다음과 같은 것이 있다. 반응온도 200 ~ 350℃, 상압 ~ 300atm 에서 원료가스를 촉매층에 공급하여 원료가스 1m3 당 100g 전후의 탄화수소유를 얻는다. 촉매가 코발트 또는 니켈계일 때는 사슬모양 탄화수소와 물을 주로 생성하는 반응이 일어나 생성유의 옥탄값이 낮으나, 촉매가 철계인 경우는 가지 모양 탄화수소와 올레핀 및 이산화탄소를 생성하는 반응이 일어나 옥탄값이 높은 연료유를 얻을 수 있다.Carbon monoxide and hydrogen mainly use water gas or natural gas from coal or coke, and the Fischer-Tropsch synthesis reaction broadly includes paraffin and olefin hydrocarbons and alcohols from water gas. Although the reaction products vary depending on the type of catalyst, reaction temperature, pressure, etc., the main reactions include the following. The raw material gas is supplied to the catalyst layer at a reaction temperature of 200 to 350 ° C. and atmospheric pressure of 300 atm to obtain hydrocarbon oils of about 100 g per 1 m 3 of the raw material gas. When the catalyst is cobalt or nickel-based, reactions that mainly produce chain-like hydrocarbons and water occur, resulting in low octane values. You can get u.

19세기 사바티에가 일산화탄소를 접촉 수소화하여 메탄을 생산할 수 있다는 결과를 얻었고, 독일 BASF사는 이에 주목하여 같은 방법으로 1921년 메탄올 합성에 성공하였다. 한편 이 회사에 근무하던 F.피셔와 H.트롭시는 연구를 진전시켜 1923년 산화 화합물을 함유한 액상물을 얻어 신톨(Synthol) 이라고 명명하였다. 신톨은 연료로서는 부적당하였으나, 이것을 열분해한 신틴(Synthin) 은 가솔린의 대용품이 되었다. In the 19th century, Sabatiee was able to produce methane by catalytic hydrogenation of carbon monoxide. BASF, Germany, took note of this and succeeded in methanol synthesis in 1921. Meanwhile, F. Fisher and H. Tropsch, who worked for the company, advanced their research and obtained liquids containing oxidizing compounds in 1923, naming them Synthol. Cintol was unsuitable as a fuel, but synthin, which pyrolyzed, became a substitute for gasoline.

반응압을 낮게 하면 탄화수소유를 생성한다는 점에서 이 방법은 합성석유 합성법으로 발전하여 1936년 연간 5만 톤의 인공 합성석유를 생산하기도 하였다. 현재 남아프리카공화국은 노천굴에서 석탄을 싸게 공급할 수 있기 때문에 사솔 계획(SASOL Plan)이라는 이름으로 1954년부터 이 CTL(Coal to Liquid) 공정에 의한 인공 합성석유를 제조하고 있다. This method was developed into synthetic petroleum synthesizing method by lowering the reaction pressure to produce hydrocarbon oil. In 1936, it produced 50,000 tons of artificial synthetic oil per year. Currently, South Africa has been manufacturing artificial synthetic oil from the Coal to Liquid (CTL) process since 1954 under the name of the SASOL Plan because of the low supply of coal from open pit.

사솔(Sasol)과 쉘(Shell)은 천연가스를 활용하여 합성석유를 제조하는 GTL(Gas to Liquid) 공정을 개발하여 남아프리카공화국 세쿤다에서 1950년대 중반부터, 말레이시아는 빈투루(Binturu)에서 1993년부터 상업생산을 하고 있다.Sasol and Shell developed the Gas to Liquid (GTL) process, which uses natural gas to produce synthetic oil, from the mid-1950s in Secunda, South Africa, and in 1993, in Binturu, Malaysia. Since commercial production.

피셔-트롭시 반응은 일산화탄소와 수소를 포함하는 합성가스를 촉매 하에서 반응시켜 액체 탄화수소를 제조하는 반응으로, 일반적으로 철(Fe)과 코발트(Co)계 촉매를 사용하여 200 ~ 350℃의 반응온도와 상압 ~ 30atm 의 압력에서 수행된다. 합성석유 제조공정에 동반되는 주요 반응메커니즘은 다음과 같다.The Fischer-Tropsch reaction is a reaction for producing a liquid hydrocarbon by reacting a synthesis gas containing carbon monoxide and hydrogen under a catalyst. Generally, a reaction temperature of 200 to 350 ° C. using an iron (Fe) and a cobalt (Co) catalyst is used. And at atmospheric pressure of ~ 30 atm. The main reaction mechanisms involved in the synthetic oil production process are as follows.

CO + 2H2 → -CH2- + H2O (1)CO + 2H 2 → -CH 2- + H 2 O (1)

CO + 3H2 → CH4 + H2O (2)CO + 3H 2 → CH 4 + H 2 O (2)

CO + H2O → CO2 + H2 (3)CO + H2O → CO2 + H2 (3)

2CO ↔ C + CO2 (4)2CO ↔ C + CO2 (4)

현재까지 피셔-트롭시 반응은 다양한 촉매의 제조법이 연구되었고, 이때 촉매의 활성은 반응 생성물의 양에 직결되므로 매우 중요하다. 철계 촉매의 특징은 저가이고, 고온에서 메탄 생성이 낮으며, 올레핀의 선택성이 높다. 하지만 탄화수 소 이외에도 알콜, 알데히드, 케톤 등의 부산물이 많이 생성되는 단점이 있다. To date, the Fischer-Tropsch reaction has been studied for the preparation of various catalysts, wherein the activity of the catalyst is directly related to the amount of reaction product. Iron-based catalysts are characterized by low cost, low methane production at high temperatures, and high olefin selectivity. However, in addition to hydrocarbons, there are disadvantages in that a lot of by-products such as alcohol, aldehydes and ketones are generated.

피셔-트롭시 합성반응에 유효한 금속성분으로는 니켈(Ni), 철(Fe), 코발트(Co), 루테늄(Ru) 등이 있다[ME Dry The Fischer Tropsch process: 1950-2000. Catalysis Today, 2002 Elsevier]. 이 중 루테늄은 너무 고가인 문제가 있고[.E. Iglesia, S. Soled, R.A. Fiato, US Patent No. 4,738,948 (1988)], 니켈은 메탄의 선택성이 너무 큰 문제점이 있으므로 결국 철과 코발트계 촉매가 상업적으로 사용되고 있다. 철과 코발트계 촉매는 반응의 활성, 선택도, 열적 안정성 증가 등의 목적으로 여러 조촉매를 첨가하여 제조되고 있으며, 주로 사용되는 금속으로는 Rh, Pt, Ru 계열의 귀금속과 K, Zn, Mg 등의 다양한 메탈옥사이드를 사용하여 상업용 촉매로 활용하고 있다.Metallic compounds effective for the Fischer-Tropsch synthesis reaction include nickel (Ni), iron (Fe), cobalt (Co), ruthenium (Ru), and the like. ME Dry The Fischer Tropsch process: 1950-2000. Catalysis Today, 2002 Elsevier. Of these, ruthenium is too expensive [.E. Iglesia, S. Soled, R. A. Fiato, US Patent No. 4,738,948 (1988)], nickel has a problem that the selectivity of the methane is too large, eventually iron and cobalt-based catalysts are used commercially. Iron and cobalt-based catalysts are manufactured by adding various cocatalysts for the purpose of increasing the activity, selectivity, and thermal stability of the reaction. Various metal oxides are used as commercial catalysts.

C11 이상의 올레핀의 합성을 위해서는 일반적으로 철촉매가 사용된다[ Schulz, et al., Conference on Natural Gas II, Elsevier, Amsterdam, Surf. Sci. Ser. 81 (1994) 455; D.B. Bukur, K. Okabe, M.P. Rosynek, C. Li, D. Wang, K.R.P.M. Rao, G.P. Huffman, J. Catal. 155 (1995) 353; D.B. Bukur, L. Nowicki, R.K. Manne, X. Lang, J. Catal. 155 (1995) 366.].Iron catalysts are generally used for the synthesis of C 11 and higher olefins [Schulz, et al., Conference on Natural Gas II, Elsevier, Amsterdam, Surf. Sci. Ser. 81 (1994) 455; DB Bukur, K. Okabe, MP Rosynek, C. Li, D. Wang, KRPM Rao, GP Huffman, J. Catal. 155 (1995) 353; DB Bukur, L. Nowicki, RK Manne, X. Lang, J. Catal. 155 (1995) 366.].

본 발명은 기존의 철 촉매 보다 C12 이상의 올레핀의 선택도가 우수한 신규 한 철-마그네슘계 피셔-트롭시 합성용 촉매와 이의 제조방법 및 상기의 촉매상에서 합성가스를 이용한 피셔-트롭시 합성반응에 관한 것이다. The present invention provides a novel iron-magnesium-based Fischer-Tropsch synthesis catalyst having a higher selectivity of C 12 or more olefins than the conventional iron catalyst, a method for preparing the same, and a Fischer-Tropsch synthesis reaction using syngas on the catalyst. It is about.

본 발명은 액체탄화수소를 제조하기 위한 피셔-트롭시 합성용 촉매로서 비교적 고가에 유통되고 있는 C12 이상의 올레핀의 생산을 극대화할 수 있는 피셔-트롭시 합성용 철-마그네슘계 촉매, 및 그의 제조방법을 제공하고 합성석유 제조용 피셔-트롭시 합성에 적용하는 것을 과제로 한다.The present invention provides a Fischer-Tropsch synthesis iron-magnesium-based catalyst capable of maximizing the production of C 12 or more olefins which are distributed at a relatively high price as a Fischer-Tropsch synthesis catalyst for preparing liquid hydrocarbons, and a method for preparing the same. It is a problem to provide and to apply to Fischer-Tropsch synthesis for synthetic oil production.

본 발명은 철, 구리 및 칼륨으로 이루어진 합성석유 제조용 철 촉매에 마그네슘을 도입한 촉매에 관한 것으로, 철촉매에 도입된 마그네슘은 철촉매의 일산화탄소의 전환율을 증가시키고, 구리는 철촉매 상에서 촉매의 환원 온도를 낮춰주어 필요한 에너지를 줄이며, 칼륨은 올레핀과 왁스 범위의 생성물의 선택도를 증가시키는 역할을 한다. 새로운 조성의 피셔-트롭시 철-마그네슘계 촉매는 활성성분의 분산 및 환원성을 증가시키고 일산화탄소의 높은 전환율과 왁스 생성물의 안정된 생산을 유지할 수 있다.The present invention relates to a catalyst in which magnesium is introduced into an iron catalyst for synthesizing petroleum for iron, copper, and potassium, wherein magnesium introduced into the iron catalyst increases the conversion rate of carbon monoxide in the iron catalyst, and copper reduces the catalyst on the iron catalyst. Lowering the temperature reduces the energy required, and potassium increases the selectivity of products in the olefin and wax ranges. The new composition of the Fischer-Tropsch iron-magnesium-based catalyst can increase the dispersibility and reduction of the active ingredient, maintain high conversion of carbon monoxide and stable production of wax products.

최근 급변하는 유가 문제에 대한 대안으로 주목받고 있는 피셔-트롭시 촉매의 활성과 성능개선은 기술 경쟁력 확보와 고부가가치 화합물의 제조 뿐 아니라 공정의 효율성 확보에도 큰 역할을 담당한다. Fischer-Tropsch catalysts, which are attracting attention as an alternative to the rapidly changing oil price problem, play a big role in securing technological competitiveness, manufacturing high value-added compounds, and securing process efficiency.

따라서 본 발명에서 제시한 일산화탄소의 전환율을 높이고 C12 이상인 탄화수소의 선택성이 우수한 철-마그네슘계 촉매를 적용할 경우 경쟁력 있는 공정에 활용하여 안정적으로 탄화수소 생성물을 제조하는 공정을 확보할 수 있다.Therefore, when the iron-magnesium-based catalyst which improves the conversion rate of carbon monoxide proposed in the present invention and has excellent selectivity of hydrocarbons having C 12 or more is applied, it is possible to secure a process for stably producing a hydrocarbon product by utilizing it in a competitive process.

본 발명은 철, 마그네슘, 구리 및 칼륨을 포함하는 합성석유 제조용 철-마그네슘계 촉매로서, 철 1 몰에 대하여 마그네슘 0.04 ~ 0.25 몰을 포함하는 것을 특징으로 하는 합성석유 제조용 철-마그네슘계 촉매에 관한 것이다.The present invention relates to an iron-magnesium catalyst for synthesizing petroleum including iron, magnesium, copper, and potassium, and to an iron-magnesium catalyst for synthesizing petroleum, comprising 0.04 to 0.25 mol of magnesium per mole of iron. will be.

또한 본 발명은 철 전구체와 마그네슘 전구체의 혼합 수용액에 탄산암모늄 용액을 첨부하여 혼합수용액의 pH를 중성으로 조절하는 1단계; 상기 pH가 조절된 혼합 수용액을 여과 및 수세 후에, 건조 및 소성하여 철-마그네슘의 혼합물을 얻는 2단계; 상기 철-마그네슘의 혼합물에 칼륨 전구체 및 구리 전구체를 담지하는 3단계; 및 상기 칼륨 전구체 및 구리 전구체가 담지된 철-마그네슘 혼합물을 건조 및 소성하는 4단계를 포함하는 합성석유 제조용 철-마그네슘계 촉매 제조방법에 관한 것이다.In another aspect, the present invention is to attach the ammonium carbonate solution to the mixed aqueous solution of iron precursor and magnesium precursor to adjust the pH of the mixed aqueous solution to neutral; Filtering and washing the mixed aqueous solution of pH adjustment, followed by drying and calcining to obtain a mixture of iron-magnesium; Supporting the potassium precursor and the copper precursor in the iron-magnesium mixture; And it relates to a method for producing iron-magnesium-based catalyst for synthetic petroleum production comprising the step of drying and calcining the iron-magnesium mixture loaded with the potassium precursor and the copper precursor.

피셔-트롭시 반응은 다양한 촉매의 제조법이 연구되었고, 이때 촉매의 활성은 반응 생성물의 수율에 직결되므로 매우 중요하다. 피셔-트롭시 합성반응에 유효한 금속성분으로는 니켈(Ni), 철(Fe), 코발트(Co), 루테늄(Ru) 등이 사용 가능하지만, 일반적으로 철과 코발트계의 촉매가 상업적으로 주로 사용되고 있다. 특히 C11 이상의 올레핀 합성을 위해서는 일반적으로 철계 촉매가 사용된다.The Fischer-Tropsch reaction is of great importance because the preparation of various catalysts has been studied in which the activity of the catalyst is directly related to the yield of the reaction product. Nickel (Ni), iron (Fe), cobalt (Co), ruthenium (Ru), etc. may be used as the effective metal component for the Fischer-Tropsch synthesis reaction. However, iron and cobalt catalysts are generally used commercially. have. In particular, iron-based catalysts are generally used for the synthesis of C 11 and higher olefins.

본 발명은 이러한 철계 촉매에 관한 것으로, 우수한 CO 전환 특성을 위해서 철계 촉매에 마그네슘을 일정량 도입한 것을 특징으로 한다.The present invention relates to such an iron-based catalyst, characterized in that a certain amount of magnesium introduced into the iron-based catalyst for excellent CO conversion characteristics.

철계 촉매에 도입된 마그네슘은 철계 촉매의 일산화탄소의 전환율을 증가시킨다. 다만, 마그네슘의 함량이 철 1몰에 대하여 0.04 몰비 미만인 경우에는 마그네슘의 효과가 미비하고, 0.25 몰비 초과인 경우에는 촉매의 활성점에 부정적인 영향을 미치는 역효과가 발생할 수 있어 바람직하지 않다.Magnesium introduced in the iron-based catalyst increases the conversion rate of carbon monoxide in the iron-based catalyst. However, when the magnesium content is less than 0.04 molar ratio with respect to 1 mole of iron, the effect of magnesium is inadequate, and when the content of magnesium is more than 0.25 molar ratio, adverse effects that may adversely affect the active site of the catalyst may occur.

마그네슘을 철계 촉매에 담지하였을 때 마그네슘의 농도는 매우 중요하다. 만약 마그네슘의 농도가 너무 낮으면 촉매의 활성점에 부정적인 영향을 끼쳐 반응 활성이 저하되어 마그네슘을 담지에 따른 촉진효과(promoting effect)를 보여주지 못한다. 또한 마그네슘의 몰비가 너무 높으면 수성가스전환반응(water gas shift reaction)을 증진시켜 일산화탄소가 물과 반응하여 이산화탄소로 전환되는 수성가스전환반응이 증가하여 피셔-트롭시 합성반응이 감소하게 되며, 고 탄화수소(higher hydrocarbon)의 선택도 또한 낮아지는 문제점이 있다. 또한 마그네슘의 몰비가 증가하면 저 탄화수소(lower hydrocarbon)의 선택도가 너무 높아지는 문제점이 있으므로 적절한 비율의 마그네슘의 농도는 중요하다. 너무 낮은 비율, 즉 마그네슘의 몰비를 0.04 미만으로 촉매를 제조하면 반응 활성 즉 전환율이 저하되므로 마그네슘 함량은 철 1몰에 대한 몰비 0.04 ~ 0.25로 촉매를 제조하는 것이 바람직하고, 더욱 바람직하게는 0.043 ~ 0.2, 가장 바람직하게는 0.1이다. The concentration of magnesium is very important when magnesium is supported on an iron catalyst. If the magnesium concentration is too low, it will adversely affect the active site of the catalyst and the reaction activity is lowered, which does not show the promoting effect of supporting magnesium. In addition, if the molar ratio of magnesium is too high, it promotes the water gas shift reaction, which increases the water gas shift reaction in which carbon monoxide reacts with water to convert to carbon dioxide, thereby reducing the Fischer-Tropsch synthesis reaction. There is also a problem that the selectivity of (higher hydrocarbon) is also lowered. In addition, since the selectivity of the low hydrocarbon (lower hydrocarbon) is too high when the molar ratio of magnesium increases, the concentration of magnesium in the proper ratio is important. When the catalyst is prepared at a too low ratio, that is, the molar ratio of magnesium is less than 0.04, the reaction activity, that is, the conversion rate is lowered. 0.2, most preferably 0.1.

구리는 철촉매 상에서 촉매의 환원 온도를 낮춰주는 역할을 하며, 칼륨은 올레핀과 왁스 범위의 생성물의 선택도를 증가시키는 역할을 한다[ L. Guczi and P. Putanov, Stud. Surf. Sci. Catal. 61 (1991), p. 251; 7. M.S. Luo and B.H. Davis, Appl. Catal. A: Gen. 246 (2003), p. 171.]. Copper serves to lower the reduction temperature of the catalyst on the iron catalyst, and potassium increases the selectivity of products in the olefin and wax ranges [L. Guczi and P. Putanov, Stud. Surf. Sci. Catal. 61 (1991), p. 251; 7. M.S. Luo and B.H. Davis, Appl. Catal. A: Gen. 246 (2003), p. 171.].

상기 합성석유 제조용 철-마그네슘계 촉매는 철 전구체와 마그네슘 전구체의 혼합 수용액에 탄산암모늄 용액을 첨부하여 혼합수용액의 pH를 중성으로 조절하는 1단계; 상기 pH가 조절된 혼합 수용액을 여과 및 수세 후에, 건조 및 소성하여 철-마그네슘의 혼합물을 얻는 2단계; 상기 철-마그네슘의 혼합물에 칼륨 전구체 및 구 리 전구체를 담지하는 3단계; 및 상기 칼륨 전구체 및 구리 전구체가 담지된 철-마그네슘 혼합물을 건조 및 소성하는 4단계를 포함하는 방법으로 제조한다.The iron-magnesium-based catalyst for synthesizing petroleum may be prepared by attaching an ammonium carbonate solution to a mixed aqueous solution of an iron precursor and a magnesium precursor to adjust the pH of the mixed aqueous solution to neutrality; Filtering and washing the mixed aqueous solution of pH adjustment, followed by drying and calcining to obtain a mixture of iron-magnesium; Carrying out a potassium precursor and a copper precursor in the iron-magnesium mixture; And drying and firing the iron-magnesium mixture on which the potassium precursor and the copper precursor are supported.

상기 철 전구체로는 예를 들어 질산철(IRON(III) NITRATE), 염화철(IRON(III) CHLORIDE), 황산제이철암모늄(AMMONIUM IRON(III) SULFATE), 인산철(IRON(III) PHOSPHATE), 불화철(IRON(III) FLUORIDE) 및 브롬화철(IRON(III) BROMIDE) 등이 1종 이상 사용될 수 있으나 이에 한정하는 것은 아니다.Examples of the iron precursor include iron nitrate (IRON (III) NITRATE), iron chloride (IRON (III) CHLORIDE), ferric ammonium sulfate (AMMONIUM IRON (III) SULFATE), iron phosphate (IRON (III) PHOSPHATE), and fluoride. Iron (IRON (III) FLUORIDE) and iron bromide (IRON (III) BROMIDE) and the like may be used, but is not limited thereto.

상기 칼륨 전구체로는 예를 들어 칼륨 아세테이트(POTASSIUM ACETATE), 중탄산칼륨(POTASSIUM BICARBONATE), 보론수소화칼륨(POTASSIUM BOROHYDRIDE), 브롬산 칼륨(POTASSIUM BROMATE), 브로민화칼륨(POTASSIUM BROMIDE), 탄산칼륨(POTASSIUM CARBONATE), 염소산칼륨(POTASSIUM CHLORATE), 염화칼륨(POTASSIUM CHLORIDE), 구연산칼륨(POTASSIUM CITRATE), 시안화칼륨(POTASSIUM CYANIDE), 칼륨황산염(POTASSIUM DISULFATE), 에톡사이드칼륨(POTASSIUM ETHOXIDE), 불화칼륨(POTASSIUM FLUORIDE), 포름산칼륨(POTASSIUM FORMATE), 수산화칼륨(POTASSIUM HYDROXIDE), 요오드화칼륨(POTASSIUM IODATE), 질산칼륨(POTASSIUM NITRATE), 아질산칼륨(POTASSIUM NITRITE), 황산칼륨(POTASSIUM SULFATE) 등이 1종 이상 사용될 수 있으나 이에 한정하는 것은 아니다.Examples of the potassium precursors include potassium acetate (POTASSIUM ACETATE), potassium bicarbonate (POTASSIUM BICARBONATE), potassium boron hydride (POTASSIUM BOROHYDRIDE), potassium bromide (POTASSIUM BROMATE), potassium bromide (POTASSIUM BROMIDE), potassium carbonate (POTASSIUM) CARBONATE, Potassium Chloride, Potassium Chloride, Potassium Citrate, Potassium Cyanide, Potassium Sulphate, Potassium Sulphate, Potassium Fluoride ), Potassium formate (POTASSIUM FORMATE), potassium hydroxide (POTASSIUM HYDROXIDE), potassium iodide (POTASSIUM IODATE), potassium nitrate (POTASSIUM NITRATE), potassium nitrite (POTASSIUM NITRITE), potassium sulfate (POTASSIUM SULFATE), etc. However, it is not limited thereto.

상기 구리 전구체로는 예를 들어 아세틸아세트산 구리(COPPER(II) ACETYLACETONATE), 황산구리(COPPER(II) SULFATE), 염화구리(COPPER(II) CHLORIDE), 질산 구리(COPPER(II) NITRATE), 탄산구리(COPPER(II) CARBONATE), 브롬화구리(COPPER(II) BROMIDE) 및 불화구리(COPPER(II) FLUORIDE) 등이 1종 이상 사용될 수 있으나 이에 한정하는 것은 아니다.Examples of the copper precursor include copper acetyl acetate (COPPER (II) ACETYLACETONATE), copper sulfate (COPPER (II) SULFATE), copper chloride (COPPER (II) CHLORIDE), copper nitrate (COPPER (II) NITRATE), copper carbonate (COPPER (II) CARBONATE), copper bromide (COPPER (II) BROMIDE), copper fluoride (COPPER (II) FLUORIDE) and the like may be used one or more, but is not limited thereto.

철 전구체와 마그네슘 전구체의 혼합 수용액은 일정량의 탄산암모늄 용액을 첨가하여 제조할 수 있다, 이때의 수용액 온도는 70 ~ 90℃의 범위인 것이 바람직하다. 이러한 혼합 수용액에 탄산암모늄 용액의 양을 조절하면서 첨부하여 중성의 용액을 제조한다. 다시 여과 및 수세를 거쳐 건조 및 소성을 하며, 이 때 건조는 110 ~ 130℃에서 10 ~ 14시간 동안, 소성은 300 ~ 400℃에서 1 시간 내외로 하는 것이 바람직하다. 소성된 철-마그네슘의 혼합물에 칼륨 전구체 및 구리 전구체를 담지하고, 칼륨 전구체 및 구리 전구체가 담지된 철-마그네슘의 혼합물을 건조 및 소성하여 촉매를 제조한다, 이 때 건조는 100 ~ 120℃에서 약 2 시간 동안, 소성은 350 ~ 450℃에서 3 ~ 5시간 동안 하는 것이 바람직하다.The mixed aqueous solution of the iron precursor and the magnesium precursor can be prepared by adding a certain amount of ammonium carbonate solution, wherein the aqueous solution temperature is preferably in the range of 70 ~ 90 ℃. A neutral solution is prepared by attaching to the mixed aqueous solution while controlling the amount of the ammonium carbonate solution. After filtration and washing with water, drying and baking are performed. At this time, the drying is preferably performed at 110 to 130 ° C. for 10 to 14 hours, and the firing is performed at about 300 to 400 ° C. for about 1 hour. A catalyst is prepared by supporting a potassium precursor and a copper precursor in a mixture of calcined iron-magnesium, and drying and calcining a mixture of iron-magnesium on which the potassium precursor and a copper precursor are supported, wherein the drying is about 100 to 120 ° C. For 2 hours, firing is preferably performed at 350 to 450 ° C. for 3 to 5 hours.

이와 같이 본 발명에 따른 철-마그네슘계 촉매를 사용하여 피셔-트롭시반응을 수행함으로써 합성석유를 제조할 수 있다. 이 때 합성석유 제조 조건은 특별히 한정하지는 않으나, 바람직하게는 반응온도 100 ~ 300 oC, 반응압력 10 ~ 50 bar 및 H2/CO = 1 ~ 2의 반응조건 하에서 실시할 수 있다.As such, synthetic petroleum may be prepared by performing the Fischer-Tropsch reaction using the iron-magnesium-based catalyst according to the present invention. At this time, the synthetic oil production conditions are not particularly limited, but preferably may be carried out under the reaction conditions of the reaction temperature 100 ~ 300 ° C, reaction pressure 10 ~ 50 bar and H 2 / CO = 1 ~ 2.

본 발명의 보다 확실한 이해를 돕기 위해 보다 구체화된 바람직한 촉매제조예, 촉매 특성 분석예 및 촉매반응 실시예를 통하여 본 발명의 내용을 상세히 설명하기로 한다. 다만 이들 실시예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐, 본 발명의 권리 범위가 이들 실시예로 한정되는 것은 아니다.In order to facilitate a more clear understanding of the present invention, the contents of the present invention will be described in detail through preferred catalyst preparation examples, catalyst characterization examples, and catalytic reaction examples. However, these examples are only presented to understand the content of the present invention, the scope of the present invention is not limited to these examples.

[[ 촉매제조예Catalyst Production Example ]]

촉매 catalyst 제조예Manufacturing example 1.  One. MgMg 0.0435  0.0435 몰비의Molar 촉매 제조 Catalyst preparation

1.4M 질산철(Fe(NO3)29H2O)과 3.0M 질산마그네슘(Mg(NO3)26H2O) 수용액 각각 61.88ml, 1.26ml를 80℃ 물 50ml에 적하하여 첨가하고 1.0M 탄산암모늄 용액 (NH4)2CO3)을 추가하여 pH 7을 맞추었다. 이 후 침전물은 여과과정을 통하여 분리하고 증류수를 이용해 세정과정을 반복한 후, 120℃에서 12시간 동안 건조하고, 350℃에서 1시간 동안 소성하였다.61.88 ml and 1.26 ml of 1.4 M iron nitrate (Fe (NO 3 ) 2 9H 2 O) and 3.0 M magnesium nitrate (Mg (NO 3 ) 2 6H 2 O) solutions were added dropwise to 50 ml of water at 80 ° C, and then 1.0M PH 7 was adjusted by adding ammonium carbonate solution (NH 4 ) 2 CO 3 ). Thereafter, the precipitate was separated through filtration and washed repeatedly with distilled water, dried at 120 ° C. for 12 hours, and calcined at 350 ° C. for 1 hour.

소성된 철-마그네슘 화합물에 2 중량%의 탄산칼륨(K2CO3)과 1 중량% 질산구리(Cu(NO3)23H2O) 수용액을 각각 7.59ml, 7.60ml를 함침법을 이용하여 담지하였다. 담지된 물질을 다시 110℃ 에서 2시간 동안 건조 후, 400℃에서 4시간 동안 소성하여 촉매를 제조하였다.The calcined iron-magnesium compound was impregnated with 7.59 ml and 7.60 ml of 2 wt% aqueous potassium carbonate (K 2 CO 3 ) and 1 wt% copper nitrate (Cu (NO 3 ) 2 3H 2 O) solutions, respectively. It was supported. The supported material was dried again at 110 ° C. for 2 hours, and then calcined at 400 ° C. for 4 hours to prepare a catalyst.

촉매 catalyst 제조예Manufacturing example 2.  2. MgMg 0.1  0.1 몰비의Molar 촉매 제조 Catalyst preparation

상기 실시예 1과 같은 방법으로 제조하되, 1.4M 질산철(Fe(NO3)29H2O)과 3.0M 질산마그네슘(Mg(NO3)26H2O) 수용액 각각 71.42 ml, 3.33 ml를 80 ℃ 물 50 ml에 적하하여 첨가하여 촉매를 제조하였다.Prepared in the same manner as in Example 1, except that 71.42 ml and 3.33 ml of 1.4M iron nitrate (Fe (NO 3 ) 2 9H 2 O) and 3.0M magnesium nitrate (Mg (NO 3 ) 2 6H 2 O) aqueous solution, respectively The catalyst was prepared by dropwise addition to 50 ml of water at 80 ° C.

촉매 catalyst 제조예Manufacturing example 3.  3. MgMg 0.2  0.2 몰비의Molar 촉매 제조 Catalyst preparation

상기 실시예 1과 같은 방법으로, 1.4M 질산철(Fe(NO3)29H2O)과 3.0M 질산마그네슘(Mg(NO3)26H2O) 수용액 각각 72.15ml, 6.67ml를 80℃ 물 50ml에 적하하여 첨가하여 촉매를 제조하였다.In the same manner as in Example 1, 72.15ml, 6.67ml of 1.4M iron nitrate (Fe (NO 3 ) 2 9H 2 O) and 3.0M magnesium nitrate (Mg (NO 3 ) 2 6H 2 O) aqueous solution were 80 ° C. The catalyst was prepared by dropwise addition to 50 ml of water.

촉매 비교 Catalyst Comparison 제조예Manufacturing example 1.  One. MgMg 를 포함하지 않는 촉매의 제조Preparation of a catalyst not containing

1.4M 질산철(Fe(NO3)29H2O) 수용액 72.15ml를 80℃ 물 50ml에 첨가하고 1.0M 탄산암모늄(NH4)2CO3) 수용액을 추가하여 pH 7을 맞추었다. 이 후 침전물은 여과과정을 통하여 분리하고 증류수를 이용해 세정과정을 반복한 후, 120℃에서 12시간 동안 건조하고, 350℃에서 1시간 동안 소성하였다.72.15 ml of a 1.4 M aqueous solution of iron nitrate (Fe (NO 3 ) 2 9H 2 O) was added to 50 ml of water at 80 ° C., and a pH of 7 was added by adding 1.0 M aqueous ammonium carbonate (NH 4 ) 2 CO 3 ) solution. Thereafter, the precipitate was separated through filtration and washed repeatedly with distilled water, dried at 120 ° C. for 12 hours, and calcined at 350 ° C. for 1 hour.

소성된 화합물에 2 중량%의 탄산칼륨(K2CO3)과 1 중량% 질산구리(Cu(NO3)23H2O) 수용액을 각각 9.97ml, 9.97ml 첨가하여 함침법을 이용하여 담지 하였다. 담지된 물질을 다시 110℃ 에서 2시간 동안 건조 후, 400℃에서 4시간 동안 소성하여 촉매를 제조하였다.9.97 ml and 9.97 ml of 2 wt% potassium carbonate (K 2 CO 3 ) and 1 wt% copper nitrate (Cu (NO 3 ) 2 3H 2 O) aqueous solutions were added to the calcined compound, and supported by impregnation. . The supported material was dried again at 110 ° C. for 2 hours, and then calcined at 400 ° C. for 4 hours to prepare a catalyst.

[촉매특성 [Catalyst Characteristics 분석예Analysis example ]]

촉매특성 Catalyst Characteristics 분석예Analysis example 1. 촉매의  1. Catalyst FeFe 결정크기,  Crystal Size, BETBET 표면적 및 기공크기 측정 Surface area and pore size measurement

촉매제조예 1-3 및 촉매 비교 제조예 1의 촉매의 구조 특성(Structural properties) 및 조직 특성(textural properties)을 측정하여 하기 표 1에 나타내었다.The structural properties and the textural properties of the catalysts of Catalyst Preparation Example 1-3 and Comparative Catalyst Preparation Example 1 were measured and shown in Table 1 below.

촉매의 구조 특성에 따른 FT 반응 활성의 변화를 알아보기 위하여 활성금속의 입자크기는 X-ray 회절분석에 의해, BET 표면적과 입자의 기공크기는 질소의 물리흡착에 의해 각각 측정하였다.The particle size of the active metal was measured by X-ray diffraction analysis, and the BET surface area and the pore size of the particles were measured by physical adsorption of nitrogen.

촉매의 구조 및 조직특성 결과Structure and Structure Characteristics of Catalysts 촉매 catalyst Mg/Fe
(원자비)
Mg / Fe
(Atomic costs)
결정크기a, (nm)Crystal size a , (nm) BET S.Ab (m2/g)BET SA b (m 2 / g) 전체 기공 (volb.,cc/g)Total porosity (vol b ., Cc / g) 미세기공
(volc., cc/g)
Micropores
(vol c ., cc / g)
평균기공크기d
(Å)
Average pore size d
(A)
촉매제조예 1Catalyst Preparation Example 1 0.04350.0435 14.314.3 27.6127.61 0.05190.0519 2.213x10-3 2.213 x 10 -3 74.674.6 촉매제조예 2Catalyst Preparation Example 2 0.10.1 14.114.1 28.8928.89 0.31960.3196 3.241x10-3 3.241 x 10 -3 442.6442.6 촉매제조예 3Catalyst Preparation Example 3 0.20.2 13.913.9 36.0536.05 0.05240.0524 3.421x10-3 3.421 x 10 -3 64.864.8 촉매비교제조예 1Catalyst Comparison Preparation Example 1 00 15.215.2 31.7831.78 0.21630.2163 3.024x10-3 3.024 x 10 -3 272.3272.3

aXRD 측정값이용 쉬러 방정식 (Scherrer equation) 에 의해 계산. a Calculated by the Scherrer equation using XRD measurements.

bN2-흡착등온식 (N2-Adsorption Isotherm) 으로부터 유도. b N 2 - adsorption isotherm derived from a (N 2 -Adsorption Isotherm).

cN2-흡착등온식 (N2-Adsorption Isotherm) 으로부터의 't'플롯으로 계산.N c 2 - calculated as 't' from the plot of the adsorption isotherm (N 2 -Adsorption Isotherm).

d기공크기분포 (Pore Size Distribution) 로부터 유도. d Derived from the Pore Size Distribution.

상기 표 1에서 볼 수 있는 것과 같이 마그네슘이 많이 첨가될수록 활성금속인 철의 입자크기는 줄어들었으며, 반면 BET 표면적의 감소는 없었고 기공크기는 특이한 변화를 나타내지 않았다. As can be seen in Table 1, the more the magnesium is added, the smaller the particle size of iron, which is the active metal, while there is no decrease in the BET surface area, and the pore size did not show an unusual change.

촉매특성 Catalyst Characteristics 분석예Analysis example 2.  2. XRDXRD 분석 analysis

촉매제조예 1-3 및 촉매 비교 제조예 1의 촉매의 결정크기 및 구조적인 특징을 XRD를 이용하여 측정하였고 도 1에 나타내었다.Crystal size and structural characteristics of the catalysts of Preparation Example 1-3 and Comparative Catalyst Preparation Example 1 were measured using XRD and are shown in FIG. 1.

마그네슘이 함유되지 않은 촉매 비교예 1에서 α-Fe2O3 hematite phase (indexed as JCPDS file No. 84-0311)와 일치하는 피크가 나타났고 피크의 2θ 값은 24.2˚, 33.2˚, 35.6˚, 40.8˚, 49.5˚, 54.1˚, 57.6˚, 62.3˚ 및 64.0˚이었다. 또한 다른 촉매 실시예 1-3 촉매에서도 α-Fe2O3 의 피크가 관찰되었다. 마그네슘이 담지되면서 다른 피크가 관찰되지 않은 것으로 보아 마그네슘이 적은 농도로 촉매에 잘 분산된 것을 확인할 수 있었고, 마그네슘의 농도가 증가할수록 (012), (104), (110), (024) 의 피크가 조금씩 감소하였다. 이는 촉매의 결정(crystallite) 크기의 감소로 피크의 크기가 감소하였음을 확인할 수 있었다. In Comparative Example 1 catalyst containing no magnesium, a peak coinciding with the α-Fe 2 O 3 hematite phase (indexed as JCPDS file No. 84-0311) was found. The peak 2θ value was 24.2˚, 33.2 °, 35.6 °, 40.8 °, 49.5 °, 54.1 °, 57.6 °, 62.3 ° and 64.0 °. In addition, the peak of α-Fe 2 O 3 catalyst in other embodiments 1 to 3 the catalyst was observed. As magnesium was supported, no other peak was observed, indicating that magnesium was well dispersed in the catalyst at a low concentration. As the concentration of magnesium increased, the peaks of (012), (104), (110), and (024) were observed. Decreased little by little. This was confirmed that the peak size was reduced by decreasing the crystallite size of the catalyst.

촉매특성 Catalyst Characteristics 분석예Analysis example 3.  3. TEMTEM 분석 analysis

촉매제조예 1-3 및 촉매 비교 제조예 1의 촉매에 대한 입자크기를 측정하였으며, 그 결과는 도 2에 나타내었다.Particle sizes of the catalysts of Catalyst Preparation Example 1-3 and Catalyst Comparative Preparation Example 1 were measured, and the results are shown in FIG. 2.

촉매 비교 제조예 1 의 결정은 대부분 타원형 모양으로 나타났으며, 촉매 제조예 1 의 결정은 원형 모양으로 생긴 것을 확인할 수 있었다. 촉매 제조예 2 에서는 불규칙한 모양으로 타원형과 원형의 결정이 생겼으며, 촉매 제조예 3 에서는 다른 크기로 원형의 결정이 생겼다. Most of the crystals of Comparative Preparation Example 1 appeared to have an oval shape, and it was confirmed that the crystals of Catalyst Preparation Example 1 had a circular shape. In Catalyst Preparation Example 2, crystals of elliptical shape and circular shape were formed in an irregular shape. In Catalyst Preparation Example 3, circular crystals were formed in different sizes.

또한 마그네슘이 들어가면서 결정의 크기가 감소하였으며, 이는 XRD 데이터에서의 결정의 크기 감소와 일치하는 것을 확인할 수 있다. 그리고 마그네슘이 들어가지 않은 촉매 비교 제조예 1 은 전체적으로 마그네슘이 들어간 다른 촉매의 모양과 다르게 나타난 것을 확인할 수 있었다.In addition, the size of the crystals decreased as magnesium was added, which is consistent with the size reduction of the crystals in the XRD data. In addition, Comparative Example 1 of the catalyst containing no magnesium was found to be different from that of the other catalyst containing magnesium as a whole.

촉매특성 Catalyst Characteristics 분석예Analysis example 4.  4. TPRTPR 분석 analysis

촉매 제조예 1-3 및 촉매 비교 제조예 1 의 촉매를 승온환원법(TPR, Temperature Programmed Reduction)을 이용하여 온도에 따른 환원성을 측정하여 도 3에 나타내었다. Catalyst Preparation Example 1-3 and Comparative Example 1 The catalyst of Preparation Example 1 was shown in FIG. 3 by measuring the reducibility according to temperature using a Temperature Programmed Reduction (TPR).

승온 환원법은 촉매 등 고체 물질의 환원 용이도를 조사하는 실험적 방법으로 시료를 환원가스(주로 수소) 안에서 일정 속도로 승온시키고 환원가스의 감소를 측정함으로써 시료의 환원 용이성과 환원 메카니즘을 조사하는 것으로, 촉매 비교 제조예 1 및 촉매 제조예 1-3의 촉매 상에서 수소를 이용하여 승온 환원법을 측정하였다.The temperature reduction method is an experimental method to investigate the ease of reduction of a solid material such as a catalyst. It is to investigate the ease of reduction and the reduction mechanism of the sample by raising the sample at a constant rate in a reducing gas (mainly hydrogen) and measuring the reduction of the reducing gas. The temperature reduction method was measured using hydrogen on the catalysts of Comparative Preparation Example 1 and Catalyst Preparation Examples 1-3.

촉매 제조예 1-3 및 촉매 비교 제조예 1의 모든 촉매 상에서 300 ~ 400 ℃ 범위의 온도에서 첫 번째 피크가 관찰되었다. 첫 번째 피크는 Fe3O4가 FeO로 환원되는 피크이고, 마그네슘 성분이 증가할수록 낮은 온도로 피크가 이동하는 것을 확인할 수 있었다. 이는 마그네슘의 첨가에 의해 Fe3O4가 지지체 또는 마그네슘과의 상호작용을 통해 낮은 온도에서 환원이 일어나게 된다는 것을 의미하며, 더 작은 에너지로 촉매를 활성화시킬 수 있음을 뜻한다. The first peak was observed at temperatures ranging from 300 to 400 ° C. on all catalysts of Catalyst Preparation Examples 1-3 and Comparative Catalyst Preparation Example 1. The first peak is a peak in which Fe 3 O 4 is reduced to FeO, it was confirmed that the peak moves to a lower temperature as the magnesium component increases. This means that the addition of magnesium results in the reduction of Fe 3 O 4 at low temperatures through interaction with the support or magnesium, which means that the catalyst can be activated with less energy.

그러나, 촉매 제조예 1의 촉매에서는 Fe3O4 가 바로 FeO 로 환원되면서 높은 온도로 피크가 이동하였다. 또한 두 번째의 넓은 피크는 FeO가 Fe로 환원되면서 나타나는 피크로 이 반응은 매우 느린 반응이므로 피크가 넓게 나타나는 것을 확인할 수 있었다.However, in the catalyst of Preparation Example 1, the peak moved to a high temperature while Fe 3 O 4 was directly reduced to FeO. In addition, the second broad peak is a peak appearing as FeO is reduced to Fe. This reaction is a very slow reaction, and thus the peak was found to be wide.

[[ 실시예Example ]]

실시예Example 1. 촉매  1. Catalyst 제조예Manufacturing example 1의 촉매 상에서 피셔- Fischer- on catalyst of 1 트롭시Tropsey 반응실험 Reaction

피셔-트롭시 반응용 고정층 반응기(Fixed bed reactor) 상에 촉매 제조예 1의 촉매 0.5 g을 충진한 다음, 40시간 동안 반응을 진행시켰다. 반응조건은 250 ℃, 20 bar, H2/CO = 2 (부피비) 하에서 반응을 진행시키면서 반응가스 생성물은 on-line GC (TCD, FID)와 생성된 액상 생성물은 off-line GC (FID)를 사용하여 분석하였다. 반응실험의 결과로서 CO와 H2의 전환율, 탄화수소의 선택도 및 올레핀의 선택도는 하기 표 2에 나타내었다.0.5 g of the catalyst of Preparation Example 1 was charged onto a Fischer-Tropsch fixed bed reactor, and then the reaction was allowed to proceed for 40 hours. Reaction conditions were carried out at 250 ℃, 20 bar, H 2 / CO = 2 (volume ratio) while the reaction gas product on-line GC (TCD, FID) and the resulting liquid product off-line GC (FID) Analyzed using. The conversion of CO and H 2 , the selectivity of hydrocarbons and the selectivity of olefins as a result of the reaction experiment are shown in Table 2 below.

실시예Example 2. 촉매  2. Catalyst 제조예Manufacturing example 2의 촉매 상에서 피셔- Fischer on 2 catalysts 트롭시Tropsey 반응실험 Reaction

실시예 1에서 촉매 제조예 1 대신에 촉매 제조예 2의 촉매를 사용하여 동일한 반응 조건하에서 피셔-트롭시 반응실험을 수행하였다. CO와 H2의 전환율, 탄화수소의 선택도 및 올레핀의 선택도는 표 2에 정리하였다. The Fischer-Tropsch reaction experiment was carried out under the same reaction conditions using the catalyst of Catalyst Preparation Example 2 instead of Catalyst Preparation Example 1 in Example 1. Conversion rates of CO and H 2 , selectivity of hydrocarbons and selectivity of olefins are summarized in Table 2.

실시예Example 3. 촉매  3. Catalyst 제조예Manufacturing example 3의 촉매 상에서 피셔- Fischer- on 3 catalysts 트롭시Tropsey 반응실험 Reaction

실시예 1에서 촉매 제조예 1 대신에 촉매 제조예 3의 촉매를 사용하여 동일한 반응 조건하에서 피셔-트롭시 반응실험을 수행하였다. CO와 H2의 전환율, 탄화수소의 선택도 및 올레핀의 선택도는 표 2에 정리하였다. The Fischer-Tropsch reaction experiment was carried out under the same reaction conditions using the catalyst of Catalyst Preparation Example 3 instead of Catalyst Preparation Example 1 in Example 1. Conversion rates of CO and H 2 , selectivity of hydrocarbons and selectivity of olefins are summarized in Table 2.

비교예Comparative example 1. 촉매 비교  1. Catalyst Comparison 제조예Manufacturing example 1의 촉매 상에서 피셔- Fischer- on catalyst of 1 트롭시Tropsey 반응실험 Reaction

실시예 1에서 촉매 제조예 1 대신에 촉매 비교 제조예 1의 촉매를 사용하여 동일한 반응조건하에서 피셔-트롭시 반응실험을 수행하였다. CO와 H2의 전환율, 탄화수소의 선택도 및 올레핀의 선택도는 표 2에 정리하였다. Fischer-Tropsch reaction experiments were carried out under the same reaction conditions using the catalyst of Comparative Preparation Example 1 instead of Catalyst Preparation Example 1 in Example 1. Conversion rates of CO and H 2 , selectivity of hydrocarbons and selectivity of olefins are summarized in Table 2.

비교예 1Comparative Example 1 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 촉매catalyst 촉매 비교 제조예 1Catalyst Comparative Preparation Example 1 촉매 제조예 1Catalyst Preparation Example 1 촉매 제조예 2Catalyst Preparation Example 2 촉매 제조예 3Catalyst Preparation Example 3 CO conversion (%)CO conversion (%) 45.445.4 54.354.3 60.660.6 60.160.1 H2 conversion (%)H 2 conversion (%) 42.742.7 42.242.2 43.343.3 43.643.6 HC selectivity(wt%)HC selectivity (wt%) CH4 CH 4 6.016.01 3.943.94 4.744.74 7.267.26 C2-C4 C 2 -C 4 6.126.12 5.875.87 6.916.91 9.129.12 C2 =-C4 = C 2 = -C 4 = 4.044.04 2.482.48 3.013.01 4.194.19 C5-C11 C 5 -C 11 1.631.63 1.581.58 1.661.66 2.842.84 C5 =-C11 = C 5 = -C 11 = 0.860.86 0.760.76 0.830.83 1.581.58 C12-C18 C 12 -C 18 26.0426.04 21.3921.39 22.0922.09 25.4725.47 C12 =-C18 = C 12 = -C 18 = 32.6332.63 27.2827.28 31.6131.61 36.8936.89 C19-C25 C 19 -C 25 60.1860.18 67.2267.22 64.5964.59 55.3955.39 Olefin selectivity(wt%)Olefin selectivity (wt%) C2 =-C4 =/C2-C4 C 2 = -C 4 = / C 2 -C 4 0.660.66 0.420.42 0.440.44 0.460.46 C5 =-C11 =/C5-C11 C 5 = -C 11 = / C 5 -C 11 0.520.52 0.480.48 0.500.50 0.550.55

표 2에서 볼 수 있는 바와 같이, 40시간 반응 후 마그네슘이 포함되지 않은 촉매 비교 제조예 1의 촉매 상에서 CO의 전환율은 43% 정도인 반면에, 마그네슘이 첨가된 촉매 제조예 1, 2 및 3의 촉매 상에서는 CO의 전환율이 54-60% 정도로 매우 높은 것을 확인할 수 있었다. 마그네슘이 첨가된 촉매 상에서 실시예 1-3의 결과를 비교하면, 마그네슘이 첨가된 촉매 상에서 CO의 평균 전환율은 10-15% 정도 증가하였으나, H2 의 전환율은 크게 증가하지 않았다. As can be seen in Table 2, after 40 hours of reaction, the conversion rate of CO on the catalyst of Comparative Preparation Example 1 containing no magnesium was about 43%, whereas the magnesium Preparation Catalysts of Examples 1, 2, and 3 were added. On the catalyst it was confirmed that the conversion of CO is very high, such as 54-60%. Comparing the results of Examples 1-3 on the catalyst with magnesium added, the average conversion of CO on the catalyst with magnesium increased by 10-15%, but the conversion of H 2 did not increase significantly.

또한, 마그네슘이 첨가되지 않은 촉매 비교 비교예 1 및 마그네슘이 첨가된 촉매 제조예 1-3의 촉매 상에서 특히 C1-C11 의 선택도가 C12 + 보다 상대적으로 낮은 것을 확인할 수 있으며, C12-C25 의 선택도가 두드러지게 높은 것을 확인할 수 있다. 따라서 종래의 철계 촉매와 본원발명에 따른 철-마그네슘계 촉매에 있어 C12 이상의 탄화수소에 대한 선택성은 우수하게 유지됨을 확인할 수 있다. In addition, it can be seen that the selectivity of C 1 -C 11 is relatively lower than C 12 + on the catalyst of Comparative Example 1 without magnesium and Catalyst Preparation Example 1-3 with magnesium added, and C 12 It can be seen that the selectivity of -C 25 is significantly high. Therefore, it can be confirmed that the selectivity for C 12 or more hydrocarbons is excellently maintained in the conventional iron catalyst and the iron-magnesium catalyst according to the present invention.

본 발명에서는 철 촉매에서 일정 비율의 마그네슘 성분을 첨가하여 피셔-트롭시 반응의 활성과 왁스 선택도를 증가시킬 수 있음을 확인하였고 전체적으로 마그네슘이 담지됨에 따라 CO 전환율에 영향을 주었으며 선택도 등을 관찰한 결과 종래의 철계 촉매에 비하여 동등 이상임을 확인하였다. In the present invention, it was confirmed that the iron catalyst can increase the activity and wax selectivity of the Fischer-Tropsch reaction by adding a certain amount of magnesium component, and as a whole magnesium is supported, it affects the CO conversion rate and observes the selectivity and the like. As a result, it was confirmed that they are equivalent to or more than conventional iron catalysts.

도 1은 본 발명의 제조예 및 비교제조예에서 제조된 촉매의 XRD 분석결과이다.1 is an XRD analysis result of the catalyst prepared in Preparation Example and Comparative Preparation Example of the present invention.

도 2는 본 발명의 제조예 및 비교제조예에서 제조된 촉매의 TEM 분석결과이다.2 is a TEM analysis result of the catalyst prepared in Preparation Example and Comparative Preparation Example of the present invention.

도 3는 본 발명의 제조예 및 비교제조예에서 제조된 촉매의 TPR 분석결과이다.3 is a result of TPR analysis of the catalyst prepared in Preparation Examples and Comparative Preparation Examples of the present invention.

Claims (7)

철, 마그네슘, 구리 및 칼륨을 포함하며, 상기 마그네슘은 상기 철 1몰에 대하여 0.04 ~ 0.25몰의 비율로 포함되어 있는 것을 특징으로 하는 합성석유 제조용 철-마그네슘계 촉매.Iron, magnesium, copper and potassium, wherein the magnesium is iron-magnesium-based catalyst for synthetic petroleum production, characterized in that contained in a ratio of 0.04 to 0.25 mol per 1 mol of iron. 철 전구체와 마그네슘 전구체의 혼합 수용액에 탄산암모늄 용액을 첨부하여 혼합 수용액의 pH를 중성으로 조절하는 1단계;Attaching an ammonium carbonate solution to the mixed aqueous solution of the iron precursor and the magnesium precursor to adjust the pH of the mixed aqueous solution to neutral; 상기 pH가 조절된 혼합 수용액을 여과 및 수세 후에, 건조 및 소성하여 철-마그네슘의 혼합물을 얻는 2단계;Filtering and washing the mixed aqueous solution of pH adjustment, followed by drying and calcining to obtain a mixture of iron-magnesium; 상기 철-마그네슘의 혼합물에 칼륨 전구체 및 구리 전구체를 담지하는 3단계; 및Supporting the potassium precursor and the copper precursor in the iron-magnesium mixture; And 상기 칼륨 전구체 및 구리 전구체가 담지된 철-마그네슘 혼합물을 건조 및 소성하는 4단계Four steps of drying and firing the iron-magnesium mixture loaded with the potassium precursor and the copper precursor 를 포함하는 합성석유 제조용 철-마그네슘계 촉매 제조방법. Iron-magnesium-based catalyst production method for producing synthetic oil comprising a. 제 2 항에 있어서, 상기 철 전구체는 질산철, 염화철, 황산제이철암모늄, 인산철, 불화철 및 브롬화철 중에서 선택된 1종 이상의 화합물인 것을 특징으로 하는 합성석유 제조용 철-마그네슘계 촉매 제조방법.The method of claim 2, wherein the iron precursor is at least one compound selected from iron nitrate, iron chloride, ferric ammonium sulfate, iron phosphate, iron fluoride, and iron bromide. 제 2 항에 있어서, 상기 마그네슘 전구체는 황산마그네슘, 염화마그네슘, 질산마그네슘, 요오드산마그네슘, 인산마그네슘, 수소화마그네슘, 불화마그네슘, 브롬화마그네슘 및 인산암모늄마그네슘으로 이루어진 군에서 선택된 1종 이상의 화합물인 것을 특징으로 하는 합성석유 제조용 철-마그네슘계 촉매의 제조방법.3. The magnesium precursor is at least one compound selected from the group consisting of magnesium sulfate, magnesium chloride, magnesium nitrate, magnesium iodide, magnesium phosphate, magnesium hydride, magnesium fluoride, magnesium bromide and magnesium ammonium phosphate. A method for producing an iron-magnesium catalyst for producing synthetic oil. 제 2 항에 있어서, 상기 칼륨 전구체는 칼륨 아세테이트, 중탄산칼륨, 보론수소화칼륨, 브롬산 칼륨, 브로민화칼륨, 탄산칼륨, 염소산칼륨, 염화칼륨, 구연산칼륨, 시안화칼륨, 칼륨황산염, 에톡사이드칼륨, 불화칼륨, 포름산칼륨, 수산화칼륨, 요오드화칼륨, 질산칼륨, 아질산칼륨, 황산칼륨으로 이루어진 군에서 선택된 1종 이상의 화합물인 것을 특징으로 하는 합성석유 제조용 철-마그네슘계 촉매의 제조방법.The method of claim 2, wherein the potassium precursor is potassium acetate, potassium bicarbonate, potassium boron hydride, potassium bromide, potassium bromide, potassium carbonate, potassium chlorate, potassium chloride, potassium citrate, potassium cyanide, potassium sulfate, potassium ethoxide, fluoride Potassium, potassium formate, potassium hydroxide, potassium iodide, potassium nitrate, potassium nitrite, potassium sulfate is a method for producing an iron-magnesium catalyst for the production of synthetic petroleum, characterized in that at least one compound selected from the group consisting of. 제 2 항에 있어서, 상기 구리 전구체는 아세틸아세트산 구리, 황산구리, 염화구리, 질산구리, 탄산구리, 브롬화구리 및 불화구리로 이루어진 군에서 선택된 1종 이상의 화합물인 것을 특징으로 하는 합성석유 제조용 철-마그네슘계 촉매의 제 조방법.The method of claim 2, wherein the copper precursor is at least one compound selected from the group consisting of copper acetyl acetate, copper sulfate, copper chloride, copper nitrate, copper carbonate, copper bromide and copper fluoride Method for producing a catalyst. 제1항에 의해 제조된 철-마그네슘계 촉매상에서 반응온도 100 ~ 300 oC, 반응압력 10 ~ 50 bar 및 H2/CO = 1 ~ 2의 반응조건 하에서 피셔-트롭시 반응을 수행하여 합성석유를 제조하는 방법.Synthetic petroleum oil by Fischer-Tropsch reaction on the iron-magnesium catalyst prepared according to claim 1 under the reaction conditions of 100 ~ 300 o C, reaction pressure 10 ~ 50 bar and H 2 / CO = 1 ~ 2 How to prepare.
KR1020090116181A 2009-11-27 2009-11-27 The Catalyst of Fe-Mg Based for Fischer-Tropsch Synthesis, and Preparation and Application Method of the Same KR101098005B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090116181A KR101098005B1 (en) 2009-11-27 2009-11-27 The Catalyst of Fe-Mg Based for Fischer-Tropsch Synthesis, and Preparation and Application Method of the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090116181A KR101098005B1 (en) 2009-11-27 2009-11-27 The Catalyst of Fe-Mg Based for Fischer-Tropsch Synthesis, and Preparation and Application Method of the Same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020110103247A Division KR101096177B1 (en) 2011-10-10 2011-10-10 The Catalyst of Fe-Mg Based for Fischer-Tropsch Synthesis, A Preparing Method for

Publications (2)

Publication Number Publication Date
KR20110059437A true KR20110059437A (en) 2011-06-02
KR101098005B1 KR101098005B1 (en) 2011-12-23

Family

ID=44394584

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090116181A KR101098005B1 (en) 2009-11-27 2009-11-27 The Catalyst of Fe-Mg Based for Fischer-Tropsch Synthesis, and Preparation and Application Method of the Same

Country Status (1)

Country Link
KR (1) KR101098005B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101483430B1 (en) * 2014-08-01 2015-01-19 한국에너지기술연구원 Iron-based catalyst and method for preparing the same
WO2015016411A1 (en) * 2013-07-29 2015-02-05 한국에너지기술연구원 Method for preparing iron-based catalyst and iron-based catalyst prepared thereby
CN113210018A (en) * 2020-12-21 2021-08-06 天津市众天科技发展有限公司 Chlorine-free catalyst, preparation method thereof and application thereof in dimethyl carbonate synthesis
CN115400779A (en) * 2022-08-23 2022-11-29 中国科学院上海微系统与信息技术研究所 Composite catalyst for accelerating hydrogen production by magnesium hydride and hydrogen production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8003313A (en) * 1980-06-06 1982-01-04 Shell Int Research METHOD FOR PREPARING MIDDLE DISTILLATES.
US7452844B2 (en) 2001-05-08 2008-11-18 Süd-Chemie Inc High surface area, small crystallite size catalyst for Fischer-Tropsch synthesis
WO2003097236A1 (en) 2002-05-15 2003-11-27 Süd-Chemie AG Fischer-tropsch catalyst prepared with a high purity iron precursor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016411A1 (en) * 2013-07-29 2015-02-05 한국에너지기술연구원 Method for preparing iron-based catalyst and iron-based catalyst prepared thereby
KR101483430B1 (en) * 2014-08-01 2015-01-19 한국에너지기술연구원 Iron-based catalyst and method for preparing the same
CN113210018A (en) * 2020-12-21 2021-08-06 天津市众天科技发展有限公司 Chlorine-free catalyst, preparation method thereof and application thereof in dimethyl carbonate synthesis
CN113210018B (en) * 2020-12-21 2022-11-22 天津市众天科技发展有限公司 Chlorine-free catalyst, preparation method thereof and application thereof in dimethyl carbonate synthesis
CN115400779A (en) * 2022-08-23 2022-11-29 中国科学院上海微系统与信息技术研究所 Composite catalyst for accelerating hydrogen production by magnesium hydride and hydrogen production method
CN115400779B (en) * 2022-08-23 2023-10-13 中国科学院上海微系统与信息技术研究所 Composite catalyst for accelerating magnesium hydride hydrogen production and hydrogen production method

Also Published As

Publication number Publication date
KR101098005B1 (en) 2011-12-23

Similar Documents

Publication Publication Date Title
Nie et al. Recent advances in catalytic CO2 hydrogenation to alcohols and hydrocarbons
EP2490989B1 (en) Production of lower olefins from synthesis gas
Liu et al. Effects of mesoporous structure and Pt promoter on the activity of Co-based catalysts in low-temperature CO2 hydrogenation for higher alcohol synthesis
KR100991263B1 (en) Nickel based Catalyst for reforming of natural gas with mixture of steam and carbon dioxide
US8206576B2 (en) Nickel based catalyst using hydrotalcite-like precursor and steam reforming reaction of LPG
Kang et al. Co-methanation of CO and CO 2 on the Ni X-Fe 1− X/Al 2 O 3 catalysts; effect of Fe contents
JP5969001B2 (en) Fischer-Tropsch catalysts containing iron or cobalt for selective synthesis of higher hydrocarbons
Al-Fatesh et al. Evaluation of Co-Ni/Sc-SBA–15 as a novel coke resistant catalyst for syngas production via CO2 reforming of methane
US20140360917A1 (en) Method of preparing iron carbide/carbon nanocomposite catalyst containing potassium for high temperature fischer-tropsch synthesis reaction and the iron carbide/carbon nanocomposite catalyst prepared thereby, and method of manufacturing liquid hydrocarbon using the same and liquid hydrocarbon manufactured thereby
KR20100133766A (en) Fe-based catalyst for the reaction of fischer-tropsch synthesis and preparation method thereof
KR101595181B1 (en) Process for the preparation of fisher-tropsch catalysts having improved activity and life time
KR20110008591A (en) The method for preparing of fe based catalyst used in fischer-tropsch systhesis reaction and that of liquid hydrocarbon using fe based catalyst
KR20090113552A (en) Iron-based catalyst for Fischer-Tropsch synthesis and method for preparing the same
KR20150137733A (en) Process for the preparation of fisher-tropsch catalysts with high activity
KR101432621B1 (en) Reforming catalyst for manufacturing synthesis gas, method for manufacturing synthesis gas using the same, and reactor for manufacturing synthesis gas
KR101098005B1 (en) The Catalyst of Fe-Mg Based for Fischer-Tropsch Synthesis, and Preparation and Application Method of the Same
JP4132295B2 (en) Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide gas
KR101847549B1 (en) Methods of manufacturing iron-base catalysts and methods of manufacturing hydrocarbons using iron-base catalysts made by the method
KR102072506B1 (en) The catalyst for direct synthesis of hydrocarbon and alcohol from syngas, the method of the same and the direct synthesis method of hydrocarbon and alcohol from syngas by using the same
KR102359490B1 (en) Catalyst for CO2 hydrogenation to produce hydrocarbon compounds and preparation method thereof
KR101096177B1 (en) The Catalyst of Fe-Mg Based for Fischer-Tropsch Synthesis, A Preparing Method for
KR101594901B1 (en) Cokes oven gas reforming catalyst for manufacturing synthesis gas, method for preparing the same and method for manufacturing synthesis gas from cokes oven gas using the same
KR102073959B1 (en) Catalyst for synthesizing synthetic natural gas and manufacturing method for high calorific synthetic natural gas using the same
KR20150129566A (en) Ni-based catalysts for combined steam and carbon dioxide reforming with natural gas
KR101792630B1 (en) Preparation method of cobalt-based Fischer-Tropsch catalysts and regeneration method of catalysts by feeding of liquid hydrocarbons formed during FTS reaction

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151126

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161201

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171201

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee