KR20110049471A - The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof - Google Patents
The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof Download PDFInfo
- Publication number
- KR20110049471A KR20110049471A KR1020090106490A KR20090106490A KR20110049471A KR 20110049471 A KR20110049471 A KR 20110049471A KR 1020090106490 A KR1020090106490 A KR 1020090106490A KR 20090106490 A KR20090106490 A KR 20090106490A KR 20110049471 A KR20110049471 A KR 20110049471A
- Authority
- KR
- South Korea
- Prior art keywords
- current collector
- metal foil
- carbon
- carbon nanofiber
- coated
- Prior art date
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 239000002134 carbon nanofiber Substances 0.000 title claims abstract description 36
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 38
- 229910052782 aluminium Inorganic materials 0.000 title claims description 28
- 238000000034 method Methods 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 38
- 239000002184 metal Substances 0.000 claims abstract description 38
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 18
- 239000004917 carbon fiber Substances 0.000 claims abstract description 18
- 239000011148 porous material Substances 0.000 claims abstract description 8
- 239000011888 foil Substances 0.000 claims description 48
- 239000002121 nanofiber Substances 0.000 claims description 20
- 229920000642 polymer Polymers 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 7
- 238000003825 pressing Methods 0.000 claims description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 238000010000 carbonizing Methods 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 238000002048 anodisation reaction Methods 0.000 claims description 4
- 238000003466 welding Methods 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 239000002105 nanoparticle Substances 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 7
- 239000000853 adhesive Substances 0.000 abstract description 7
- 230000001070 adhesive effect Effects 0.000 abstract description 7
- 239000003990 capacitor Substances 0.000 abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 6
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 239000011149 active material Substances 0.000 description 6
- 238000001523 electrospinning Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 229920002239 polyacrylonitrile Polymers 0.000 description 4
- 229920005594 polymer fiber Polymers 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920003174 cellulose-based polymer Polymers 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
- H01G9/045—Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/663—Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Composite Materials (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
본 발명은 접착강도와 전기전도를 향상된 커패시터 또는 이차전지의 집전체에 관한 것으로 전기방사 방법으로 얻은 탄소나노섬유를 금속박(알루미늄 포일)에 용착시킴으로써 접착강도와 전기전도도가 향상된 탄소나노섬유가 코팅된 집전체와 이를 제조하는 방법에 관한 것이다. The present invention relates to a current collector of a capacitor or a secondary battery with improved adhesive strength and electrical conductivity. The carbon nanofibers obtained by the electrospinning method are welded onto a metal foil (aluminum foil), and the carbon nanofibers with improved adhesive strength and electrical conductivity are coated. It relates to a current collector and a method of manufacturing the same.
집전체는 전지 또는 전기화학 커패시터에서 활물질의 전기화학반응으로 생성된 전자를 축적하여 외부회로에 전달하는 역할을 한다. 집전체는 활물질에서 생성되는 전자를 최대한 많이 받아들여야 하므로 집전체와 활물질은 강하게 결착되어 있어야 하며, 그 접촉면적은 넓을수록 좋다. 또한 활물질에서 나온 전자를 외부회로에 원활하게 전달하기 위해서 집전체는 고전기전도성이 요구된다. 마지막으로 집전체의 전극구조는 전지나 커패시터에서 일어나는 전기화학반응에 대해서 안정적이어야 한다.The current collector accumulates electrons generated by an electrochemical reaction of an active material in a battery or an electrochemical capacitor and transfers them to an external circuit. Since the current collector must receive as much electrons generated from the active material as possible, the current collector and the active material must be strongly bound, and the larger the contact area is, the better. In addition, in order to smoothly transfer electrons from the active material to the external circuit, the current collector requires high conductivity. Finally, the electrode structure of the current collector must be stable to the electrochemical reactions occurring in the cell or capacitor.
리튬이온전지의 양극 그리고 전기화학 커패시터에 사용되는 집전체는 일반적으로 알루미늄 박에 활물질 또는 활성탄 분말, 결합재, 도전재를 혼합하여 만든 슬러리를 도포한 후 실온에서 건조하거나 압착하는 방법으로 제조한다. 그러나 현재 이러한 방법으로 제조되는 경우에는 집전체와 도포물질의 접착성이 충분하지 않아 시간이 지나면서 도포된 물질이 알루미늄으로부터 박리되는 문제점이 있으며, 일반적으로 사용되는 결합재가 비전도성이므로 집전체의 전도성을 저하시키는 문제가 있다. 또한 충방전이 일어나는 동안 알루미늄에 높은 산화전압이 가해지는데 이 때 알루미늄 표면에 부도체인 산화막이 생성됨으로써, 집전체의 전기전도성을 떨어뜨리는 문제점이 있다. The current collector used for the positive electrode and electrochemical capacitor of a lithium ion battery is generally manufactured by applying a slurry made of a mixture of an active material or activated carbon powder, a binder, and a conductive material to aluminum foil, followed by drying or pressing at room temperature. However, when manufactured by such a method, there is a problem that the applied material is peeled off from aluminum over time due to insufficient adhesion between the current collector and the coating material, and since the commonly used binder is non-conductive, the conductivity of the current collector There is a problem of lowering. In addition, a high oxidation voltage is applied to the aluminum during charging and discharging. At this time, an oxide film, which is a non-conductor, is formed on the surface of the aluminum, thereby degrading the electrical conductivity of the current collector.
기존의 집전체가 가지는 상기 문제들을 해결하기 위해 다음의 발명들이 제시되었다. In order to solve the problems of the existing current collector, the following inventions have been proposed.
국제특허 PCT/JP2004/003239호에는 탄소를 피복한 알루미늄을 탄화수소 분위기에 배치하고, 알루미늄 용융온도 이하의 열을 가해, 알루미늄 카바이드 게재층을 형성함으로써 탄소층과 알루미늄 박의 접착성을 향상시키는 제조방법 게시. 알루미늄 카바이드를 이용해 기상 성장시킨 whisker가 탄소층과 알루미늄 표면을 붙잡아줌으로써 표면접착강도를 향상시키며, 동시에 두 층 사이의 전기 전도 통로의 역할을 하여 전기전도성을 향상시킨 발명이 게시되었다. International Patent PCT / JP2004 / 003239 discloses a method for producing carbon-coated aluminum foil by arranging aluminum coated with carbon in a hydrocarbon atmosphere, applying heat below an aluminum melting temperature, and forming an aluminum carbide deposition layer. posting. A whisker vapor-grown using aluminum carbide holds the carbon layer and the aluminum surface to improve the surface adhesion strength, and at the same time serves as an electrical conduction path between the two layers to improve the electrical conductivity.
미국특허 US577428호에는 플라즈마 스프레이 방법으로 알루미늄을 카본섬유천에 코팅한 후 코팅된 카본섬유천을 알루미늄 포일에 300℃ 정도의 온도에서 열압 착하는 방법으로 집전체를 제조하는 방법이 게시되어 있다. US Patent US577428 discloses a method for manufacturing a current collector by coating aluminum on a carbon fiber cloth by a plasma spray method and then thermally compressing the coated carbon fiber cloth on an aluminum foil at a temperature of about 300 ° C.
일본특허 JP2009/123664호에서는 알루미늄 표면에 있는 산화물을 제거한 후, 전도성이 있는 티타늄 카바이드를 알루미늄 박에 고속 스프레이하여 분자규모로 알루미늄 속에 확산되어 있는 접합층을 형성함. 이로써 활물질과의 결합력이 우수하며, 표면 산화물 형성을 억제시킴으로써 내구성을 개선한 집전체의 제조방법을 게시하였다. In Japanese Patent JP2009 / 123664, after removing the oxide on the aluminum surface, a conductive titanium carbide is sprayed on the aluminum foil at high speed to form a bonding layer diffused in aluminum on a molecular scale. As a result, a method of manufacturing a current collector having excellent bonding strength with an active material and improving durability by suppressing surface oxide formation has been disclosed.
한국특허 KR10-0511363호에서는 탄소나노튜브나 탄소나노섬유와 금속나노입자 또는 금속산화물의 혼합물을 알루미늄에 부착한 후, 이를 열압착하는 방식으로 제조된 집전체를 게시하였다. Korean Patent KR10-0511363 discloses a current collector manufactured by attaching a mixture of carbon nanotubes or carbon nanofibers and metal nanoparticles or metal oxides to aluminum and then thermocompressing them.
본 발명은 상기 종래기술의 문제점을 해결하려는 기존의 기술적 개선들을 감안하여 다음에서 기술한 새로운 고안을 통해 집전체의 성능을 개선하고자 한다.The present invention is to improve the performance of the current collector through the new design described below in consideration of the existing technical improvements to solve the problems of the prior art.
폴리머 나노 섬유를 균일 요철구조를 형성시킨 금속박(알루미늄 박)에 전기방사법으로 부착한 후 알루미늄의 용융온도 부근에서 탄화시킴과 동시에 알루미늄 박을 탄화섬유에 용착시켜 탄화섬유와 알루미늄이 합성된 층을 형성시킴으로써, 접착강도 및 내구성이 향상되고 계면접촉저항은 최소화된 집전체를 제조한다. After attaching the polymer nanofibers to the metal foil (aluminum foil) having a uniform concave-convex structure by electrospinning, carbonizing them near the melting temperature of the aluminum, and simultaneously welding the aluminum foil to the carbonized fiber to form a composite layer of carbonized fiber and aluminum. By doing so, the adhesive strength and durability are improved, and the current collector with minimal interfacial contact resistance is produced.
본 발명에 따른 탄소나노섬유가 코팅된 집전체는 The carbon nanofiber coated current collector according to the present invention
금속박과 상기 금속박 일면에 구비된 탄소나노섬유층을 포함하며,Metal foil and carbon nanofiber layer provided on one surface of the metal foil,
상기 금속박은 용융된 상기 금속박의 일면이 상기 탄소나노섬유층의 공극으로 침투하여 금속-탄소섬유 합성층을 이루며 상기 탄소나노섬유층과 용착되는 것을 특징으로 한다.The metal foil is characterized in that one surface of the molten metal foil penetrates into the pores of the carbon nanofiber layer to form a metal-carbon fiber composite layer and is welded with the carbon nanofiber layer.
이 때, 상기 금속박은 알루미늄, 구리 및 니켈로부터 하나 이상 선택된 주 소재가 알루미늄, 구리, 니켈, 백금, 금, 은 및 팔라듐으로부터 하나 이상 선택된 표면소재에 의해 전기도금 또는 이온 증착된 것이거나,At this time, the metal foil is one or more of the main material selected from aluminum, copper and nickel is electroplated or ion deposited by a surface material selected from at least one selected from aluminum, copper, nickel, platinum, gold, silver and palladium,
상기 주 소재에 상기 표면소재의 나노입자가 스프레이, 딥 및 압착 중 어느 하나의 방법에 의해 코팅된 것이 바람직하다.It is preferable that the nanoparticles of the surface material are coated on the main material by any one of spraying, dipping and pressing.
한편, 본 발명에 따른 탄소나노섬유가 코팅된 집전체의 제조방법은,On the other hand, the manufacturing method of the current collector coated with carbon nanofiber according to the present invention,
양극산화 방법에 의해 금속박의 일면에 요철구조를 형성하는 제 1 단계;A first step of forming an uneven structure on one surface of the metal foil by an anodizing method;
상기 요철구조에 고분자 나노섬유를 코팅하는 제 2 단계;A second step of coating the polymer nanofibers on the uneven structure;
상기 고분자 나노섬유가 코팅된 금속박을 산소가 포함된 공기에서 가열하여 집전체를 제작하는 제 3 단계; 및A third step of fabricating a current collector by heating the metal foil coated with the polymer nanofibers in air containing oxygen; And
상기 집전체를 불활성 분위기하에서 압력을 가해주며 열처리를 통해 상기 고분자 나노섬유를 전도성 탄소섬유로 탄화시키고 동시에 용융된 상기 금속박을 상기 탄소섬유의 공극부로 침투시켜 용착시키는 제 4 단계;를 포함한다.And a fourth step of applying pressure to the current collector in an inert atmosphere and carbonizing the polymer nanofibers with conductive carbon fibers through heat treatment, and simultaneously infiltrating the molten metal foil into the pores of the carbon fibers and welding them.
이때, 제 4 단계에 있어서 상기 열처리는 수증기 분위기하에서 300℃ 이상 상기 금속박의 용융점 이하의 온도에서 열처리를 함으로써 비표면적을 증가시키는 것이 바람직하다. At this time, in the fourth step, the heat treatment is preferably performed to increase the specific surface area by performing heat treatment at a temperature of 300 ° C. or more and below the melting point of the metal foil in a steam atmosphere.
본 발명은 비표면적이 넓은 탄소나노섬유를 탄소층으로 이용하므로 고에너지 밀도를 요구하는 전기이중층 커패시터에 응용될 수 있다. 또한 탄소섬유층과 알루미늄의 합성층이 강한 접착을 이루고 있으므로 박리 현상으로 인한 전지, 커패시터의 성능저하 현상을 방지할 수 있으며, 접촉저항이 최소로 억제됨으로써 출력성능의 향상을 기대할 수 있다. Since the present invention uses carbon nanofibers having a large specific surface area as a carbon layer, the present invention can be applied to an electric double layer capacitor requiring high energy density. In addition, since the carbon fiber layer and the composite layer of aluminum forms a strong adhesion, it is possible to prevent the performance degradation of the battery and the capacitor due to the peeling phenomenon, and to improve the output performance by minimizing the contact resistance.
이하 첨부한 도면을 참고로 본 발명에 따른 탄소나노섬유가 코팅된 집전체와 그 제조방법을 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the current collector and its manufacturing method coated with carbon nanofibers.
도 1은 탄소나노섬유가 코팅된 집전체의 제조방법 흐름도이며 도 2는 탄소나노섬유가 코팅된 집전체의 단면 모식도이다. 도 3a와 도 4는 각각 각 실시예들에 대한 접착강도 평가 결과와 계면저항 평가 결과이다.1 is a flowchart illustrating a method of manufacturing a current collector coated with carbon nanofibers, and FIG. 2 is a schematic cross-sectional view of a current collector coated with carbon nanofibers. 3a and 4 are the results of the evaluation of the adhesive strength and the interface resistance for each of the embodiments.
본 발명에 따른 탄소나노섬유가 코팅된 집전체(100)는 도 2와 같이 금속박(200)과 상기 금속박(200) 일면에 구비된 탄소나노섬유층(300)을 포함하되, 상기 금속박(200)은 용융된 상기 금속박(200)의 일면이 상기 탄소나노섬유층(300)의 공극으로 침투하여 금속-탄소섬유 합성층(400)을 이루며 상기 탄소나노섬유층(300)과 용착되는 것을 특징으로 한다. The carbon nanofiber coated
이때, 상기 금속박(200)은 알루미늄, 구리 및 니켈로부터 하나 이상 선택된 주 소재가 알루미늄, 구리, 니켈, 백금, 금, 은 및 팔라듐으로부터 하나 이상 선택된 표면소재에 의해 전기도금 또는 이온 증착된 것이거나, 상기 주 소재에 상기 표면소재의 나노입자가 스프레이, 딥 및 압착 중 어느 하나의 방법에 의해 코팅된 것이 바람직하다.At this time, the
이하에서 구체적으로 알루미늄 금속박(200)을 사용한 상기 탄소나노섬유가 코팅된 집전체(100)의 특징을 도 1의 제조방법을 통해 상세히 살펴본다.Hereinafter, the characteristics of the carbon nanofiber-coated
본 발명의 탄소나노섬유가 코팅된 집전체(100)는The carbon nanofiber coated
양극산화 방법에 의해 금속박(200)의 일면에 요철구조(210)를 형성하는 제 1 단계;A first step of forming the
상기 요철구조(210)에 고분자 나노섬유를 코팅하는 제 2 단계;A second step of coating the polymer nanofibers on the
상기 고분자 나노섬유가 코팅된 금속박(200)을 산소가 포함된 공기에서 가열하여 집전체(100)를 제작하는 제 3 단계; 및A third step of fabricating the
상기 집전체(100)를 불활성 분위기하에서 압력을 가해주며 열처리를 통해 상기 고분자 나노섬유를 전도성 탄소섬유로 탄화시키고 동시에 용융된 상기 금속박(200)을 상기 탄소섬유의 공극부로 침투시켜 용착시키는 제 4 단계를 거쳐 제조된다.A fourth step of applying pressure to the
먼저 제 1 단계에서 양극산화를 통해 알루미늄 금속박(200) 표면에 비표면적이 너비가 약 100~500㎚에 이르는 넓고 균일한 요철구조(210)를 형성한다.First, in the first step, through the anodization, a wide and uniform
이후 제 2 단계에서 요철구조(210)가 형성된 표면에 고분자 나노섬유를 전기방사, 실크스크린, 닥터블레이드, 스프레이 방법으로 상기 요철구조(210)가 형성된 알루미늄 금속박(200) 표면에 100~500 ㎚ 굵기의 고분자 나노섬유를 1 ~ 200 ㎛ 두께로 코팅한다. Thereafter, in the second step, the polymer nanofibers are formed on the surface on which the
예를 들어 전기방사된 고분자 나노섬유는 넓은 표면적을 갖는 요철구조(210) 와 엉킴을 일으켜 섬유층을 물리적으로 단단히 붙잡는 역할을 하게 된다. 나노섬유 전기방사에 사용되는 고분자로는 폴리아크릴로니트릴(polyacrylonitrile, 이하 PAN), 피치(pitch), 레이온, 셀룰로오스 계열 고분자 등이 좋다. 그 중에서도 피치 나노섬유의 탄화물은 다른 종류의 고분자 기반 탄소섬유에 비해서 높은 전도도를 보여주므로 특히 바람직하다. For example, the electrospun polymer nanofibers are entangled with the concave-
제 3 단계에서는 요철구조(210)를 갖는 알루미늄 금속박(200)에 부착된 고분자 나노섬유를 산소가 있는 공기에서 200~300℃ 온도에서 1~2시간 동안 열처리를 해준다. In the third step, the polymer nanofibers attached to the
상기 열처리는 수증기 분위기하에서 300℃ 이상 상기 금속박(200)의 용융점 이하의 온도에서 열처리를 함으로써 비표면적을 증가시키는 것이 바람직하다. 이온도에서는 고분자 나노섬유가 유리상 온도(glassy temperature) 이상의 온도에 있게 되어 유동상태가 되므로, 섬유층이 알루미늄의 표면에 잘 결착해 있게 된다. 시간이 지나면 나노섬유의 분자들이 산소와 반응하면 분자구조가 사슬형에서 고리형으로 변화하는데 고리형 구조를 갖는 섬유는 더 이상 열에 의한 변형이 일어나지 않으며 600℃ 이상의 고온에서도 질량손실이 최소화된 안정적인 탄화가 가능하다. 고분자 섬유는 고리화를 위한 산화반응 시 분자 구조 변화로 인해 수축이 일어나면서 알루미늄 표면에서 박리될 수 있다. 수축으로 인한 고분자 나노섬유층의 박리를 막기 위해 안정화 중에는 0.2~1㎏f/㎠의 압력을 가해준다. In the heat treatment, it is preferable to increase the specific surface area by performing heat treatment at a temperature of 300 ° C. or more and below the melting point of the
마지막으로 제 4 단계서는 상기 가열된 집전체(100)를 질소 또는 아르곤의 불활성 분위기 하에서 0.5~1㎏f/㎠의 압력을 가해주면서 알루미늄 금속박(200)의 용융점으로부터 +40℃의 범위인 600~700℃의 온도에서 열처리를 해줌으로써, 고분자 나노섬유를 전도성 탄소섬유로 탄화시킴과 동시에 표면이 용융된 알루미늄 금속박(200)을 탄화섬유의 공극부로 침투시켜 도 2에 도시한 바와 같은 상기 금속-탄소섬유 합성층(400)이 생성되며 용착 된다.Finally, the fourth step is 600 ~ in the range of +40 ℃ from the melting point of the
다음은 상기 제조방법에 의한 탄소나노섬유가 코팅된 집전체(100)의 제조실시예이다.The following is a manufacturing example of the
(실시예 1)(Example 1)
순도 99.9%이고 두께가 100㎛인 알루미늄 금속박(200)을 인산 용액을 전해질로 양극 산화하여 지름이 300~500㎚인 균일한 요철구조(210)를 표면에 형성시킨 다음, 양극산화로 인해 형성된 표면산화물을 수산화나트륨 또는 크롬산 용액에 5시간 담가 표면에 형성된 산화알루미늄을 벗겨내었다.Anodized
중량비율로 PAN과 Dimethyl formamide(DMF) 1:10으로 혼합하여 전기방사용 전구체를 제조한다. 제조된 전구체를, 팁의 지름이 1㎛ 이고 용량이 10ml인 시린지에 넣고, 시린지 팁 부분에는 +10kV, 수집금속면에는 -10kV를 가해 PAN 전구체를 수집금속면에 붙어있는 금속박(200)에 1분간 전기방사 시켰다. 방사된 고분자 섬유 의 굵기는 300~500㎚ 였으며, 고분자섬유가 부착된 전극물질의 두께는 120㎛ 였다. PAN and dimethyl formamide (DMF) 1:10 by weight ratio to prepare an electrospinning precursor. The prepared precursor is placed in a syringe having a diameter of 1 μm and a volume of 10 ml, and +10 kV is applied to the syringe tip portion and -10 kV to the collecting metal surface to give the PAN precursor to the
나노섬유가 부착된 알루미늄 금속박(200)을 머플 전기로에서 스테인리스 판재로 0.2~1㎏f/㎠의 압력을 가해 5℃/min의 승온속도로 공기 분위기에서 300℃에서 1시간 동안 열처리를 시킨 후, 질소분위기에서 같은 승온속도로 700℃에서 1시간 동안 0.5~1㎏f/㎠의 압력을 가해주면서 열처리를 하였다. 이 과정에서 고분자 섬유는 전도성을 지닌 탄화섬유로 변화하였다. 마지막으로 30% 수분이 함유된 질소분위기에서 300℃의 온도로 열처리를 하였다. After applying nanofiber-attached
(실시 예 2) (Example 2)
지름이 약 100㎚인 요철구조(210)를 갖는 알루미늄 금속박(200)에 상기 실시예와 같은 공정을 수행하였다.The same process as in the above embodiment was performed on the
(참고예 1)(Reference Example 1)
표면을 에칭 처리한 상용 알루미늄 금속박(200)에 실시예 1과 같은 공정을 수행하였다. The same process as Example 1 was performed on the commercial
(참고예 2)(Reference Example 2)
표면에 아무 처리도 하지 않은 상용 알루미늄 금속박(200)에 실시예 1과 같은 공정을 수행하였다. The same process as Example 1 was performed on the commercial
(접착성 평가)(Adhesive evaluation)
상기 예시들의 방법으로 제조한 전극을 1cm×2.5cm의 크기로 잘라낸 다음, 스카치 매직 테이프를 부착했다 떼어내어 탈착된 코팅물의 질량을 측정하여 다음의 식을 이용하여 접착성을 평가하였다. 평가 결과는 도 3a에 제시하였다. 제시한 도면에서 볼 수 있듯이 실시예 1이 가장 좋은 접착성을 나타내었다. The electrode prepared by the method of the above examples was cut out to a size of 1 cm × 2.5 cm, and then the Scotch Magic tape was attached and detached to measure the mass of the detached coating to evaluate adhesion using the following equation. The evaluation results are shown in FIG. 3A. As can be seen in the drawings presented, Example 1 showed the best adhesion.
(계면접촉저항 평가)(Interface contact resistance evaluation)
제조한 전극을 2cm×2cm의 크기로 잘라 구리판 사이에 넣고 압착기를 이용해 100㎏f/㎠의 압력을 가하고 High frequency ohmmeter를 이용하여 구리판 사이의 저항을 측정함으로써 각 시료들의 계면접촉저항을 평가하였다. 평가 결과는 도 4에 제시하였다. 도 4에서 볼 수 있듯이, 실시예 1의 결과가 가장 낮은 계면접촉저항을 나타내었다.The prepared electrode was cut into a size of 2 cm × 2 cm, sandwiched between copper plates, a pressure of 100 kgf /
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다. The present invention is not limited to the above-described embodiments, and the scope of application of the present invention is not limited to those of ordinary skill in the art to which the present invention pertains without departing from the gist of the present invention as claimed in the claims. Of course, various modifications can be made.
도 1은 탄소나노섬유가 코팅된 집전체의 제조방법 흐름도1 is a flowchart illustrating a method of manufacturing a current collector coated with carbon nanofibers
도 2는 탄소나노섬유가 코팅된 집전체의 단면 모식도2 is a schematic cross-sectional view of a current collector coated with carbon nanofibers
도 3a는 각 실시예들에 대한 접착강도 평가 결과Figure 3a is a result of evaluation of the adhesive strength for each embodiment
도 4는 각 실시예들에 대한 계면접촉저항 평가 결과4 is a result of evaluating the interfacial contact resistance for each embodiment
*** 도면의 부호의 설명 ****** Explanation of symbols in the drawings ***
100 : 집전체100: current collector
200 : 금속박200: metal foil
210 : 요철구조210: uneven structure
300 : 탄소나노섬유층300: carbon nano fiber layer
400: 금속-탄소섬유 합성층400: metal-carbon fiber composite layer
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090106490A KR101063443B1 (en) | 2009-11-05 | 2009-11-05 | The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090106490A KR101063443B1 (en) | 2009-11-05 | 2009-11-05 | The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110049471A true KR20110049471A (en) | 2011-05-12 |
KR101063443B1 KR101063443B1 (en) | 2011-09-08 |
Family
ID=44360603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090106490A KR101063443B1 (en) | 2009-11-05 | 2009-11-05 | The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101063443B1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9190656B2 (en) | 2011-10-20 | 2015-11-17 | Hyundai Motor Company | Cathode current collector for electrical energy storage device and method for manufacturing the same |
CN105742634A (en) * | 2014-12-12 | 2016-07-06 | 中国科学院大连化学物理研究所 | Metal matrix carbon fiber felt |
KR20160091089A (en) | 2015-01-23 | 2016-08-02 | 한국전기연구원 | a roughened metal surface and the fabrication method |
KR20180109764A (en) * | 2017-03-28 | 2018-10-08 | 에네베이트 코포레이션 | Methods of forming carbon-silicon composite material on a current collector |
KR20180132248A (en) * | 2017-06-02 | 2018-12-12 | 한국과학기술원 | An apparaus for manufacturing film having mash nano-structure using a frame that enhance binding force with nanofiber constricted by carbonization |
KR20180132246A (en) * | 2017-06-02 | 2018-12-12 | 한국과학기술원 | A method for manufacturing film having carbon-metal hybrid nano-structure |
US10483548B2 (en) | 2013-07-16 | 2019-11-19 | Samsung Sdi Co., Ltd. | Electron collector structure and lithium battery containing the same |
CN112038652A (en) * | 2020-07-28 | 2020-12-04 | 江苏科技大学 | Fuel cell bipolar plate and preparation method thereof |
KR20210070435A (en) * | 2019-12-04 | 2021-06-15 | 삼화전기주식회사 | Electric double layer capacitor |
KR20220042532A (en) * | 2020-09-28 | 2022-04-05 | 재단법인대구경북과학기술원 | Nanofiber mesh bioelectrode using conductive material and manufacturing method thereof |
CN116417567A (en) * | 2023-06-09 | 2023-07-11 | 深圳海辰储能控制技术有限公司 | Positive electrode plate, energy storage device and preparation method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024210301A1 (en) * | 2023-04-07 | 2024-10-10 | 삼성에스디아이 주식회사 | Negative electrode for all-solid-state battery, and all-solid-state battery including same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5153056B2 (en) | 2004-12-24 | 2013-02-27 | パナソニック株式会社 | Manufacturing method of composite current collector and electrode for non-aqueous electrolyte secondary battery or electric double layer capacitor containing carbon nanofiber |
KR100827951B1 (en) | 2006-12-07 | 2008-05-08 | 한국에너지기술연구원 | Synthesizing carbon nanotubes directly on nickel foil |
-
2009
- 2009-11-05 KR KR1020090106490A patent/KR101063443B1/en active IP Right Grant
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9190656B2 (en) | 2011-10-20 | 2015-11-17 | Hyundai Motor Company | Cathode current collector for electrical energy storage device and method for manufacturing the same |
US9837666B2 (en) | 2011-10-20 | 2017-12-05 | Hyundai Motor Company | Cathode current collector for electrical energy storage device and method for manufacturing the same |
US10483548B2 (en) | 2013-07-16 | 2019-11-19 | Samsung Sdi Co., Ltd. | Electron collector structure and lithium battery containing the same |
CN105742634A (en) * | 2014-12-12 | 2016-07-06 | 中国科学院大连化学物理研究所 | Metal matrix carbon fiber felt |
KR20160091089A (en) | 2015-01-23 | 2016-08-02 | 한국전기연구원 | a roughened metal surface and the fabrication method |
KR20180109764A (en) * | 2017-03-28 | 2018-10-08 | 에네베이트 코포레이션 | Methods of forming carbon-silicon composite material on a current collector |
KR20180132246A (en) * | 2017-06-02 | 2018-12-12 | 한국과학기술원 | A method for manufacturing film having carbon-metal hybrid nano-structure |
KR20180132248A (en) * | 2017-06-02 | 2018-12-12 | 한국과학기술원 | An apparaus for manufacturing film having mash nano-structure using a frame that enhance binding force with nanofiber constricted by carbonization |
KR20210070435A (en) * | 2019-12-04 | 2021-06-15 | 삼화전기주식회사 | Electric double layer capacitor |
CN112038652A (en) * | 2020-07-28 | 2020-12-04 | 江苏科技大学 | Fuel cell bipolar plate and preparation method thereof |
CN112038652B (en) * | 2020-07-28 | 2021-11-12 | 江苏科技大学 | Fuel cell bipolar plate and preparation method thereof |
KR20220042532A (en) * | 2020-09-28 | 2022-04-05 | 재단법인대구경북과학기술원 | Nanofiber mesh bioelectrode using conductive material and manufacturing method thereof |
CN116417567A (en) * | 2023-06-09 | 2023-07-11 | 深圳海辰储能控制技术有限公司 | Positive electrode plate, energy storage device and preparation method |
Also Published As
Publication number | Publication date |
---|---|
KR101063443B1 (en) | 2011-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101063443B1 (en) | The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof | |
Li et al. | Recent advances in flexible aqueous zinc-based rechargeable batteries | |
KR101195081B1 (en) | Carbon coated aluminum current collector with high conductivity and durability and fabrication method thereof | |
Barik et al. | A high energy density and high rate capability flexible supercapacitor based on electro-spun highly porous SnO 2@ carbon nanofibers | |
JP5813126B2 (en) | Anode materials for lithium ion batteries, including nanofibers | |
JP5320579B2 (en) | Gas diffusion electrode and manufacturing method thereof, membrane electrode assembly and manufacturing method thereof, fuel cell member and manufacturing method thereof, fuel cell, power storage device and electrode material | |
US20090142647A1 (en) | Carbon fiber, porous support-carbon fiber composite and method for producing the same as well as catalyst structure, electrode for solid polymer fuel cell and solid polymer fuel cell | |
Chee et al. | Electrospun nanofiber membranes as ultrathin flexible supercapacitors | |
JP5648785B2 (en) | Fuel cell electrode | |
CN114824297A (en) | Preparation method of high-performance foam carbon electrode material applied to flow energy storage battery | |
KR101610354B1 (en) | Production method of a metal oxide supported carbon nano fiber electrode using electro deposition method, and an energy storage device and a filter using the same | |
Zhao et al. | Nitrogen-doped carbon networks derived from the electrospun polyacrylonitrile@ branched polyethylenimine nanofibers as flexible supercapacitor electrodes | |
JP2007527099A (en) | Carbon nanotube or carbon nanofiber electrode containing sulfur or metal nanoparticles as an adhesive and method for producing the electrode | |
CN107408706B (en) | Porous carbon electrode substrate, method for producing same, gas diffusion layer, and membrane-electrode assembly for fuel cell | |
CA2863877C (en) | Gas diffusion layer for fuel cell, fuel cell, and method of manufacturing gas diffusion layer for fuel cell | |
JP2000299113A (en) | Conductive sheet and electrode base material for fuel cell using it | |
JP7394923B2 (en) | Carbon fiber sheet, gas diffusion electrode, membrane-electrode assembly, polymer electrolyte fuel cell, and method for producing carbon fiber sheet | |
KR20110125811A (en) | Fibrous current collector comprising carbon nano fiber, electrode using the same, and method of manufacturing the same | |
KR20110033733A (en) | Method for producing complex of manganese dioxide and carbon nanofiber and pseudo capacitor including the complex | |
Lee et al. | Electrospun carbon nanofibers as a functional composite platform: A review of highly tunable microstructures and morphologies for versatile applications | |
KR100992394B1 (en) | Anode for secondary battery having negative active material with carbon-metal oxide composite and secondary battery using the same, and fabrication method of negative active material for secondary battery | |
Li et al. | In-situ interface reinforcement for 3D printed fiber electrodes | |
KR100997418B1 (en) | Method of preparing gas diffusion layer having carbon nanotube and carbon compound for fuel cell | |
JP5777595B2 (en) | Fuel cell, carbon composite structure, and manufacturing method thereof | |
JP5336804B2 (en) | Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20140902 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20150901 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170921 Year of fee payment: 7 |