KR20110057796A - 헤파린과 접합되어 3원 생체분자를 이루는 항암 및 항종양 약물 전달 시스템 - Google Patents

헤파린과 접합되어 3원 생체분자를 이루는 항암 및 항종양 약물 전달 시스템 Download PDF

Info

Publication number
KR20110057796A
KR20110057796A KR1020090114352A KR20090114352A KR20110057796A KR 20110057796 A KR20110057796 A KR 20110057796A KR 1020090114352 A KR1020090114352 A KR 1020090114352A KR 20090114352 A KR20090114352 A KR 20090114352A KR 20110057796 A KR20110057796 A KR 20110057796A
Authority
KR
South Korea
Prior art keywords
heparin
anticancer
hfr
drug delivery
antitumor
Prior art date
Application number
KR1020090114352A
Other languages
English (en)
Inventor
이용규
김영덕
허강무
박일규
Original Assignee
충주대학교 산학협력단
동우신테크 주식회사
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충주대학교 산학협력단, 동우신테크 주식회사, 충남대학교산학협력단 filed Critical 충주대학교 산학협력단
Priority to KR1020090114352A priority Critical patent/KR20110057796A/ko
Publication of KR20110057796A publication Critical patent/KR20110057796A/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/203Retinoic acids ; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin

Abstract

본 발명은 헤파린과 접합되어 3원 생체분자를 이루는 항암 및 항종양 약물 전달 시스템에 관한 것으로서, 더욱 상세하게는 헤파린과 엽산 및 항암 또는 항종양 활성을 가지는 화합물이 3원 생체분자 접합체를 이루고 있는 약물 전달 시스템에 관한 것이다.
본 발명에 의하면, 고농도의 항암 또는 항종양 약물을 담지 및 방출할 수 있으며, 암 또는 종양 세포에 대한 표적화 특이성이 높고, 수용성이 강화되며, 독성 작용 등의 부작용이 감소되고, 투약이 쉬운 등의 잇점을 나타내는 항암 및 항종양 약물 전달 시스템을 제공할 수 있는 효과가 있다.
헤파린, 생체분자, 항암, 항종양, 약물, 접합체, 특이성, 독성

Description

헤파린과 접합되어 3원 생체분자를 이루는 항암 및 항종양 약물 전달 시스템{Anti-tumor Drug Delivery Systems of Ternary Biomolecular Nanoparticles of Folate receptor conjugated Heparin}
본 발명은 헤파린과 접합되어 3원 생체분자를 이루는 항암 및 항종양 약물 전달 시스템에 관한 것이다.
암과의 전쟁에서 의미있는 진전을 이루기 위하여, 암의 치료는 더욱 특이적인 세포에 표적화되고, 부작용이 감소되며, 투약이 더욱 쉽게 이루어지며, 복합적인 수준의 종양 생존능력이 감소되게 하는 약물 전달체의 개발 측면에서 발전되어 왔다.
종양의 혈관은 고도로 비조직화되고 성장인자와 MMPs 과 같은 혈관신생 조절자의 불균형에 기인하여 수많은 포어(pore)에 팽창되어 있다. 혈관신생 인자와 사이토카인(cytokines)은 종양세포에 의하여 분비되어 종양 맥관구조의 성장과 다른 외부 마커의 발현을 자극한다. 새로운 혈관의 성장을 일으키거나 저해시키는 치료 는 지난 수십년간 지적되고 알려진 많은 연구 결과와 같이 항암제로서의 중요한 전망을 제공한다.
임상적 또는 동물 연구에서, 다당체 헤파린은 암 등의 전이에서 활동이 증가한다는 것이 알려졌다. 다당체 헤파린은 혈관 내피 성장 인자(VEGF), 조직 인자, 혈소판 활성 인자의 저해에 의하여 혈관신생을 최소화시킨다. 다당체 헤파린은 종양 세포의 혈관 기저막에 침투하기 위하여 필요하다고 여겨지는 MMPs, 세린 프로테아제와 헤파라나아제의 비활성화와 관련 있다.
암 세포의 최적의 표적화(targeting)를 촉진하기 위하여, 약물의 고분자 담체나 표적화 리간드로의 접합을 위한 몇몇의 전략이 안출되어 왔다. 하나의 접근방법으로, 약물은 표적화 리간드에 직접적으로 접합되었다. 접합체는 접합 절차 중 세포 접합 도메인의 잠정적 비활성화와 in vivo 상의 항종양 활성의 감소 같은 일반적인 문제점을 나타내기도 한다. 다른 접근방법으로, 약물은 강화된 투과성 및 보유 효과(EPR)에 의하여 종양 위치(site)에 축적하기 위하여 고분자 담체와 접합된다. 이는 약물에 직접 접합되거나 리소조말 효소에 의한 균열(cleavage)에 의하여 약물과 링커로 결합하는 식으로 적용된다. 이 전략은 수용성과 화학적 안정성이 증가되고, 약물 동력학적 및 분배 수준이 강화되며, 부작용이 감소된 유도체를 부여하게 한다. 세포에 의한 고분자 약물 접합체의 비특이적 흡수는 항 종양 효과의 감소를 야기한다.
항암제의 활성 표적화된 전달은 새로운 약물 담체의 개발 측면에서 전도유망한 접근이다. 주의깊게 디자인된 수용성 고분자에 의하여 나노 입자의 표면 변형에 의하여, 긴 순환 시간과 특화된 표적화 같은 몇가지 주요한 개선이 달성되었다. 특히, 고분자 담체에 표적화 모이에티를 도입함은 고분자 약물 접합체의 활성 표적화 잠재력(active targeting potential)을 강화시킨다. 많은 연구자들은 항체, 사이토카인 같은 몇몇 표적화 리간드와 고분자 약물 담체의 종양 특이성을 향상시키기 위하여 귀환 펩타이드(homing peptide)를 연구해 왔다.
항체나 귀환 펩타이드를 고분자 담체에 접착시키는 것은 동물 연구에서 제한되게 성공되었을 뿐인데, 이유는 기능기 변형에 기인한 화학적 특성의 변형이나 고분자 담체에서 표적화 모이에티의 삽입에 기인한 수용체(receptor)와의 낮은 상호작용 때문일 것으로 예측된다.
엽산의 수용체는 난소암, 직장암 및 유방암 같은 상피세포 악성종양의 경우 암세포 표면에 과하게 발현되므로, 엽산 수용체는 기능성 종양 수용 뿐만 아니라 좋은 종양 표적화로서 작용한다. 엽산은 세포에 독성을 미치지 않고 암세포에 쉽게 도달할 수 있고 수용체가 매개된 엔도사이토시스(endocytosis)에 의하여 세포 내부로 전달될 수 있다. 이러한 절차에서, 리간드와 결합된 수용체는 작은 동공(caveolae)에 고립되고, 후동공 혈장 소낭(postcaveolar plasma vesicles)을 내부화되며, 혈관내 pH의 감소에 의하여 수용체로부터 방출되고, 결과적으로 세포질 내부로 전달된다.
또한, 엽산 리간드는 종양 세포 주변에서 약물이 고농도로 집중되기 위한 암 표적화에 매우 필수적이다. 엽산 표적화 리간드에 더하여, 많은 조사자들은 항체 같은 몇몇의 표적화 리간드를 연구하여 왔고, 표적화 약물 전달 나노입자 시스템에 서 종양의 중요성을 증가시키기 위해 펩타이드를 연구하여 왔다.
본 발명은, 헤파린을 담체로 하고, 암 또는 종양 세포에 대한 표적 특이성이 높은 엽산이 상기 헤파린과 항암 및 항종양 활성을 가지는 화합물이 3원으로 접합된 새로운 항암 및 항종양 약물 전달 시스템을 제공하는데 그 목적이 있다.
또한 본 발명은 상기 헤파린-엽산 및 약물의 3원 접합체를 이용하여 암을 치료하는 방법을 제공하는데 다른 목적이 있다.
상기한 목적을 달성하기 위한 일례로서 본 발명은, 헤파린과 아민화된 엽산 및 항암 또는 항종양 활성을 가지는 화합물이 3원 생체분자로 접합체를 이루고 있는 항암 및 항종양 약물 전달 시스템을 특징으로 한다.
이하 본 발명의 약물 전달 시스템을 구체적으로 설명한다.
먼저, 본 발명의 약물 전달 시스템은, 헤파린, 아민화된 엽산, 그리고 항암 또는 항종양 활성을 가지는 화합물이 3원 생체분자로 접합체를 이루고 있다. 상기 헤파린은 히드록시기(-OH), 카르복시기(-COOH) 및 아미노기(-NH2)를 포함하는 구조이며, 본 발명의 약물 전달 시스템에서 약물을 담지하는 담체의 역할을 수행한다.
이러한 헤파린은 비분획 헤파린(unfractionated heparin), 고분자량 헤파린, 저분자량 헤파린, 헤파린 단편(heparin fragments), 재조합 헤파린, 헤파린 유사체, 헤파란(heparan) 설페이트, 헤파린 활성을 갖는 설폰화된 다당류(sulfonated polysaccharides) 등과 같은 어떠한 형태의 헤파린도 적용될 수 있을 것이다.
상기 엽산(folic acid, FA)은 아민화된 것으로, 암 또는 종양 세포에 대한 표적화 착물로서의 역할을 수행한다. 상기 헤파린과 엽산은 헤파린의 카르복시기(-COOH)와 엽산의 아미노기(-NH2)사이에서의 결합 반응에 의하여 아마이드 결합(-CONH-)으로 합성된다.
헤파린에 대한 엽산의 접합에 대한 이론적 원리는 특이적으로 표적화된 종양과, 약물 독성이나 인자 Xa 와 같은 항응고제와 헤파린의 결합 친화력의 감소에 의하여 출혈(bleeding) 같은 불리한 반응을 우회하는 것이다.
또한, 다가의 엽산과 결합된 단일 헤파린 사슬은 종양 세포 주변으로 약물이 국부적으로 높은 농도를 유도하게 하고, 종양 세포 상의 과발현된 FR 을 가지는 FA의 강력한 결합 친화력을 이용한다.
상기 항암 또는 항종양 활성을 가지는 화합물(이하, “약물”이라고 기재)은 카르복시기(-COOH) 또는 아미노기(-NH2)를 가지는 화합물을 사용할 수 있으며, 이는 상기 헤파린과 항암 또는 항종양 활성을 가지는 화합물이 결합됨에 있어, 헤파린의 히드록시기(-OH)와 항암 또는 항종양 활성을 가지는 화합물의 카르복시기(-COOH)가 에스터 결합(-COO)에 의하여 결합시키거나, 약물의 아미노기(-NH2) 가 헤파린의 카 르복시기(-COOH)가 아미드 결합(-CONH)에 의하여 결합시킨 특징이 있다. 상기 아미노기(-NH2)는 약물을 아민화하여 결합시킨 것도 포함한다.
약물과 헤파린의 에스터 결합(ester linkage) 또는 아미이드 결합(amide linkage)은 자유 활성 약물이 종양 세포에 확산 및 축적되기 위해서 뿐만 아니라 항 종양 활성을 강화시키기 위한 약물의 용해성 향상을 위하여 가수분해 될 수 있게 한다. 이와 같은 특징에 의하여 본 발명은 수용성 항암 및 항종양성 약물 전달 시스템을 제공할 수 있게 하는 것이다. 한정하는 것은 아니지만, 상기 약물, 즉, 항암 또는 항종양 활성을 가지는 화합물로는 레틴산(retinoic acid), 파크리탁셀(Paclitaxel), 도제탁셀(Doxetaxel), 빈크리스틴(Vincristine) 및 비노렐빈(Vinorelbine) 등 중에서 선택된 어느 하나를 사용할 수 있다.
이하 본 발명의 명세서에서는 강한 항암 및 항종양 활성을 가지는 것으로 알려진 레틴산을 약물의 예로 들어 본 발명을 설명하고 있으나, 이는 본 발명의 바람직한 일례로서 본 발명을 구체적으로 설명하기 위함에 있음에 있을 뿐, 본 발명에 사용될 수 있는 약물이 레틴산으로 한정되는 것은 아님을 이해해야 할 것이다.
또한, 상기 언급한 세 가지 구성요소인 헤파린, 엽산, 그리고 약물의 조합으로, 각각이 가지는 특이적 기능은 in vivo 상에서 강한 항암 및 항종양제로서 기술자에게 사용된다. 이러한 접근은 가장 효율적인 것으로 여겨질 것이고, 가까운 미래에 암 및 종양에 대하여 실용적인 치료적 선택이 될 것이다.
헤파린과 엽산의 접합은 약물의 수용성을 강화하고, 선택적인 표적화가 가능 하게 하고, 응고 캐스캐이드(cascade)의 회피에 의하여 헤파린의 항암제 담체로서의 역할을 강화시킨다. 또한 암이나 종양의 표적화의 접근은 다양한 종류의 암의 치료가 가능하게 한다.
헤파린-엽산-레티노이드(HFR) 접합체의 반응은 FT-IR과 1H-NMR에 의하여 확인되어지는 에스터(ester)와 아마이드(amide) 결합(bonding)과 관련된다. HFR 접합체 비율은 자외선(UV) 스펙트로메트리에 의하여 측정되었다.
이러한 HFR 접합체의 나노입자의 크기는 DLS(dynamic light scattering)와 TEM에 의하여 측정되었다. 그리고 합성된 HFR이 공촛점 마이크로스코피와 접촉하여 선택성을 보유하고 있으며, in vitro 상에서 MTT 에세이에 의하여 항-종양 효과를 직접적으로 보임을 확인하였다.
이러한 결과는 HFR 접합체가 비독성 항암제의 담체로서 적용될 수 있으며, 암의 효과적인 치료제인 새로운 나노입자 약물 전달 시스템으로서 적용될 수 있음을 예측할 수 있게 한다.
본 발명의 상기한 약물 전달 시스템은 임의의 암 치료를 수행하는 적절한 유익/유해 비율(benefit/risk ratio)로 원하는 효과 및 효율을 제공하기에 충분하지만 독성을 야기하지 않는 수준의 양인 유효량으로서 암에 대한 치료가 필요한 환자에 투여될 수 있다. 이때 "투여(administering)" 및 이와 유사한 용어는 암 세포가 위치하는 신체 부분에 조직적으로 순환될 수 있는 조성물을 치료대상에게 전달하는 것을 의미한다. 그러므로, 상기 조성물은 피하(subcutaneous), 근육내(intramuscular) 또는 정맥내(intravenous) 투여, 또는 복강내(intraperitoneal) 투여에 의한 전형적인 조직적 투여(systemic administration)에 의해 환자에게 투여되는 것이 바람직하다. 이러한 용도를 위한 주사제는 액체 또는 현탁액과 같은 통상의 형태로 준비될 수 있고, 또는 주사 전 액체 내 용액 또는 현탁액으로서 준비되기에 적합한 고체 형태로 준비될 수 있고, 또는 에멀젼의 형태로 준비될 수 있다. 적절한 부형제(excipients)는 예를 들면, 물, 식염수, 덱스트로스, 글리세롤, 에탄올 등을 포함하고, 필요에 따라, 습윤제 또는 유화제, 완충제 등과 같은 소량의 보조제가 첨가될 수 있다.
본 발명에 의하면 in vitro 상에서 극적인 종양의 수축과 종양 맥관 구조의 붕괴를 헤파린(다당체의 고분자 담체), 엽산(folic acid)(표적화 착물), 그리고 약물(항암 및 항종양제)을 포함하여 이루어지는 3원 생체분자 나노입자의 사용으로 얻었다.
본 발명에 의하면, 수용성 약물 담체, 헤파린 담체와 엽산을 사용함으로서 활성 표적화 나노입자를 제조하였다. 또한, 나노입자가 암세포를 효과적으로 감소시키며, 암세포에 의하여 연관된 수용체를 통하여 치료적 지수를 향상시킴을 관찰하였다. 아미드 결합에 의한 약물 접합은 그 자체로 새로운 수용성 항암제가 되며, 이러한 수용성 항암제는 기존 항암제와 달리 수용성 제제로 구성이 가능하다. 에스터 결합에 의한 항암제 결합체는 항암제의 작용기의 결합에 의해 생화학적 활성도가 떨어지는 경우가 발생할 경우 에스터결합체가 항암제 근처에서 분해되어 원래의 항암제의 성질을 가지도록 조절하고자 한다.
본 발명에 의하면, 고농도의 약을 담지할 수 있고, 높은 수용성을 가지고, 암세포에 대한 표적화 효과를 강화할 수 있는 접합체를 간단하게 제조할 수 있다.
이하 본 발명을 실시예에 의거하여 구체적으로 설명하겠는바, 본 발명이 다음 실시예 등에 의하여 한정되는 것은 아니다.
참고예.
재료
저분자량 헤파린(117.4 IU/mg, LMWH, 6000 Da)은 메디플렉스 사(Mediplex Co, Korea)로부터 구입하였다. 엽산(Folic acid, FA), 피리딘(pyridine), 디메틸 설폭사이드(dimethyl sulfoxide, DMSO), 에틸렌 디아민(Ethylene diamine), 레틴 산(retinoic acid), 포름아마이드(Formamide) 및 FITC(Fluorescein-5-isothiocyanate)는 시그마-알들리치 화학(Sigma-Aldrich Chemical Co. St Louis, MO)으로부터 구입하였다. DCC(N,N’-Dicyclohexylcarboimide)와 NHS(N-hydroxysuccinimide)는 프루카(Fluka, Buchs, Switzerland)로부터 구입하였다. 페니실린-스트렙토마이신, 송아지 태아 혈청(FBS), 0.25 %(w/v) 트립신-0.03 %(w/v) EDTA 용액, 및 EMGM 배지는 ATCC(American Type Culture Collection, Rockville, MD)로부터 구입하였다. RPMI-1640 배지(without FA)는 인비트로겐(Invitrogen, Carlsbad, CA)으로부터 구입하였다. 세파덱스 A-25는 팜아시아 바이오테 크(Pharmacia Biotech AB, Uppsala, Sweden)로부터 구입하였다. 코아테스트 인자 Xa 에세이 키트(Coatest Factor Xa assay kits)는 크로모게닉스(Chromogenix, Milano, Italy)로부터 구입하였다. 모든 시약은 분석등급을 사용하였으며, 정제하지 않고 사용하였다.
실시예 1. 헤파린-엽산-레틴산 접합체(HFR)의 합성
30 ml DMSO 에 녹인 FA (1 mmol) 를 DCC (1 mmol) 및 NHS (2 mmol)와 60 ℃에서 8 시간동안 반응시켰다. 만들어진 FA-NHS는 에틸렌 디아민(10 mmol)과 200 ml 피리딘과 혼합하고 실온에서 밤새 반응시켰다. 조생성물(crude product)에 과량의 아세토니트릴을 첨가하여 침전시키고, 여과한 후 디에틸에테르로 세차례 세척한 후 진공 건조시켰다. 보다 정제하기 위하여, 생성물을 2N HCl에 녹이고 과량의 아세토니트릴을 첨가하여 침전시켰다. 여과 후, 정제된 진한 황색 분말을 진공 건조시켰다. 먼저, 헤파린-엽산 접합체(HF)가 헤파린과 아민화된 FA가 커플링되어 이루어졌다.
요약하면, 헤파린(150 mg, 0.0125 mmol)을 약하게 가열하면서 포름아미드(10 ml)에 용해시켰다. DCC (26 mg, 0.125 mmol)와 NHS (15 mg, 0.125 mmol)를 DMSO (1 ml)에 녹이고, 헤파린 용액을 첨가하였다. 12 시간동안 교반시킨 후 여과하여 DCU를 제거하였다.
그리고 DMSO에 녹인 FA-NH2와 트리에틸렌아민(Et3N, 100㎕)를 활성화된 헤파 린 용액에 첨가하였다. 12시간 동안 교반시킨 후, 혼합물은 미반응 된 DCC, NHS, FA-NH2, Et3N를 제거하기 위하여 수용액 상태에서 투석(MWCO : 2000)하였다. 투석한 용액의 불용성 물질을 여과를 통하여 제거를 하였고, 이 용액을 동결 건조하여 분말 상태인 최종 생성물 헤파린-FA를 수득되었다.
헤파린(150 mg, 0.0125 mmol)을 포름아마이드(10 ml)에 용해시켰다. DCC (26 mg, 0.125 mmol)와 NHS (15 mg, 0.125 mmol)를 DMSO (1 ml)에 녹여서 헤파린 용액에 첨가하였다. 혼합물은 실온에서 12 시간동안 교반하고 침전된 DCU는 여과하여 제거하였다. DCU가 제거된 용액에 DMSO에 녹인 FA-NH2 (30 mg, 0.0625 mmol)와Et3N(100㎕)을 첨가하였다. 그리고 실온에서 12 시간동안 교반한 후, 혼합물은 활성화된 RA에 첨가하였고. 12시간 상온에서 교반을 하였다. RA는 DMSO (5 ml)에 녹이고 DCC (26 mg, 0.125 mmol), NHS (15 mg, 0.125 mmol)을 첨가한 후 혼합물을 실온에서 4 시간동안 교반하여 활성화시켰다. 12시간 반응이 끝난 후, 용액은 수용액에서 2일동안 투석하였다(MWCO : 2000). 그리고 불용성물질은 여과하여 제거하였고, 최종 생성물 헤파린-FA-RA는 동결건조하여 수득되었다.
헤파린(D2O)의 1H-NMR : δ5.38 [H1 of glucosamine residue(A)], δ5.04 [H1 of iduronic acid residue(I)], δ4.84 [I-5], δ4.36-4.23 [A-6], δ4.12-4.40 [I-3], δ4.08[I-4], δ4.02[A-5], δ3.78[I-2], δ3.71[A-4], δ3.65-3.69[A-3], δ 3.24[A-2].
아민화된 FA(DMSO)의 1H-NMR : δ1.1 [s, C7-H of FA, 1H], δ4.28-4.16 [m, α-CH2 of Glutamate of FA, 1H],δ6.64[d, 3’, 5’-H of FA, 2H], δ7.64[d, 2’, 6’-H of FA, 2H]. δ8.1-8.17 [H of CONH].
헤파린-RA-FA (D2O)의 1H-NMR : δ=6.15ppm [CH3 or OAc of RA],δ=4.01ppm[A or I of heparin], δ=2.45ppm[2-OBz and NBz of RA], δ=7.64[H of FA, 2H], δ=8.17ppm [CONH between heparin and FA] and δ=5.78ppm [COO between heparin and RA]
실시예 2. HFR의 특징 확인
UV-vis 흡수 스펙트라는 스펙트로포토미터(Shimadzu UV-2401PC)를 슬릿 넓이 1.0 nm으로 작동하여 측정하였다. 헤파린-FA에 결합된 RA의 함량은 메탄올 내의 RA의 기지 농도에 의하여 생성된 표준 곡선의 UV 측정결과를 근거로 하여 예측되었다(λ= 358nm). 헤파린-RA-FA의 IR 스펙트라는 MAGNA 560 스펙트로미터를 사용하고 시료를 KBr 펠렛으로 분석한 FT-IR에 의하여 얻어졌다.
평균입자 크기, 크기 분포 및 모포로지(morphology)는 입자 크기 분석 기(Otsuka Electronics, ELS-Z series)와 80 kV의 TEM (JEM 1010, JEOL)을 사용하여 측정되었다. 입자의 수 분산성은 탄소가 코팅된 구리 그리드(grid)에 방울방울 떨어뜨려 굳히고(drop-cast), 그리드는 현미경에 탑재하기 전에 실온의 공기로 건조시켰다. 크기를 측정하기 위한 시료는 소량의 헤파린-RA-FA 분말을 물에 분산시키고 1 분간 초음파 욕조(ultrasonic bath)에서 처리하여 준비하였다. 측정조건은 파장 656 nm, 점성 0.89 cp, 및 굴절지수(refractive index) 1.33 으로 하였다.
헤파린 사슬에 결합된 FA의 함량은 비색법(colorimetric method)에 의하여 분석되었다. 요약하면, FA는 다양한 농도로 10 ml의 DMSO에 용해시켰다. FA의 흡광도는 UV-vis 스펙트로미터(290 nm)로 측정하였고, 측정된 수치는 표준곡선을 나타내었다. 또한, 톨루이딘 블루 방법을 사용하여 헤파린이 함량을 측정하였다. 요약하면, 다양한 농도(4~40 μg/ml in 0.2% NaCl)를 가지는 헤파린 표준 용액 2.5 ml은 2.5 ml의 톨루이딘 블루 용액(25 mg의 톨루이딘 블루가 0.2% NaCl을 포함하는 500 ml 0.01N HCl에 용해됨)과 혼합되어 몇몇의 시혐관에 준비하였다. 혼합 용액은 30 초간 볼텍싱하여 혼합하였다. 헥산(5 ml)을 각각의 시험관에 첨가하고 헤파린-색소 복합체(heparin-dye complex)를 분리하기 위하여 다시 층 분리가 일어나기 전까지 30 초간 볼텍싱하였다. 층 분리가 되면 밑의 층의 용액을 추출해서 UV-vis 스펙트로미터 (631nm)로 흡광도를 측정하여, 그 흡광도 값으로 표준곡선을 나타내었다. 합성 된 헤파린-FA-RA를 UV-vis 스펙트로미터(290, 631nm)로 측정한 후 두 가지 방법에서 얻어진 표준 곡선에 대입을 하여 헤파린에 결합되어진 FA와 RA의 양을 구하였다.
헤파린, 그리고 합성 된 HFR의 생화학적 활성도를 측정하기 위해 Factor Xa 방법을 사용하였다. 우선 서로 다른 농도의 헤파린 용액(100μl)에 안티트롬빈 III 용액(100μl)을 혼합하여 37℃에서 4분 동안 배양시켰다. 혼합 된 용액에 Factor Xa 용액(100μl)을 넣어준 후, 37℃에서 30초 동안 배양시켰다. 30초 후, Factor Xa substrate (S-2222, 200μl)를 넣어주고 37℃에서 3분 동안 배양시킨다. 마지막으로 20% acetic acid 용액(200μl)를 첨가해 준 후, UV-Vis 스펙트로미터를 통해 405nm에서의 흡광도 값을 측정하였다, 헤파린 농도에 따른 흡광도 값을 가지고 생화학적 활성도의 표준 곡선을 나타내었다. 합성 된 HFR도 위와 같은 방법을 거친 후, 405nm에서의 흡광도 값을 측정하였다. 그리고 헤파린의 표준 곡선에 대입하여 합성 된 HFR의 생화학적 활성도를 구하였다.
실시예 3. 공촛점 현미경 연구(Confocal microscopic study)
세포 흡수와 표지된 헤파린-FA 접합체의 세포간 분산을 시각화하기 위하여 공촛점 레이저 현미경법(confocal laser scanning microscopy, Zeiss LSM510, Germany)이 배양된 KB 세포를 사용하여 수행되었다(Lab-TekII chamber slide, NalgeNunc, Napevillem,IL). FITC는 상기한 바와 같이 헤파린이나 헤파린-FA과 접합하기 위하여 사용되었다. 표지된 헤파린-탁솔-FA 접합체의 RPMI-1640 배지 내 농도는 1 ㎍/ml 이었다. 3 시간 배양 후, 복합체를 포함하는 배지는 웰(wells)로부터 흡인되었다. 세포는 PBS 완충액(pH 7.4)으로 세 차례 세척하고 4%의 포름알데하이드가 포함된 PBS 완충액(pH 7.4) 200 ㎕ 을 최종적으로 첨가하였다. 시료는 가급적 이면 빨리 관찰하도록 하였다.
조직절편(tissue sections)의 초기 스캐닝은 통상의 형광 현미경과 FITC 필터가 구비된 낮은 배율(10 × lens)에서 이루어졌다. FITC가 표지된 영역은 공촛점 현미경(excitation/emission wavelengths: 488 nm and 510 nm) 을 사용하여 높은 배율(63 × lens)에서 스캐닝 되었다. 대물렌즈의 배율은 각각의 이미지에 기재하였다.
실시예 4. MTT 분석
KB 세포주는 10% 우태아 혈청(fetal calf serum)을 함유하고 FA가 결핍된 RPMI1640 배지를 사용하고 5 % CO2를 포함하는 가습된 공기에서 37 ℃에서 배양되었다. 단분자막(monolayer) 상태로 성장한 세포(1 × 105 cells/ml)는 0.25% 트립신-0.03 EDTA 용액을 사용하여 채취되었다. 개별적 배지의 세포(100 ㎕)를 96-웰 플레이트에 분주하고 에세이 전에 24 시간동안 미리배양시켰다.
MTT 에세이는 KB 세포와 MDA-MB 231 세포를 각각의 다른 농도의 각 화합물의 4 배수로 37℃에서 하루동안 배양시키는 것에 의해 수행되었다. 대조군은 약물의 첨가 없이 37℃에서 하루동안 배양시켰다.
에세이는 생체 세포의 미토콘드리아에 의하여 생성된 불용성 자색 포르마잔(formazan)에서 황색 테트라졸륨(tetrazolium) 부분(MTT)의 감소에 근거를 둔 것이다. 배양 후, 20 ㎕의 MTT 용액을 포함하는 100 ㎕ 배지를 각각의 웰에 첨가하고 플레이트를 추가적으로 4 시간 배양시키며, 그 후 각각의 웰에 100 ㎕의 MTT 가용화(solublization) 용액(10% Triton X-100 plus 0.1 N HCl in anhydrous isopropanol, Sigma, Milwaukee, WI)를 첨가하였다. 용액은 MTT 포르마잔 결정이 잘 용해되도록 천천히 혼합하였다. 각 웰의 흡광도는 파장 570 nm에서 마이크로플레이트 판독기를 사용하여 측정하였다. 690 nm 에서의 웰 플레이트의 배경 흡광도가 측정되었고 570 nm 측정치에서 뺐다. 결과는 % 세포 생존력으로 나타내고, 처리군(T)의 광학 밀도 수치(OD)를 대조군(C)의 OD로 나누어서 나타내었다([T/C × 100%]).
결과 및 고찰
HFR 접합체의 합성과 특성
본 연구에서, HFR 접합체는 FA의 아미노 기(-NH2)와 RA의 카르복시기(-COOH) 사이의 커플링 반응에 의하여 준비되었다. 헤파린은 히드록시 기(-OH)와 카르복시기를 기본 구조내에 포함하고 있다. 헤파린의 히드록시 기는 RA의 카르복시 기와 링크되고(scheme 1, (b)), 헤파린의 카르복시 기는 아민화된 FA(FA-NH2)의 아미드 기와 링크되었다(scheme 1,(a)). HFR 접합은 1H-NMR, FT-IR 스펙트라에 의하여 확인되었다. (a) 헤파린-아민화 엽산 (FA-NH2)과, (b) 헤파린-엽산-레틴산 접합체의 화학적 합성 경로를 다음 Scheme 1에 나타내었다.
[Scheme 1]
Figure 112009072360494-PAT00001
1H-NMR 스펙트라에서(도 1), 아미드 공유결합이 헤파리과 아민화된 FA 사이에 FA의 아미노기와 헤파린의 카르복시 기의 커플링 반응에 의하여 형성되었다(도 1(a),d). 도 1(a)에 나타낸 바와 같이, 헤파린(3.6, 4.0ppm), 아민화된 FA(2.0, 2.7, 6.7, 8.6 ppm) 및 RA(1.1, 1.7, 5.7, 6.5ppm)와 약간 관련있는 특징적인 화학물질이 관찰되었다.
FT-RE 스펙트라에서(도 2, (a)), 헤파린-RA 접합은 CH3 과 -CH2-으로 2850-2990cm-1에서 지방성(aliphatic) 화합물 신축 진동(stretching vibration)이 증명되었다. 헤파린-RA 접합은 -NH으로 3280-3300cm-1에서 이차 아미드 신축 진동이 증명되었다. 헤파린의 전형적인 신축 진동은 3300-3600cm-1 에서 넓은 흡습 밴드로 나타 난다.
헤파린에 대한 FA, RA의 커플링 비율은 톨루이딘 블루 비색법과 UV 스펙트로포토미터에 의하여 확인되었다. 헤파린에 대한 FA, RA의 커플링 비율은 헤파린 분자 당 결합된 FA, RA 의 비율을 의미한다. 헤파린에 대한 FA, RA의 커플링 비율은 표 1에 나타내었다. 결과적으로, 헤파린에 대한 FA, RA의 커플링 비율은 추가되는 FA, RA의 비율의 증가에 따라 증가되었다.
[표 1] HF 및 HFR 접합체의 커플링 비율
시료 고분자 타입 몰비a 커플링 비율b
1 HF I 헤파린:FA 1:1 1:0.53
2 HF II 헤파린:FA 1:5 1:2.75
3 HF III 헤파린:FA 1:10 1:5.46
4 HFR I 헤파린:FA 1:5:1 1:2.40:0.28
5 HFR II 헤파린:FA:RA 1:5:5 1:2.64:3.74
6 HFR III 헤파린:FA:RA 1:5:10 1:2.47:6.56
a Molar ratio of heparin : FA : RA.
bThe coupling ratio of FA, RA in heparin molecules were determined by UV spectrometer, toluidine blue colorimetric method, respectively.
HFR 접합체의 임계 미셀 농도(CMC)
HFR의 CMC는 HFR 접합체의 다양한 농도에서 피리딘의 2개의 형광 여기(I370/I381) 스펙트라의 비율을 측정하여 확인할 수 있다. HFR 농도가 증가함에 따라 피리딘 분자는 자가 응집된 HFR의 소수성 도메인 내에 위치하게 된다. CMC는 낮은 농도에서 교차점(cross over point)로부터 확인된다. 표 2와 도 3에 나타낸 바와 같이, HFR I, HFR II,및 HFR III 접합체의 CMC 수치는 각각 0.5, 0.13, 및 0.01 mg/L이다. HFR 접합체의 CMC 수치가 소수성 RA 비율의 증가에 따라 감소하 며, 이러한 이유로 소수성이 강화되는 것을 쉽게 확인할 수 있다. 자가 응집된 나노입자의 CMC는 소수성 세그먼트가 커플링 되는 비율에 의하여 조절할 수 있다고 보고되었다.
[표 2] HFR 접합체의 특성
시료 생활성(IU/mg)a CMC(mg/L)b 크기(nm)c
헤파린 117.4 - 343.9 ± 3.08
HFR I 114.8 0.5 259.2 ± 2.75
HFR II 92.8 0.13 227.6 ± 1.74
HFR III 81.3 0.01 174.6 ± 3.74
a Bioactivities of HFR conjugates were determined by established procedures with FXa chromogenic assay.
bCritical micelle concentration of HFR conjugates was analyzed by fluorescence spectrophotometer.
c The average size of HFR conjugates was determined by DLS.
HFR 접합체의 크기와 크기 분포
HFR 나노입자의 크기와 크기 분포는 DLS에 의하여 분석되었다. HFR 나노입자(헤파린, HFR I, HFR II, HFR III)의 평균 크기는 각각 343.9± 3.08, 259.2± 2.75, 227.6± 1.74, 174.6± 3.74 이었다(표 2). 이는 헤파린에 결합되는 RA의 커플링 비율이 감소함에 따라 입자 크기가 감소됨을 지시하며, 입자 크기가 수성 조건에서 RA의 소수성 상호작용에 영향을 받기 때문에 기인한다. 도 4에 나타낸 바와 같이, 본 발명의 HFR 나노입자는 150 내지 300 nm 범위의 좁은 크기 분포를 가진다. HFR 나노입자의 형태는 TEM에 의하여 확인되었다(도 5). 미셀, 나노입자 및 거대분자(macromolecules)를 사용한 다른 연구 자료로부터, 150 내지 300nm 범위의 나노입자 크기는 EPR 효과를 이용하는 피동적 전달이 가능한 것으로 생각된다.
HFR의 생물학적 활성
HFR 접합체의 생물학적 활성은 발색성 에세이(chromogenic assay)에 의하여 측정되었다(표 2). 헤파린과 HFR 접합체(HFR I, HFR II, HFR III)의 생물학적 활성 수치는 각각 117.4, 114.8, 92.8, and 81.3 IU/mg이었다. 헤파린에 접합된 RA의 커플링 비율이 증가함에 따라 생물학적 활성은 감소되는 것으로 관찰되었다.
접합에 의하여 헤파린의 기본 골격이 변형되면, 변형되지 않은 헤파린과 비교하여 HFR 접합체는 낮은 생물학적 활성과 생체 친화적 특성이 관찰된다. 또한, HFR 접합체는 응집체를 경유하여 암세포에 접근할 수 있다.
따라서, 헤파린, FA 및 RA 간의 커플링 비율을 조절하여 약물 전달 시스템과 최적의 생물학적 활성을 모두 나타내게 할 수 있다.
비표적화 헤파린-FITC와 표적화 HF-FITC 접합체의 형광 이미지
엽산 수용체는 암 치료제로서 가장 많이 연구되어온 표적이다. 엽산 수용체는 정상 조직 표면과 비교하여 많은 암 세포의 표면에 분포하고 있다. 엽산 수용체는 난소암, 폐암, 뇌암, 유방암 세포 등에 분포되어 있다. 따라서, 엽산 리간드는 표적화 리간드로 널리 사용되었고, 이는 엽산 리간드의 수용성, 비독성, 저렴함, 비면역적, 다른 물질로부터 합성이 용이함, 환경에 안정함 등 때문이다.
본 발명에서, KB 세포주가 사용되었다. KB 세포주는 표적화 암세포로 널리 사용되었으며, 이는 KB 세포주 자체의 엽산 수용체의 높은 발현과 엽산 리간드에 대한 친화도 때문이다. 세포 친화도와 세포 접합을 연구하기 위하여, HF (HF I, HF II, HF III)-FITC의 다른 몰비를 접합시켜 준비하였다. 또한, 준비된 시료는 KB 세포(0.01mg/ml)와 세포 결합되는 정도를 측정하기 위하여 사용되었다.
도 5에는, KB 세포에 흡수된 헤파린, HF 접합체(HF I, HF II, HF III) 의 공촛점 형성 이미지를 나타내었다. 비표적화 헤파린은 HF I, HF II, HF III 접합체보다 형광 이미지의 강도가 낮게 관찰되었다. 형광 이미지의 강도는 FA의 커플링 비율이 높아짐에 따라 증가하였다.
in vitro 에서 HFR의 세포 생존력(viability)
헤파린, HFR 접합체(HFR I, HFR II, HFR III) 의 KB 세포에 대한 세포 생존력은 MTT 에세이법에 의하여 측정되었다. 도 6은 세포 생존력이 약물 농도, 시간, RA와 엽산 리간드의 커플링 비율에 따라 영향 받음을 나타낸다. 0.01 ~ 1 mg/ml 범위의 농도에서, 48 시간 후, RA, HFR 접합체는 도 6(b)에 나타낸 바와 같이 급속하게 감소하였다. 또한, 1 mg/ml 농도의 헤파린은 약 80% 가량 감소되었다. 명확하게, HFR 접합체는 암세포를 조절할 수 있음이 관찰되었다.
상술한 바와 같이 본 발명에 의하면, 수용성 약물 담체, 헤파린 담체와 엽산을 사용함으로서 활성 표적화 나노입자를 제공할 수 있다, 또한, 나노입자(HFR 접합체)가 암세포를 효과적으로 감소시키며, 암세포에 의하여 연관된 수용체를 통하여 치료적 지수를 향상시킴을 관찰하였다. 에스터 결합에 의한 약물 접합은 가수분 해에 의한 약물의 방출이 가능하게 한다.
본 발명에 의하면, 고농도의 약을 담지할 수 있고, 높은 수용성을 가지고, 암세포에 대한 표적화 효과를 강화할 수 있는 접합체를 간단하게 제조할 수 있다.
[참고문헌]
[1] V. P. Torchilin, Micellar Nanocarrters : Pharmaceutical perspectives, Pharm. Res. 24 (2006)
[2] B. Haley, E.Frenkel, Nanoparticles for drug delivery in cancer treatment, Urol. Oncol. 26 (1) (2008) 57-64.
[3] James D. Byrne, Tania Betancourt, Lisa Brannon-Peppas, Active targeting schemes for nanoparticles system in cancer therapeutics, Adv. Drug deliv. Rev. 60 (2008) 1615-1626.
[4] C. Pinto Reis, R.J. Neufeld, A.J. Ribeiro, F. Veiga, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles, Nanomedicine 2 (2006) 8-21
[5] Zonghua Liu, Yanpeng Jiao, Yifei Wang, Changren Zhou, Ziyong Zhang, Polysaccharides-based nanoparticles as drug delivery systems, Adv. Drug deliv. Rev. 6 (2008) 1650-1662.
[6] Ahmed F, Pakunlu RI, Srinivas G, Brannan A, Bates F, Klein ML, et al. Shrinkage of a rapidly growing tumor by drug loaded polymersomes : pH- triggered release through copolymer degradation. Mol Pharm 3 (2006) 340-350.
[7] Checot F, Rodriguez-Hernandez J, Gnanou Y, Lecommandoux S. pH-responsive micelles and vesicles nanocapsules based on polypeptide diblock copolymers. Biomol Eng 24 (2007) 81-85.
[8] Qin SH, Geng Y, Discher DE, Yang S. Temperature-controlled assembly and release from polymer vesicles of poly(ethylenr oxide)-block-poly(n-isopropylacrylamide). Adv Mater 18 (2006) 2905-2909.
[9] Kang Moo Huh, Junko Hashi, Tooru Ooya, Nabuhiko Yui. Synthesis and characterization of dextran grafted with Poly(N-isopropylacrylamide-co-dimethylacrylamide). Macromol. Chem. Phys. 201 (2000) 613-619.
[10] Linhardt, R.J. Heparin : structure and activity. J. Med. Chem. 46 (2003) 2551-2564.
[11] Ishihara, M., and ono, K. Structure and function of heparin and heparin sulfate : heparinoid library and modification of FGF-activities. Trends Glycosci. Glycotechnol. 10 (1998) 223-233.
[12] Casu, B., and Lindahl, U. Structure and biological interactions of heparin and heparan sulfate. Adv. Carbohydr. Chem. Biochem. 57 (2001) 159-206.
[13] Linhardt, R.J. An important drug enters its seventh decade. Chemical Industry 2 (1991) 45-50.
[14] Jayson, G., and Gallagher, J. T. Heparin oligosacchsrides : inhibitors of the biological activity of bFGF on Caco-2ells. Br. J. Cancer 75 (1997) 9-16.
[15] Soker, S., Goldstaub, D., Svahn, C. M., Vlodavski. I., Levi, B. Z., and Neufeld, G. Variation in the size and sulfation of heparin modulate the effect of heparin on the binding of VEGF 165 to its receotors. Biochem. Biophys. Res. Commun. 203 (1994) 1339-1347.
[16] Kwang Jae Cho, Hyun Tae Moon, Go-eun Park, Ok Chul Jeon, Youngro Byun, Yong-kyu Lee. Preparation of sodium Deoxycholate (DOC) conjugated heparin derivatives for inhibition of angiogenesis and cancer cell growth. Bioconjugate Chem. 19 (2006) 1346-1351.
[17] Weitman, S.D. et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 52 (1992) 3396-3401
[18] Mattes, M. J. et al. Patterns of antigen distribution in human carcinomas. Cancer Res. 50 (1990) 880S-884S.
[19] Garin-Chesa, P. et al. Trophoblast and ovarian cancer antigen LK26. Am. J. Pathol. 142 (1993) 557-567
[20] E. S. Lee, K. Na, Y. H. Bae, polymeric micelle for tumor pH and folate-mediated targeting, J. Control Release, 91 (2003) 103-113.
[21] Yong-kyu Lee, Preparation and characterization of folic acid linked poly(L-glutamate) nanoparticles for cancer targeting, Macromilecular Research, 14 (2006) 387-393.
[22] M. K. Yu, D. Y. Lee, Y. S. Kim, K. S. Park, S. A. Park, Y. Byun, et al. Antiangiogenic and apoptotic properties of a novel amphiphilic folate-heparin-lithocholate derivative having cellular internality for cancer therapy, Pharmaceutical Research 24 (2007) 705-714.
[23] Turek JJ, Leamon CP, Low PS. Endocytosis of folate-protein conjugates ultrastructural-localization in Kb cells. Journal of Cell Science, 106 (1993) 423-430.
[24] Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting : from therapeutics to diagnostics. Journal of Pharmaceutical Science, 94 (2005) 2135-2146.
[25] Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv. Drug deliv. Rev. 41 (2000) 147-162.
[26] Gref R, Domb A, Quellec P, Blunk T, Muller RH, Verbavatz JM, et al. The controlled intravenous delivery of drugs using Peg-coated sterically stabilized nanospheres. Adv. Drug deliv. Rev. 16 (1995) 215-233.
[27] Saul JM, Annapragada A, Natarajan JV, Bellamkonda RV. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J. Control Release, 92 (2003) 49-67.
도 1은 (a) 헤파린-FA-RA 접합체, (b) 아민화된 FA (FA-NH2), (c) RA, (d) FA. 및 (e) 헤파린의 1H-NMR 스펙트럼이다.
도 2는 (a) 헤파린-FA-RA 접합체, (b) 아민화된 FA (FA-NH2), (c) RA, (d) FA. 및 (e) 헤파린의 FT-IR 스펙트럼이다.
도 3은 HFR 접합체(HFR I, HFR II, HFR III)의 임계 미셀 농도(Critical micelle concentration, CMC)를 나타낸 것이다.
도 4는 HFR 접합체의 크기 분포를 나타낸 것이다[ (a) HFR I, (b) HFR II, and (c) HFR III 접합체].
도 5는 KB 세포에 흡수된 헤파린, HF 접합체(HF I, HF II, HF III) 의 공촛점 형성 이미지를 나타낸 것이다[(a) HFR I, (b) HFR II, and (c) HFR III 접합체].
도 6은 KB 세포주에 접합체 처리 후 얻어진 공촛점 현미경 이미지이다[(a) Heparin-FITC, (b) HF I-FITC, (c) HF II-FITC, (d) HF III-FITC 접합체].
도 7은 KB 세포주에 RA, 헤파란, HFR 접합체(HFR I, HFR II, HFR III)를 처리 후 각 시간동안 배양하여 얻어진 세포 생활성을 나타낸 것이다[(a) 24h, (b) 48h 배양, n=3].

Claims (8)

  1. 헤파린과 아민화된 엽산(folic acid) 및 항암 또는 항종양 활성을 가지는 화합물이 3원 생체분자로 접합체를 이루고 있는 것을 특징으로 하는 항암 및 항종양 약물 전달 시스템.
  2. 청구항 1에 있어서,
    상기 헤파린은 히드록시기(-OH), 카르복시기(-COOH) 및 아미노기(-NH2)를 포함하는 구조인 것을 특징으로 하는 항암 및 항종양 약물 전달 시스템.
  3. 청구항 1에 있어서,
    상기 헤파린은 헤파린의 카르복시기(-COOH)와 아민화된 엽산의 아미노기(-NH2)가 아미드 결합(-CONH)에 의하여 결합된 것을 특징으로 하는 항암 및 항종양 약물 전달 시스템.
  4. 청구항 1에 있어서,
    상기 항암 또는 항종양 활성을 가지는 화합물은 카르복시기(-COOH) 또는 아미노기(-NH2) 중에서 선택된 어느 하나의 작용기를 가지는 화합물인 것을 특징으로 하는 항암 및 항종양 약물 전달 시스템.
  5. 청구항 1에 있어서,
    상기 헤파린과 항암 또는 항종양 활성을 가지는 화합물은 헤파린의 히드록시기(-OH)와 항암 또는 항종양 활성을 가지는 화합물의 카르복시기(-COOH)가 에스터 결합(-COO)에 의하여 결합된 것을 특징으로 하는 항암 및 항종양 약물 전달 시스템.
  6. 청구항 1에 있어서,
    상기 헤파린과 항암 또는 항종양 활성을 가지는 화합물은 헤파린의 카르복시기(-COOH)와 항암 또는 항종양 활성을 가지는 화합물의 아미노기(-NH2)가 아미드 결합(-CONH)에 의하여 결합된 것을 특징으로 하는 항암 및 항종양 약물 전달 시스템.
  7. 청구항 1에 있어서,
    상기 항암 또는 항종양 활성을 가지는 화합물은 레틴산(retinoic acid), 파크리탁셀(Paclitaxel), 도제탁셀(Doxetaxel), 빈크리스틴(Vincristine) 및 비노렐빈(Vinorelbine) 중에서 선택된 어느 하나인 것을 특징으로 하는 항암 및 항종양 약물 전달 시스템.
  8. 청구항 1 내지 7 중에서 선택된 어느 하나의 항암 및 항종양 약물 전달 시스템을 치료를 필요로 하는 환자에게 유효량으로 투여하는 것을 포함하는 것을 특징으로 하는 항암 및 항종양 치료방법.
KR1020090114352A 2009-11-25 2009-11-25 헤파린과 접합되어 3원 생체분자를 이루는 항암 및 항종양 약물 전달 시스템 KR20110057796A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090114352A KR20110057796A (ko) 2009-11-25 2009-11-25 헤파린과 접합되어 3원 생체분자를 이루는 항암 및 항종양 약물 전달 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090114352A KR20110057796A (ko) 2009-11-25 2009-11-25 헤파린과 접합되어 3원 생체분자를 이루는 항암 및 항종양 약물 전달 시스템

Publications (1)

Publication Number Publication Date
KR20110057796A true KR20110057796A (ko) 2011-06-01

Family

ID=44393366

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090114352A KR20110057796A (ko) 2009-11-25 2009-11-25 헤파린과 접합되어 3원 생체분자를 이루는 항암 및 항종양 약물 전달 시스템

Country Status (1)

Country Link
KR (1) KR20110057796A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11839698B2 (en) 2014-03-13 2023-12-12 W. L. Gore & Associates, Inc. Drug composition and coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11839698B2 (en) 2014-03-13 2023-12-12 W. L. Gore & Associates, Inc. Drug composition and coating

Similar Documents

Publication Publication Date Title
Liu et al. Dextran-based redox-responsive doxorubicin prodrug micelles for overcoming multidrug resistance
Pornpitchanarong et al. Catechol-modified chitosan/hyaluronic acid nanoparticles as a new avenue for local delivery of doxorubicin to oral cancer cells
Zhu et al. Partly PEGylated polyamidoamine dendrimer for tumor-selective targeting of doxorubicin: the effects of PEGylation degree and drug conjugation style
Pan et al. PEGylated dendritic diaminocyclohexyl-platinum (II) conjugates as pH-responsive drug delivery vehicles with enhanced tumor accumulation and antitumor efficacy
Mezghrani et al. Hepatocellular carcinoma dually-targeted nanoparticles for reduction triggered intracellular delivery of doxorubicin
She et al. PEGylated dendrimer-doxorubicin cojugates as pH-sensitive drug delivery systems: synthesis and in vitro characterization
Kumar et al. Lipophilic 5-fluorouracil prodrug encapsulated xylan-stearic acid conjugates nanoparticles for colon cancer therapy
Wen et al. Glucose-responsive zwitterionic dialdehyde starch-based micelles with potential anti-phagocytic behavior for insulin delivery
JP4717016B2 (ja) O,o’−アミドマロネートおよびn,o−アミドマロネート白金錯体
He et al. pH/redox dual-sensitive platinum (IV)-based micelles with greatly enhanced antitumor effect for combination chemotherapy
Zhou et al. A polypeptide based podophyllotoxin conjugate for the treatment of multi drug resistant breast cancer with enhanced efficiency and minimal toxicity
Cui et al. “Stealth” dendrimers with encapsulation of indocyanine green for photothermal and photodynamic therapy of cancer
Cheng et al. Construction and evaluation of PAMAM–DOX conjugates with superior tumor recognition and intracellular acid-triggered drug release properties
Luo et al. ATB 0,+ transporter-mediated targeting delivery to human lung cancer cells via aspartate-modified docetaxel-loading stealth liposomes
US20230001011A1 (en) Nanocomplexes of polyanion-modified proteins
KR101743399B1 (ko) 폴리에틸렌글리콜과 트리페닐포스포늄이 컨쥬게이트된 물질 및 이를 적용한 미토콘드리아 표적 자기조립형 나노약물 전달체
Li et al. Biofunctional self-assembled nanoparticles of folate–PEG–heparin/PBLA copolymers for targeted delivery of doxorubicin
Fang et al. Sgc8 aptamer targeted glutathione-responsive nanoassemblies containing Ara-C prodrug for the treatment of acute lymphoblastic leukemia
Brunato et al. PEG-polyaminoacid based micelles for controlled release of doxorubicin: Rational design, safety and efficacy study
Long et al. Tailor‐Made Autophagy Cascade Amplification Polymeric Nanoparticles for Enhanced Tumor Immunotherapy
Park et al. Ternary biomolecular nanoparticles for targeting of cancer cells and anti-angiogenesis
Tian et al. Reduction-responsive modification-induced higher efficiency for attenuation of tumor metastasis of low molecular weight heparin functionalized liposomes
Ji et al. A targeted nanocarrier based on polyspermine for the effective delivery of methotrexate in nasopharyngeal carcinoma
CN106397765B (zh) 维生素e修饰的聚乙烯亚胺衍生物及其合成方法和应用
KR20110057796A (ko) 헤파린과 접합되어 3원 생체분자를 이루는 항암 및 항종양 약물 전달 시스템

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application