KR20110052875A - High senor efficiency method for optical oil concentration measuring device - Google Patents

High senor efficiency method for optical oil concentration measuring device Download PDF

Info

Publication number
KR20110052875A
KR20110052875A KR1020090109581A KR20090109581A KR20110052875A KR 20110052875 A KR20110052875 A KR 20110052875A KR 1020090109581 A KR1020090109581 A KR 1020090109581A KR 20090109581 A KR20090109581 A KR 20090109581A KR 20110052875 A KR20110052875 A KR 20110052875A
Authority
KR
South Korea
Prior art keywords
optical
lens
oil
measurement
light emitting
Prior art date
Application number
KR1020090109581A
Other languages
Korean (ko)
Inventor
김경수
장용석
최문호
이상민
최성호
Original Assignee
주식회사 마르센
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 마르센 filed Critical 주식회사 마르센
Priority to KR1020090109581A priority Critical patent/KR20110052875A/en
Publication of KR20110052875A publication Critical patent/KR20110052875A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides

Abstract

PURPOSE: A method for maximizing the performance of a sensor for measuring optical oil concentrating measurement is provided to efficiently transmit the light quantity of an optical device by using a lens for collecting signals. CONSTITUTION: A method for maximizing the performance of a sensor for measuring optical oil concentrating measurement is as follows. The oil is measured by using an optics measurement method. The optical signal can be transferred more effectively from a luminous element. A conical structure and lens are assembled together to deliver optical signals from an emitting device. The combined conical structure and lens are established in a dangerous zone of a ship. A photo diode is used in order to apply the optical signal to an analysis circuit.

Description

광학측정 방식을 이용한 유분농도 측정에서 감지센서 성능의 극대화 방법{High senor efficiency method for Optical oil concentration measuring device}High senor efficiency method for optical oil concentration measuring device

광학측정 방식을 이용한 유분농도 측정에서 센서의 성능 향상을 위하여 다음과 같은 방안을 제안한다. 발광소자로는 저전압 bi-pin 형식의 석영 할로겐 램프를 사용하고, 수광부는 발광소자의 광량을 효과적으로 수신할 수 있는 원뿔 모형의 구조물과 신호를 모아주는 렌즈와 불필요한 영역의 신호를 필터링 해주는 렌즈의 조합으로 구성하여 발광소자로부터 투과, 산란, 흡수, 굴절되는 데이터를 정량화시켜 보다 나은 유분농도 측정이 되도록 한다.In order to improve the performance of sensor in oil concentration measurement using optical measurement method, the following method is proposed. A low voltage bi-pin type quartz halogen lamp is used as the light emitting device, and the light receiving unit is a combination of a conical model that can effectively receive the light quantity of the light emitting device, a lens that collects signals and a lens that filters signals in unnecessary areas. By quantifying the data transmitted, scattered, absorbed, refracted from the light emitting device to better measure the oil concentration.

본 발명은 효과적인 유분농도의 측정을 위한 고안으로 실제적인 설치 및 측정 장소는 선박에서 위험구역으로 분류(폭발성 가스의 존재로 인하여 폭발이 발생할 수 있는 장소)되는 장소로서 전기기기의 사용이 엄격히 제한되는 장소이다. 이러한 장소에서 유분을 측정하기 위하여 전기에너지를 광에너지로 변환하고, 다시 광에너지가 유분에 의해 흡수 또는 산란된 에너지를 재 측정하는 광학측정 방식으로 하여 선박에서 위험구역으로 분류된 장소에서도 측정이 가능할 수 있다.The present invention is devised for the measurement of effective oil concentration, the actual installation and measurement place is classified as a dangerous zone in the vessel (place where explosion may occur due to the presence of explosive gas) where the use of electrical equipment is strictly limited. It is a place. In order to measure the oil at such a place, it converts electrical energy into light energy, and then re-measures the energy absorbed or scattered by the oil. Can be.

또한, 액체에 함유되어 있는 유분을 측정함으로써 유분의 외부유출 등으로 인한 사고의 위험을 미연에 방지하는 장점도 있다.   In addition, by measuring the oil contained in the liquid has the advantage of preventing the risk of accidents due to the external leakage of the oil in advance.

Figure 112009069774949-PAT00001
Figure 112009069774949-PAT00001

< 그림 . 유분 측정을 위한 광학 측정 방식 ><Figure. Optical Measurement Methods for Oil Measurements>

이렇게 액체에 함유되어 있는 유분을 측정하기 위한 방법 중 Raman 산란, Rayleigh 산란, Mie 산란 및 induced fluorescence (LIF)등 광학을 이용한 흡수, 산란 방식과 관련된 기술이 최근 많이 발달하고 있는 추세이다.   Among the methods for measuring the oil content in liquid, technologies related to optical absorption and scattering methods such as Raman scattering, Rayleigh scattering, Mie scattering, and induced fluorescence (LIF) have recently been developed.

본 발명이 이루고자하는 기술적 과제는 신뢰성이 높은 유분농도 측정을 하기 위하여 앞서 언급한 내용과 같이 발광소자의 광량을 효과적으로 수신할 수 있는 원뿔 모형의 구조물과 신호를 모아주는 렌즈와 불필요한 영역의 신호를 필터링 해주는 렌즈의 조합으로 구성된 구조물의 설계이다.The technical problem to be achieved by the present invention is to filter the signals of the lens and the unnecessary area to collect the structure and signal of the cone model that can effectively receive the light amount of the light emitting device as described above in order to measure the reliable oil concentration concentration It is the design of a structure consisting of a combination of lenses.

광학 측정 방식을 이용한 유분 측정Oil measurement using optical measuring method

발광소자로부터 광신호를 보다 효과적으로 전달할 수 있는 원뿔 구조물과 렌즈의 조합Combination of a conical structure and a lens that can more effectively transmit optical signals from light emitting devices

선박에서 지정하는 위험구역에 설치가 가능한 구조Structure that can be installed in hazardous areas designated by ships

발광소자로 레이저가 아닌 할로겐 램프 사용Halogen lamp, not laser, as light emitting device

광학 신호를 분석회로에 적용할 수 있도록 포토 다이오드를 이용한 구조Structure using photodiode to apply optical signal to analysis circuit

1) 광학측정 방식을 이용한 유분 농도 측정의 성능의 개선으로, 관련된 측정기와 시스템의 성능이 향상된다.1) Improving the performance of oil concentration measurement using the optical measurement method improves the performance of the related measuring device and system.

2) 해외 유명 제품들과 동등한 성능을 확보함으로써, 국가 경쟁력을 키우고 더 이상 수입품에 의존하지 않고 보다 나은 기술과 서비스를 보장받을 수 있다.2) By securing the same performance as famous products overseas, it can improve national competitiveness and guarantee better technology and service without relying on imports anymore.

3) 본 발명은 내용은 선박에만 적용되는 기술이 아니라 산업 전반에 걸쳐 적용이 가능한 기술로, 사업화 발전 가능성이 무궁무진한 아이템이다.3) The present invention is not a technology applied only to ships, but a technology that can be applied throughout the industry.

본 발명의 광학측정 방식을 이용한 유분농도 측정에서는 크게 발광부와 수광부로 나누어진다. In the oil concentration measurement using the optical measuring method of the present invention, it is divided into a light emitting part and a light receiving part.

발광부는 [도 2]와 같이 저전압 bi-pin 형식의 석영 할로겐 램프로 구성된다. 적용된 램프는 400 ~ 500nm의 파장범위에서 최적화된 최대 출력을 발산하고 35W의 용량을 사용하며 평균 50시간의 수명을 가지며 파란색 계열의 반사코팅처리가 되어 있고 일정한 광속을 유지하는 것이 특징이다.    The light emitting unit is composed of a low-voltage bi-pin quartz halogen lamp as shown in FIG. The applied lamp has an optimized maximum output in the wavelength range of 400 ~ 500nm, uses a capacity of 35W, has an average life of 50 hours, has a blue reflection coating, and maintains a constant luminous flux.

수광부는 발광소자의 광량을 수신할 수 있고 빛을 반사할 수 있는 재질의 [도 3]과 같은 원뿔구조물과 더 많은 광신호를 전달해주는 역할을 하는 [도 4]와 같은 특성을 가지는 렌즈와 원하는 영역대의 광신호를 필터링하는 [도 5]와 [도 6]과 같은 특성을 가지는 RED FILTER와 BLUE FILTER 렌즈로 구성되어 진다.   The light-receiving unit can receive a light quantity of the light emitting element and a lens having the characteristics as shown in FIG. 4 which serves to transmit more optical signals and a conical structure as shown in FIG. It consists of a RED FILTER and BLUE FILTER lens having the same characteristics as [FIG. 5] and [FIG. 6] which filter the optical signal of an area band.

원뿔구조물은 램프의 전등갓의 광량을 넓게 분사 시키는 형태의 원리를 반대로 적용한 것으로, 발광소자를 통해 발산되는 광량을 수광부쪽으로 반사시키는 원뿔 구조물로 설계하여 보다 많은 신호 데이터가 수신 센서에 전달될 수 있도록 한다.   Conical structure is the opposite of the principle of widespread the light of the lampshade of the lamp, it is designed as a conical structure that reflects the amount of light emitted through the light emitting element toward the light receiving unit so that more signal data can be transmitted to the receiving sensor. .

원뿔구조물을 통과한 빛을 보다 효과적으로 전달해주는 역할을 하는 렌즈는 BK7의 재질적 특징을 가지며, 표면은 lambda/2의 성능을 가지고 있다. 성능 분석 결과는 [도 4]를 참조한다.   The lens, which transmits light through the cone structure more effectively, has the material characteristics of BK7 and the surface has lambda / 2 performance. For performance analysis results, see FIG. 4.

렌즈를 통과한 광신호를 수신부로 전달하기 위해서는 앞서 언급한 내용과 같이 대부분이 위험구역에 설치가 된다. 이러한 문제점을 해결하기 위하여 광섬유를 사용한다. 광섬유는 광파장이 유리나 플라스틱 섬유를 따라 움직이며 정보를 전송하는 것과 관련된 매체와 기술을 말한다. 광섬유를 여러 가닥 묶어서 케이블로 만든 것을 광케이블이라고 하며, 그 사용은 늘어나고 있는 추세이다. 광섬유는 합성수지를 재료로 하는 것도 있으나, 주로 투명도가 좋은 유리로 만들어진다. 구조는 보통 중앙의 코어(core)라고 하는 부분을 주변에서 클래딩(cladding)이라고 하는 부분이 감싸고 있는 이중원기둥 모양을 하고 있다. 광섬유는 기존의 구리선보다 더 많은 정보를 운반할 수 있으며, 일반적으로 전자기의 간섭이나 혼신(混信)이 없으므로, 신호를 재전송할 필요가 없고, 도청이 힘들며, 소형·경량으로서 굴곡에도 강하다. 하나의 광섬유에 많은 통신회선을 수용할 수 있고 외부환경의 변화에도 강하다. 더구나 재료인 유리의 원료는 대단히 풍부하므로 효용도가 높다.   In order to transmit the optical signal passing through the lens to the receiver, most of the above is installed in the hazardous area. In order to solve this problem, an optical fiber is used. Fiber optics are the medium and technology associated with the transmission of information by the wavelength of light moving along glass or plastic fibers. Fibers are made of bundles of fibers that are bundled together and called fiber optics, and their use is increasing. The optical fiber is made of synthetic resin, but mainly made of glass with good transparency. The structure has a double cylinder shape in which a core called a core is wrapped around a portion called cladding. Fiber optics can carry more information than conventional copper wires, and in general, there is no electromagnetic interference or interference, so there is no need to retransmit signals, hard to eavesdropping, and compact and lightweight. It can accommodate many communication lines in one optical fiber and is strong in the change of external environment. Moreover, since the raw material of glass which is a material is very abundant, its utility is high.

이렇게 광섬유를 통해 전달되는 신호는 분석을 위하여 원하는 영역대의 신호만 통과해주는 필터 렌즈에 도달한다. 필터 렌즈는 상기 [그림 1]과 같이 여러 각도에서 측정을 하여 값을 획득하여 비교하게 되므로 "RED FILTER"와 "BLUE FILTER"로 구분이 되며 RED FILTER는 Color Glass RG850의 재질을 가지며 AR Coating 처리가 되어 있는 것이 특징이다. BLUE FILTER는 Color Glass BG18의 재질을 가진다. 이 필터가 가지는 파형 곡선의 특징은 [도 5]와 [도 6]에 나타나 있다.   The signal transmitted through the optical fiber reaches the filter lens that passes only the signal in the desired area for analysis. As the filter lens is measured at various angles as shown in [Figure 1], the values are obtained and compared, so it is divided into "RED FILTER" and "BLUE FILTER". RED FILTER has a material of Color Glass RG850 and AR Coating treatment It is characteristic. BLUE FILTER has a material of Color Glass BG18. The characteristic of the waveform curve which this filter has is shown in FIG. 5 and FIG.

이렇게 필터링 렌즈를 거쳐 통과된 신호는 광신호를 전압신호로 바꾸어 주는 증폭회로가 포함된 포토 다이오드에 전달된다. 포토 다이오드는 반도체의 PN 접합부에 광이 입사할 때 전압이 발생하는 광기전력 효과에 의한 수광 소자이다. 일반적인 입사광에 대한 직진성이 뛰어나고 잡음이 적으며, 넓은 파장범위의 감도를 얻을 수 있는 특징이 있어서 일반적으로 광신호 검출 소자로서 널리 사용되고 있다. 또한 파장범위, 응답성, 암 전류값의 개선을 위해 다양한 구조와 특징이 있다.   The signal passed through the filtering lens is transferred to a photodiode including an amplifier circuit that converts an optical signal into a voltage signal. The photodiode is a light receiving element due to a photovoltaic effect in which voltage is generated when light is incident on a PN junction of a semiconductor. It is generally used as an optical signal detection device because it has excellent linearity with respect to general incident light, low noise, and a sensitivity capable of obtaining a wide wavelength range. In addition, there are various structures and features to improve the wavelength range, responsiveness, dark current value.

상기 내용 같은 구성품에 [도 1]과 같은 구조로 구성되어 기존의 방식 및 구조에 비해 보다 많은 광신호를 측정할 수 있고, 이에 따라 높은 정밀도도 확보할 수 있다.    The components as described above are configured as shown in FIG. 1 to measure more optical signals than conventional methods and structures, thereby ensuring high precision.

[도 1]은 본 발명에 따른 광학측정 방식을 이용한 유분농도 측정의 성능 향상을 위한 방안의 대략적인 구조도이다.1 is a schematic structural diagram of a method for improving the performance of oil concentration measurement using the optical measurement method according to the present invention.

[도 2]는 본 발명에 적용된 발광소자로서 할로겐 램프이다.2 is a halogen lamp as a light emitting device applied to the present invention.

[도 3]은 발광소자의 광신호를 보다 효과적으로 수신부로 전달할 수 있도록 해주는 원뿔형 구조물이다.3 is a conical structure that allows the light signal of the light emitting device to be more effectively transmitted to the receiver.

[도 4]는 원뿔형 구조물을 통하여 입사되는 광신호를 수신부로 전달하는 렌즈의 분석 결과이다.4 is an analysis result of a lens that transmits an optical signal incident through a conical structure to a receiver.

[도 5]는 원하는 영역대의 광신호만 걸러주는 BLUE FILTER 렌즈의 파형 곡선이다.5 is a waveform curve of a BLUE FILTER lens that filters only an optical signal in a desired area.

[도 6]은 원하는 영역대의 광신호만 걸러주는 RED FILTER 렌즈의 파형 곡선이다.6 is a waveform curve of a RED FILTER lens that filters only an optical signal in a desired area.

※ 도면 중 주요 부분에 대한 부호 설명 ※※ Explanation of the main parts of the drawings ※

1 : 포토 다이오드 2 : 필터링 렌즈 1: photodiode 2: filtering lens

3 : 광섬유 4 : 수광 렌즈 3: optical fiber 4: light receiving lens

5 : 원뿔구조물 6 : 할로겐 램프 5: conical structure 6: halogen lamp

Claims (5)

광학 측정 방식을 이용한 유분 측정Oil measurement using optical measuring method 발광소자로부터 광신호를 보다 효과적으로 전달할 수 있는 원뿔 구조물과 렌즈의 조합Combination of a conical structure and a lens that can more effectively transmit optical signals from light emitting devices 선박에서 지정하는 위험구역에 설치가 가능한 구조Structure that can be installed in hazardous areas designated by ships 발광소자로 레이저가 아닌 할로겐 램프 사용Halogen lamp, not laser, as light emitting device 광학 신호를 분석회로에 적용할 수 있도록 포토 다이오드를 이용한 구조Structure using photodiode to apply optical signal to analysis circuit
KR1020090109581A 2009-11-13 2009-11-13 High senor efficiency method for optical oil concentration measuring device KR20110052875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090109581A KR20110052875A (en) 2009-11-13 2009-11-13 High senor efficiency method for optical oil concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090109581A KR20110052875A (en) 2009-11-13 2009-11-13 High senor efficiency method for optical oil concentration measuring device

Publications (1)

Publication Number Publication Date
KR20110052875A true KR20110052875A (en) 2011-05-19

Family

ID=44362689

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090109581A KR20110052875A (en) 2009-11-13 2009-11-13 High senor efficiency method for optical oil concentration measuring device

Country Status (1)

Country Link
KR (1) KR20110052875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109507071A (en) * 2018-11-16 2019-03-22 衡智远科技(深圳)有限公司 A kind of method, apparatus and calculating equipment of detection oil smoke concentration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109507071A (en) * 2018-11-16 2019-03-22 衡智远科技(深圳)有限公司 A kind of method, apparatus and calculating equipment of detection oil smoke concentration

Similar Documents

Publication Publication Date Title
CN100468049C (en) Detection method for Optical-fiber transmitting infrared absorption type methane gas
WO2008111320A1 (en) Optical fiber sensor
CN102680581B (en) Matched-type fiber-grating acoustic emission sensing method with temperature compensation
JP7253327B2 (en) Polarity, power, and loss measurements of optical arrays using position sensitive detectors and optical test equipment with photodetectors
CN204495716U (en) A kind of turbidity meter of high precision high accuracy
CN102798621A (en) Multi-piece reflection type ultraviolet induced biological fluorescence detection system
CN114413944B (en) Distributed optical fiber sensor based on quantum dots
CN106644861A (en) Particulate matter concentration measuring instrument
CN102620761A (en) Long-distance optical fiber Bragg grating sensing method and device based on self-heterodyne detection
CN204462021U (en) Fluorescence analyser
KR20110052875A (en) High senor efficiency method for optical oil concentration measuring device
CN2715111Y (en) Multi-channel optical fiber grating sensor
CN202794024U (en) Sample cell used for measuring molecular spectral absorption
CN103323437A (en) Dissolved oxygen online monitoring method and adopted sensor
CN107576369B (en) Optical fiber continuous liquid level sensor based on end face reflection coupling
ATE308830T1 (en) RECEIVER FOR WIRELESS COMMUNICATIONS WITH A CONCENTRATOR WITH TOTAL INTERNAL REFLECTION
CN105241818A (en) Photoelectric probe for oil monitoring on water surface
CN201477337U (en) Sensing wavelength demodulator based on triangular spectrum fiber grating
CN105372206B (en) Parallel remote optical fiber sensing system for the detection of multiple gases refractive index
CN203287318U (en) Optical fiber sensing device of fluorescence method
CN202928950U (en) Monochromatic source assembly and photoelectric colorimetry device adopting same
CN210953729U (en) Tail gas particulate matter concentration sensor structure
CN205785513U (en) A kind of laser power sample devices
CN203024788U (en) Distributed type real-time monitoring system based on optical time domain reflection and fiber bragg gratings
CN202304853U (en) Optical fiber sensing device with wide dynamic range

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid