KR20110049471A - The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof - Google Patents

The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof Download PDF

Info

Publication number
KR20110049471A
KR20110049471A KR1020090106490A KR20090106490A KR20110049471A KR 20110049471 A KR20110049471 A KR 20110049471A KR 1020090106490 A KR1020090106490 A KR 1020090106490A KR 20090106490 A KR20090106490 A KR 20090106490A KR 20110049471 A KR20110049471 A KR 20110049471A
Authority
KR
South Korea
Prior art keywords
current collector
metal foil
carbon
carbon nanofiber
coated
Prior art date
Application number
KR1020090106490A
Other languages
Korean (ko)
Other versions
KR101063443B1 (en
Inventor
김종휘
김태환
이재영
정범균
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020090106490A priority Critical patent/KR101063443B1/en
Publication of KR20110049471A publication Critical patent/KR20110049471A/en
Application granted granted Critical
Publication of KR101063443B1 publication Critical patent/KR101063443B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE: A current collector in which carbon nanofiber with improved adhesive strength and electric conductivity is coated is provided to enable the application to a electric double layer capacitor required for high energy density suing carbon nano fiber with wide specific surface area as a carbon layer. CONSTITUTION: A current collector in which carbon nanofiber is coated includes a metal film(200) and a carbon nanofiber layer(300) equipped on one side of the metal film. The metal film forms a metal-carbon fiber synthesizing layer(400) by impregnating one side of molten metal film to pores of the carbon nanofiber layer. The metal film is welded with the carbon nanofiber layer.

Description

접착강도와 전기전도도를 향상시킨 탄소나노섬유가 코팅된 집전체와 그 제조방법 {The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof}The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method

본 발명은 접착강도와 전기전도를 향상된 커패시터 또는 이차전지의 집전체에 관한 것으로 전기방사 방법으로 얻은 탄소나노섬유를 금속박(알루미늄 포일)에 용착시킴으로써 접착강도와 전기전도도가 향상된 탄소나노섬유가 코팅된 집전체와 이를 제조하는 방법에 관한 것이다. The present invention relates to a current collector of a capacitor or a secondary battery with improved adhesive strength and electrical conductivity. The carbon nanofibers obtained by the electrospinning method are welded onto a metal foil (aluminum foil), and the carbon nanofibers with improved adhesive strength and electrical conductivity are coated. It relates to a current collector and a method of manufacturing the same.

집전체는 전지 또는 전기화학 커패시터에서 활물질의 전기화학반응으로 생성된 전자를 축적하여 외부회로에 전달하는 역할을 한다. 집전체는 활물질에서 생성되는 전자를 최대한 많이 받아들여야 하므로 집전체와 활물질은 강하게 결착되어 있어야 하며, 그 접촉면적은 넓을수록 좋다. 또한 활물질에서 나온 전자를 외부회로에 원활하게 전달하기 위해서 집전체는 고전기전도성이 요구된다. 마지막으로 집전체의 전극구조는 전지나 커패시터에서 일어나는 전기화학반응에 대해서 안정적이어야 한다.The current collector accumulates electrons generated by an electrochemical reaction of an active material in a battery or an electrochemical capacitor and transfers them to an external circuit. Since the current collector must receive as much electrons generated from the active material as possible, the current collector and the active material must be strongly bound, and the larger the contact area is, the better. In addition, in order to smoothly transfer electrons from the active material to the external circuit, the current collector requires high conductivity. Finally, the electrode structure of the current collector must be stable to the electrochemical reactions occurring in the cell or capacitor.

리튬이온전지의 양극 그리고 전기화학 커패시터에 사용되는 집전체는 일반적으로 알루미늄 박에 활물질 또는 활성탄 분말, 결합재, 도전재를 혼합하여 만든 슬러리를 도포한 후 실온에서 건조하거나 압착하는 방법으로 제조한다. 그러나 현재 이러한 방법으로 제조되는 경우에는 집전체와 도포물질의 접착성이 충분하지 않아 시간이 지나면서 도포된 물질이 알루미늄으로부터 박리되는 문제점이 있으며, 일반적으로 사용되는 결합재가 비전도성이므로 집전체의 전도성을 저하시키는 문제가 있다. 또한 충방전이 일어나는 동안 알루미늄에 높은 산화전압이 가해지는데 이 때 알루미늄 표면에 부도체인 산화막이 생성됨으로써, 집전체의 전기전도성을 떨어뜨리는 문제점이 있다. The current collector used for the positive electrode and electrochemical capacitor of a lithium ion battery is generally manufactured by applying a slurry made of a mixture of an active material or activated carbon powder, a binder, and a conductive material to aluminum foil, followed by drying or pressing at room temperature. However, when manufactured by such a method, there is a problem that the applied material is peeled off from aluminum over time due to insufficient adhesion between the current collector and the coating material, and since the commonly used binder is non-conductive, the conductivity of the current collector There is a problem of lowering. In addition, a high oxidation voltage is applied to the aluminum during charging and discharging. At this time, an oxide film, which is a non-conductor, is formed on the surface of the aluminum, thereby degrading the electrical conductivity of the current collector.

기존의 집전체가 가지는 상기 문제들을 해결하기 위해 다음의 발명들이 제시되었다. In order to solve the problems of the existing current collector, the following inventions have been proposed.

국제특허 PCT/JP2004/003239호에는 탄소를 피복한 알루미늄을 탄화수소 분위기에 배치하고, 알루미늄 용융온도 이하의 열을 가해, 알루미늄 카바이드 게재층을 형성함으로써 탄소층과 알루미늄 박의 접착성을 향상시키는 제조방법 게시. 알루미늄 카바이드를 이용해 기상 성장시킨 whisker가 탄소층과 알루미늄 표면을 붙잡아줌으로써 표면접착강도를 향상시키며, 동시에 두 층 사이의 전기 전도 통로의 역할을 하여 전기전도성을 향상시킨 발명이 게시되었다. International Patent PCT / JP2004 / 003239 discloses a method for producing carbon-coated aluminum foil by arranging aluminum coated with carbon in a hydrocarbon atmosphere, applying heat below an aluminum melting temperature, and forming an aluminum carbide deposition layer. posting. A whisker vapor-grown using aluminum carbide holds the carbon layer and the aluminum surface to improve the surface adhesion strength, and at the same time serves as an electrical conduction path between the two layers to improve the electrical conductivity.

미국특허 US577428호에는 플라즈마 스프레이 방법으로 알루미늄을 카본섬유천에 코팅한 후 코팅된 카본섬유천을 알루미늄 포일에 300℃ 정도의 온도에서 열압 착하는 방법으로 집전체를 제조하는 방법이 게시되어 있다. US Patent US577428 discloses a method for manufacturing a current collector by coating aluminum on a carbon fiber cloth by a plasma spray method and then thermally compressing the coated carbon fiber cloth on an aluminum foil at a temperature of about 300 ° C.

일본특허 JP2009/123664호에서는 알루미늄 표면에 있는 산화물을 제거한 후, 전도성이 있는 티타늄 카바이드를 알루미늄 박에 고속 스프레이하여 분자규모로 알루미늄 속에 확산되어 있는 접합층을 형성함. 이로써 활물질과의 결합력이 우수하며, 표면 산화물 형성을 억제시킴으로써 내구성을 개선한 집전체의 제조방법을 게시하였다. In Japanese Patent JP2009 / 123664, after removing the oxide on the aluminum surface, a conductive titanium carbide is sprayed on the aluminum foil at high speed to form a bonding layer diffused in aluminum on a molecular scale. As a result, a method of manufacturing a current collector having excellent bonding strength with an active material and improving durability by suppressing surface oxide formation has been disclosed.

한국특허 KR10-0511363호에서는 탄소나노튜브나 탄소나노섬유와 금속나노입자 또는 금속산화물의 혼합물을 알루미늄에 부착한 후, 이를 열압착하는 방식으로 제조된 집전체를 게시하였다. Korean Patent KR10-0511363 discloses a current collector manufactured by attaching a mixture of carbon nanotubes or carbon nanofibers and metal nanoparticles or metal oxides to aluminum and then thermocompressing them.

본 발명은 상기 종래기술의 문제점을 해결하려는 기존의 기술적 개선들을 감안하여 다음에서 기술한 새로운 고안을 통해 집전체의 성능을 개선하고자 한다.The present invention is to improve the performance of the current collector through the new design described below in consideration of the existing technical improvements to solve the problems of the prior art.

폴리머 나노 섬유를 균일 요철구조를 형성시킨 금속박(알루미늄 박)에 전기방사법으로 부착한 후 알루미늄의 용융온도 부근에서 탄화시킴과 동시에 알루미늄 박을 탄화섬유에 용착시켜 탄화섬유와 알루미늄이 합성된 층을 형성시킴으로써, 접착강도 및 내구성이 향상되고 계면접촉저항은 최소화된 집전체를 제조한다.  After attaching the polymer nanofibers to the metal foil (aluminum foil) having a uniform concave-convex structure by electrospinning, carbonizing them near the melting temperature of the aluminum, and simultaneously welding the aluminum foil to the carbonized fiber to form a composite layer of carbonized fiber and aluminum. By doing so, the adhesive strength and durability are improved, and the current collector with minimal interfacial contact resistance is produced.

본 발명에 따른 탄소나노섬유가 코팅된 집전체는 The carbon nanofiber coated current collector according to the present invention

금속박과 상기 금속박 일면에 구비된 탄소나노섬유층을 포함하며,Metal foil and carbon nanofiber layer provided on one surface of the metal foil,

상기 금속박은 용융된 상기 금속박의 일면이 상기 탄소나노섬유층의 공극으로 침투하여 금속-탄소섬유 합성층을 이루며 상기 탄소나노섬유층과 용착되는 것을 특징으로 한다.The metal foil is characterized in that one surface of the molten metal foil penetrates into the pores of the carbon nanofiber layer to form a metal-carbon fiber composite layer and is welded with the carbon nanofiber layer.

이 때, 상기 금속박은 알루미늄, 구리 및 니켈로부터 하나 이상 선택된 주 소재가 알루미늄, 구리, 니켈, 백금, 금, 은 및 팔라듐으로부터 하나 이상 선택된 표면소재에 의해 전기도금 또는 이온 증착된 것이거나,At this time, the metal foil is one or more of the main material selected from aluminum, copper and nickel is electroplated or ion deposited by a surface material selected from at least one selected from aluminum, copper, nickel, platinum, gold, silver and palladium,

상기 주 소재에 상기 표면소재의 나노입자가 스프레이, 딥 및 압착 중 어느 하나의 방법에 의해 코팅된 것이 바람직하다.It is preferable that the nanoparticles of the surface material are coated on the main material by any one of spraying, dipping and pressing.

한편, 본 발명에 따른 탄소나노섬유가 코팅된 집전체의 제조방법은,On the other hand, the manufacturing method of the current collector coated with carbon nanofiber according to the present invention,

양극산화 방법에 의해 금속박의 일면에 요철구조를 형성하는 제 1 단계;A first step of forming an uneven structure on one surface of the metal foil by an anodizing method;

상기 요철구조에 고분자 나노섬유를 코팅하는 제 2 단계;A second step of coating the polymer nanofibers on the uneven structure;

상기 고분자 나노섬유가 코팅된 금속박을 산소가 포함된 공기에서 가열하여 집전체를 제작하는 제 3 단계; 및A third step of fabricating a current collector by heating the metal foil coated with the polymer nanofibers in air containing oxygen; And

상기 집전체를 불활성 분위기하에서 압력을 가해주며 열처리를 통해 상기 고분자 나노섬유를 전도성 탄소섬유로 탄화시키고 동시에 용융된 상기 금속박을 상기 탄소섬유의 공극부로 침투시켜 용착시키는 제 4 단계;를 포함한다.And a fourth step of applying pressure to the current collector in an inert atmosphere and carbonizing the polymer nanofibers with conductive carbon fibers through heat treatment, and simultaneously infiltrating the molten metal foil into the pores of the carbon fibers and welding them.

이때, 제 4 단계에 있어서 상기 열처리는 수증기 분위기하에서 300℃ 이상 상기 금속박의 용융점 이하의 온도에서 열처리를 함으로써 비표면적을 증가시키는 것이 바람직하다. At this time, in the fourth step, the heat treatment is preferably performed to increase the specific surface area by performing heat treatment at a temperature of 300 ° C. or more and below the melting point of the metal foil in a steam atmosphere.

본 발명은 비표면적이 넓은 탄소나노섬유를 탄소층으로 이용하므로 고에너지 밀도를 요구하는 전기이중층 커패시터에 응용될 수 있다. 또한 탄소섬유층과 알루미늄의 합성층이 강한 접착을 이루고 있으므로 박리 현상으로 인한 전지, 커패시터의 성능저하 현상을 방지할 수 있으며, 접촉저항이 최소로 억제됨으로써 출력성능의 향상을 기대할 수 있다. Since the present invention uses carbon nanofibers having a large specific surface area as a carbon layer, the present invention can be applied to an electric double layer capacitor requiring high energy density. In addition, since the carbon fiber layer and the composite layer of aluminum forms a strong adhesion, it is possible to prevent the performance degradation of the battery and the capacitor due to the peeling phenomenon, and to improve the output performance by minimizing the contact resistance.

이하 첨부한 도면을 참고로 본 발명에 따른 탄소나노섬유가 코팅된 집전체와 그 제조방법을 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the current collector and its manufacturing method coated with carbon nanofibers.

도 1은 탄소나노섬유가 코팅된 집전체의 제조방법 흐름도이며 도 2는 탄소나노섬유가 코팅된 집전체의 단면 모식도이다. 도 3a와 도 4는 각각 각 실시예들에 대한 접착강도 평가 결과와 계면저항 평가 결과이다.1 is a flowchart illustrating a method of manufacturing a current collector coated with carbon nanofibers, and FIG. 2 is a schematic cross-sectional view of a current collector coated with carbon nanofibers. 3a and 4 are the results of the evaluation of the adhesive strength and the interface resistance for each of the embodiments.

본 발명에 따른 탄소나노섬유가 코팅된 집전체(100)는 도 2와 같이 금속박(200)과 상기 금속박(200) 일면에 구비된 탄소나노섬유층(300)을 포함하되, 상기 금속박(200)은 용융된 상기 금속박(200)의 일면이 상기 탄소나노섬유층(300)의 공극으로 침투하여 금속-탄소섬유 합성층(400)을 이루며 상기 탄소나노섬유층(300)과 용착되는 것을 특징으로 한다. The carbon nanofiber coated current collector 100 according to the present invention includes a metal foil 200 and a carbon nanofiber layer 300 provided on one surface of the metal foil 200 as shown in FIG. 2, wherein the metal foil 200 is One surface of the molten metal foil 200 penetrates into the pores of the carbon nanofiber layer 300 to form a metal-carbon fiber composite layer 400 and is welded with the carbon nanofiber layer 300.

이때, 상기 금속박(200)은 알루미늄, 구리 및 니켈로부터 하나 이상 선택된 주 소재가 알루미늄, 구리, 니켈, 백금, 금, 은 및 팔라듐으로부터 하나 이상 선택된 표면소재에 의해 전기도금 또는 이온 증착된 것이거나, 상기 주 소재에 상기 표면소재의 나노입자가 스프레이, 딥 및 압착 중 어느 하나의 방법에 의해 코팅된 것이 바람직하다.At this time, the metal foil 200 is one or more of the main material selected from aluminum, copper and nickel is electroplated or ion deposited by a surface material selected from at least one selected from aluminum, copper, nickel, platinum, gold, silver and palladium, It is preferable that the nanoparticles of the surface material are coated on the main material by any one of spraying, dipping and pressing.

이하에서 구체적으로 알루미늄 금속박(200)을 사용한 상기 탄소나노섬유가 코팅된 집전체(100)의 특징을 도 1의 제조방법을 통해 상세히 살펴본다.Hereinafter, the characteristics of the carbon nanofiber-coated current collector 100 using the aluminum metal foil 200 will be described in detail through the manufacturing method of FIG. 1.

본 발명의 탄소나노섬유가 코팅된 집전체(100)는The carbon nanofiber coated current collector 100 of the present invention

양극산화 방법에 의해 금속박(200)의 일면에 요철구조(210)를 형성하는 제 1 단계;A first step of forming the uneven structure 210 on one surface of the metal foil 200 by an anodization method;

상기 요철구조(210)에 고분자 나노섬유를 코팅하는 제 2 단계;A second step of coating the polymer nanofibers on the uneven structure 210;

상기 고분자 나노섬유가 코팅된 금속박(200)을 산소가 포함된 공기에서 가열하여 집전체(100)를 제작하는 제 3 단계; 및A third step of fabricating the current collector 100 by heating the polymer nanofiber coated metal foil 200 in air containing oxygen; And

상기 집전체(100)를 불활성 분위기하에서 압력을 가해주며 열처리를 통해 상기 고분자 나노섬유를 전도성 탄소섬유로 탄화시키고 동시에 용융된 상기 금속박(200)을 상기 탄소섬유의 공극부로 침투시켜 용착시키는 제 4 단계를 거쳐 제조된다.A fourth step of applying pressure to the current collector 100 in an inert atmosphere and carbonizing the polymer nanofibers with conductive carbon fibers through heat treatment and simultaneously infiltrating the molten metal foil 200 into the pores of the carbon fibers and welding them; It is manufactured through.

먼저 제 1 단계에서 양극산화를 통해 알루미늄 금속박(200) 표면에 비표면적이 너비가 약 100~500㎚에 이르는 넓고 균일한 요철구조(210)를 형성한다.First, in the first step, through the anodization, a wide and uniform uneven structure 210 having a specific surface area of about 100 to 500 nm in width is formed on the surface of the aluminum metal foil 200.

이후 제 2 단계에서 요철구조(210)가 형성된 표면에 고분자 나노섬유를 전기방사, 실크스크린, 닥터블레이드, 스프레이 방법으로 상기 요철구조(210)가 형성된 알루미늄 금속박(200) 표면에 100~500 ㎚ 굵기의 고분자 나노섬유를 1 ~ 200 ㎛ 두께로 코팅한다. Thereafter, in the second step, the polymer nanofibers are formed on the surface on which the uneven structure 210 is formed by electrospinning, silk screen, doctor blade, and spray method. The polymer nanofibers of 1 to 200 ㎛ thick coating.

예를 들어 전기방사된 고분자 나노섬유는 넓은 표면적을 갖는 요철구조(210) 와 엉킴을 일으켜 섬유층을 물리적으로 단단히 붙잡는 역할을 하게 된다. 나노섬유 전기방사에 사용되는 고분자로는 폴리아크릴로니트릴(polyacrylonitrile, 이하 PAN), 피치(pitch), 레이온, 셀룰로오스 계열 고분자 등이 좋다. 그 중에서도 피치 나노섬유의 탄화물은 다른 종류의 고분자 기반 탄소섬유에 비해서 높은 전도도를 보여주므로 특히 바람직하다. For example, the electrospun polymer nanofibers are entangled with the concave-convex structure 210 having a large surface area to serve to physically hold the fiber layer. Polymers used for nanofiber electrospinning may include polyacrylonitrile (PAN), pitch, rayon, and cellulose-based polymers. Among them, carbides of pitch nanofibers are particularly preferred because they exhibit high conductivity compared to other types of polymer-based carbon fibers.

제 3 단계에서는 요철구조(210)를 갖는 알루미늄 금속박(200)에 부착된 고분자 나노섬유를 산소가 있는 공기에서 200~300℃ 온도에서 1~2시간 동안 열처리를 해준다. In the third step, the polymer nanofibers attached to the aluminum metal foil 200 having the uneven structure 210 are heat-treated for 1 to 2 hours at a temperature of 200 to 300 ° C. in air with oxygen.

상기 열처리는 수증기 분위기하에서 300℃ 이상 상기 금속박(200)의 용융점 이하의 온도에서 열처리를 함으로써 비표면적을 증가시키는 것이 바람직하다. 이온도에서는 고분자 나노섬유가 유리상 온도(glassy temperature) 이상의 온도에 있게 되어 유동상태가 되므로, 섬유층이 알루미늄의 표면에 잘 결착해 있게 된다. 시간이 지나면 나노섬유의 분자들이 산소와 반응하면 분자구조가 사슬형에서 고리형으로 변화하는데 고리형 구조를 갖는 섬유는 더 이상 열에 의한 변형이 일어나지 않으며 600℃ 이상의 고온에서도 질량손실이 최소화된 안정적인 탄화가 가능하다. 고분자 섬유는 고리화를 위한 산화반응 시 분자 구조 변화로 인해 수축이 일어나면서 알루미늄 표면에서 박리될 수 있다. 수축으로 인한 고분자 나노섬유층의 박리를 막기 위해 안정화 중에는 0.2~1㎏f/㎠의 압력을 가해준다. In the heat treatment, it is preferable to increase the specific surface area by performing heat treatment at a temperature of 300 ° C. or more and below the melting point of the metal foil 200 in a steam atmosphere. In ionicity, the polymer nanofibers are at a temperature above the glassy temperature and are in a fluid state, so that the fibrous layer binds well to the surface of aluminum. Over time, as the molecules of nanofibers react with oxygen, the molecular structure changes from chain to cyclic. The fiber with cyclic structure no longer undergoes deformation by heat, and stable carbonization with minimal loss of mass even at high temperatures above 600 ℃. Is possible. The polymer fibers may be peeled off the aluminum surface as shrinkage occurs due to the change in molecular structure during oxidation for cyclization. In order to prevent peeling of the polymer nanofiber layer due to shrinkage, a pressure of 0.2-1 kgf / cm 2 is applied during stabilization.

마지막으로 제 4 단계서는 상기 가열된 집전체(100)를 질소 또는 아르곤의 불활성 분위기 하에서 0.5~1㎏f/㎠의 압력을 가해주면서 알루미늄 금속박(200)의 용융점으로부터 +40℃의 범위인 600~700℃의 온도에서 열처리를 해줌으로써, 고분자 나노섬유를 전도성 탄소섬유로 탄화시킴과 동시에 표면이 용융된 알루미늄 금속박(200)을 탄화섬유의 공극부로 침투시켜 도 2에 도시한 바와 같은 상기 금속-탄소섬유 합성층(400)이 생성되며 용착 된다.Finally, the fourth step is 600 ~ in the range of +40 ℃ from the melting point of the aluminum metal foil 200 while applying a pressure of 0.5 ~ 1kgf / ㎠ to the heated current collector 100 in an inert atmosphere of nitrogen or argon By heat treatment at a temperature of 700 ℃, while carbonizing the polymer nanofibers into the conductive carbon fiber and the molten surface of the aluminum metal foil 200 to penetrate into the pores of the carbon fiber, the metal-carbon as shown in FIG. The fiber composite layer 400 is generated and welded.

다음은 상기 제조방법에 의한 탄소나노섬유가 코팅된 집전체(100)의 제조실시예이다.The following is a manufacturing example of the current collector 100 coated with carbon nanofibers according to the manufacturing method.

(실시예 1)(Example 1)

순도 99.9%이고 두께가 100㎛인 알루미늄 금속박(200)을 인산 용액을 전해질로 양극 산화하여 지름이 300~500㎚인 균일한 요철구조(210)를 표면에 형성시킨 다음, 양극산화로 인해 형성된 표면산화물을 수산화나트륨 또는 크롬산 용액에 5시간 담가 표면에 형성된 산화알루미늄을 벗겨내었다.Anodized aluminum metal foil 200 having a purity of 99.9% and a thickness of 100 μm with an phosphate solution as an electrolyte to form a uniform uneven structure 210 having a diameter of 300 to 500 nm on the surface, and then a surface formed by anodization. The oxide was immersed in sodium hydroxide or chromic acid solution for 5 hours to strip off the aluminum oxide formed on the surface.

중량비율로 PAN과 Dimethyl formamide(DMF) 1:10으로 혼합하여 전기방사용 전구체를 제조한다. 제조된 전구체를, 팁의 지름이 1㎛ 이고 용량이 10ml인 시린지에 넣고, 시린지 팁 부분에는 +10kV, 수집금속면에는 -10kV를 가해 PAN 전구체를 수집금속면에 붙어있는 금속박(200)에 1분간 전기방사 시켰다. 방사된 고분자 섬유 의 굵기는 300~500㎚ 였으며, 고분자섬유가 부착된 전극물질의 두께는 120㎛ 였다. PAN and dimethyl formamide (DMF) 1:10 by weight ratio to prepare an electrospinning precursor. The prepared precursor is placed in a syringe having a diameter of 1 μm and a volume of 10 ml, and +10 kV is applied to the syringe tip portion and -10 kV to the collecting metal surface to give the PAN precursor to the metal foil 200 attached to the collecting metal surface. Electrospinning was performed for a minute. The thickness of the spun polymer fiber was 300-500 nm, and the thickness of the electrode material to which the polymer fiber was attached was 120 μm.

나노섬유가 부착된 알루미늄 금속박(200)을 머플 전기로에서 스테인리스 판재로 0.2~1㎏f/㎠의 압력을 가해 5℃/min의 승온속도로 공기 분위기에서 300℃에서 1시간 동안 열처리를 시킨 후, 질소분위기에서 같은 승온속도로 700℃에서 1시간 동안 0.5~1㎏f/㎠의 압력을 가해주면서 열처리를 하였다. 이 과정에서 고분자 섬유는 전도성을 지닌 탄화섬유로 변화하였다. 마지막으로 30% 수분이 함유된 질소분위기에서 300℃의 온도로 열처리를 하였다. After applying nanofiber-attached aluminum metal foil 200 to a muffle furnace with a stainless steel sheet at a pressure of 0.2-1 kgf / cm 2 and heat-treating at 300 ° C. for 1 hour in an air atmosphere at a temperature rising rate of 5 ° C./min, Heat treatment was performed while applying a pressure of 0.5-1kgf / ㎠ for 1 hour at 700 ° C. at the same temperature rising rate in a nitrogen atmosphere. In the process, the polymer fibers were converted into conductive carbon fibers. Finally, heat treatment was performed at a temperature of 300 ° C. in a nitrogen atmosphere containing 30% moisture.

(실시 예 2) (Example 2)

지름이 약 100㎚인 요철구조(210)를 갖는 알루미늄 금속박(200)에 상기 실시예와 같은 공정을 수행하였다.The same process as in the above embodiment was performed on the aluminum metal foil 200 having the uneven structure 210 having a diameter of about 100 nm.

(참고예 1)(Reference Example 1)

표면을 에칭 처리한 상용 알루미늄 금속박(200)에 실시예 1과 같은 공정을 수행하였다. The same process as Example 1 was performed on the commercial aluminum metal foil 200 which surface-etched.

(참고예 2)(Reference Example 2)

표면에 아무 처리도 하지 않은 상용 알루미늄 금속박(200)에 실시예 1과 같은 공정을 수행하였다. The same process as Example 1 was performed on the commercial aluminum metal foil 200 which did not have any treatment on the surface.

(접착성 평가)(Adhesive evaluation)

상기 예시들의 방법으로 제조한 전극을 1cm×2.5cm의 크기로 잘라낸 다음, 스카치 매직 테이프를 부착했다 떼어내어 탈착된 코팅물의 질량을 측정하여 다음의 식을 이용하여 접착성을 평가하였다. 평가 결과는 도 3a에 제시하였다. 제시한 도면에서 볼 수 있듯이 실시예 1이 가장 좋은 접착성을 나타내었다. The electrode prepared by the method of the above examples was cut out to a size of 1 cm × 2.5 cm, and then the Scotch Magic tape was attached and detached to measure the mass of the detached coating to evaluate adhesion using the following equation. The evaluation results are shown in FIG. 3A. As can be seen in the drawings presented, Example 1 showed the best adhesion.

(계면접촉저항 평가)(Interface contact resistance evaluation)

제조한 전극을 2cm×2cm의 크기로 잘라 구리판 사이에 넣고 압착기를 이용해 100㎏f/㎠의 압력을 가하고 High frequency ohmmeter를 이용하여 구리판 사이의 저항을 측정함으로써 각 시료들의 계면접촉저항을 평가하였다. 평가 결과는 도 4에 제시하였다. 도 4에서 볼 수 있듯이, 실시예 1의 결과가 가장 낮은 계면접촉저항을 나타내었다.The prepared electrode was cut into a size of 2 cm × 2 cm, sandwiched between copper plates, a pressure of 100 kgf / cm 2 was applied using a crimping machine, and the interfacial contact resistance of each sample was evaluated by measuring the resistance between the copper plates using a high frequency ohmmeter. The evaluation results are shown in FIG. 4. As can be seen in Figure 4, the results of Example 1 showed the lowest interfacial contact resistance.

본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다. The present invention is not limited to the above-described embodiments, and the scope of application of the present invention is not limited to those of ordinary skill in the art to which the present invention pertains without departing from the gist of the present invention as claimed in the claims. Of course, various modifications can be made.

도 1은 탄소나노섬유가 코팅된 집전체의 제조방법 흐름도1 is a flowchart illustrating a method of manufacturing a current collector coated with carbon nanofibers

도 2는 탄소나노섬유가 코팅된 집전체의 단면 모식도2 is a schematic cross-sectional view of a current collector coated with carbon nanofibers

도 3a는 각 실시예들에 대한 접착강도 평가 결과Figure 3a is a result of evaluation of the adhesive strength for each embodiment

도 4는 각 실시예들에 대한 계면접촉저항 평가 결과4 is a result of evaluating the interfacial contact resistance for each embodiment

*** 도면의 부호의 설명 ****** Explanation of symbols in the drawings ***

100 : 집전체100: current collector

200 : 금속박200: metal foil

210 : 요철구조210: uneven structure

300 : 탄소나노섬유층300: carbon nano fiber layer

400: 금속-탄소섬유 합성층400: metal-carbon fiber composite layer

Claims (4)

금속박(200)과 상기 금속박(200) 일면에 구비된 탄소나노섬유층(300)을 포함하며,It includes a metal foil 200 and the carbon nanofiber layer 300 provided on one surface of the metal foil 200, 상기 금속박(200)은 용융된 상기 금속박(200)의 일면이 상기 탄소나노섬유층(300)의 공극으로 침투하여 금속-탄소섬유 합성층(400)을 이루며 상기 탄소나노섬유층(300)과 용착되는 것을 특징으로 하는 탄소나노섬유가 코팅된 집전체(100).The metal foil 200 is one surface of the molten metal foil 200 penetrates into the pores of the carbon nanofiber layer 300 to form a metal-carbon fiber composite layer 400 and is deposited with the carbon nanofiber layer 300. Carbon nanofiber coated current collector 100, characterized in that. 제 1 항에 있어서,The method of claim 1, 상기 금속박(200)은 알루미늄, 구리 및 니켈로부터 하나 이상 선택된 주 소재가 알루미늄, 구리, 니켈, 백금, 금, 은 및 팔라듐으로부터 하나 이상 선택된 표면소재에 의해 전기도금 또는 이온 증착된 것이거나,The metal foil 200 is one or more of the main material selected from aluminum, copper and nickel is electroplated or ion deposited by a surface material selected from at least one selected from aluminum, copper, nickel, platinum, gold, silver and palladium, 상기 주 소재에 상기 표면소재의 나노입자가 스프레이, 딥 및 압착 중 어느 하나의 방법에 의해 코팅된 것을 특징으로 하는 탄소나노섬유가 코팅된 집전체(100).Carbon nanofiber-coated current collector (100), characterized in that the nanoparticles of the surface material is coated on the main material by any one of spraying, dip and pressing. 양극산화 방법에 의해 금속박(200)의 일면에 요철구조(210)를 형성하는 제 1 단계;A first step of forming the uneven structure 210 on one surface of the metal foil 200 by an anodization method; 상기 요철구조(210)에 고분자 나노섬유를 코팅하는 제 2 단계;A second step of coating the polymer nanofibers on the uneven structure 210; 상기 고분자 나노섬유가 코팅된 금속박(200)을 산소가 포함된 공기에서 가열하여 집전체(100)를 제작하는 제 3 단계; 및A third step of fabricating the current collector 100 by heating the polymer nanofiber coated metal foil 200 in air containing oxygen; And 상기 집전체(100)를 불활성 분위기하에서 압력을 가해주며 열처리를 통해 상기 고분자 나노섬유를 전도성 탄소섬유로 탄화시키고 동시에 용융된 상기 금속박(200)을 상기 탄소섬유의 공극부로 침투시켜 용착시키는 제 4 단계;를 포함하는 탄소나노섬유가 코팅된 집전체(100) 제작방법. A fourth step of applying pressure to the current collector 100 in an inert atmosphere and carbonizing the polymer nanofibers with conductive carbon fibers through heat treatment and simultaneously infiltrating the molten metal foil 200 into the pores of the carbon fibers and welding them; Carbon nanofibers coated with a current collector (100) manufacturing method comprising a. 제 3 항에 있어서,The method of claim 3, wherein 제 4 단계에 있어서 상기 열처리는 수증기 분위기하에서 300℃ 이상 상기 금속박(200)의 용융점 이하의 온도에서 압력을 가해주며 열처리를 함으로써 비표면적을 증가시키는 것을 특징으로 하는 탄소나노섬유가 코팅된 집전체(100) 제작방법. In the fourth step, the heat treatment is a carbon nanofiber coated current collector, characterized in that to increase the specific surface area by applying a pressure at a temperature of 300 ℃ or more below the melting point of the metal foil 200 in a water vapor atmosphere ( 100) Production method.
KR1020090106490A 2009-11-05 2009-11-05 The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof KR101063443B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090106490A KR101063443B1 (en) 2009-11-05 2009-11-05 The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090106490A KR101063443B1 (en) 2009-11-05 2009-11-05 The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof

Publications (2)

Publication Number Publication Date
KR20110049471A true KR20110049471A (en) 2011-05-12
KR101063443B1 KR101063443B1 (en) 2011-09-08

Family

ID=44360603

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090106490A KR101063443B1 (en) 2009-11-05 2009-11-05 The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof

Country Status (1)

Country Link
KR (1) KR101063443B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190656B2 (en) 2011-10-20 2015-11-17 Hyundai Motor Company Cathode current collector for electrical energy storage device and method for manufacturing the same
CN105742634A (en) * 2014-12-12 2016-07-06 中国科学院大连化学物理研究所 Metal matrix carbon fiber felt
KR20160091089A (en) 2015-01-23 2016-08-02 한국전기연구원 a roughened metal surface and the fabrication method
KR20180109764A (en) * 2017-03-28 2018-10-08 에네베이트 코포레이션 Methods of forming carbon-silicon composite material on a current collector
KR20180132248A (en) * 2017-06-02 2018-12-12 한국과학기술원 An apparaus for manufacturing film having mash nano-structure using a frame that enhance binding force with nanofiber constricted by carbonization
KR20180132246A (en) * 2017-06-02 2018-12-12 한국과학기술원 A method for manufacturing film having carbon-metal hybrid nano-structure
US10483548B2 (en) 2013-07-16 2019-11-19 Samsung Sdi Co., Ltd. Electron collector structure and lithium battery containing the same
CN112038652A (en) * 2020-07-28 2020-12-04 江苏科技大学 Fuel cell bipolar plate and preparation method thereof
KR20210070435A (en) * 2019-12-04 2021-06-15 삼화전기주식회사 Electric double layer capacitor
KR20220042532A (en) * 2020-09-28 2022-04-05 재단법인대구경북과학기술원 Nanofiber mesh bioelectrode using conductive material and manufacturing method thereof
CN116417567A (en) * 2023-06-09 2023-07-11 深圳海辰储能控制技术有限公司 Positive electrode plate, energy storage device and preparation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024210301A1 (en) * 2023-04-07 2024-10-10 삼성에스디아이 주식회사 Negative electrode for all-solid-state battery, and all-solid-state battery including same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5153056B2 (en) 2004-12-24 2013-02-27 パナソニック株式会社 Manufacturing method of composite current collector and electrode for non-aqueous electrolyte secondary battery or electric double layer capacitor containing carbon nanofiber
KR100827951B1 (en) 2006-12-07 2008-05-08 한국에너지기술연구원 Synthesizing carbon nanotubes directly on nickel foil

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190656B2 (en) 2011-10-20 2015-11-17 Hyundai Motor Company Cathode current collector for electrical energy storage device and method for manufacturing the same
US9837666B2 (en) 2011-10-20 2017-12-05 Hyundai Motor Company Cathode current collector for electrical energy storage device and method for manufacturing the same
US10483548B2 (en) 2013-07-16 2019-11-19 Samsung Sdi Co., Ltd. Electron collector structure and lithium battery containing the same
CN105742634A (en) * 2014-12-12 2016-07-06 中国科学院大连化学物理研究所 Metal matrix carbon fiber felt
KR20160091089A (en) 2015-01-23 2016-08-02 한국전기연구원 a roughened metal surface and the fabrication method
KR20180109764A (en) * 2017-03-28 2018-10-08 에네베이트 코포레이션 Methods of forming carbon-silicon composite material on a current collector
KR20180132246A (en) * 2017-06-02 2018-12-12 한국과학기술원 A method for manufacturing film having carbon-metal hybrid nano-structure
KR20180132248A (en) * 2017-06-02 2018-12-12 한국과학기술원 An apparaus for manufacturing film having mash nano-structure using a frame that enhance binding force with nanofiber constricted by carbonization
KR20210070435A (en) * 2019-12-04 2021-06-15 삼화전기주식회사 Electric double layer capacitor
CN112038652A (en) * 2020-07-28 2020-12-04 江苏科技大学 Fuel cell bipolar plate and preparation method thereof
CN112038652B (en) * 2020-07-28 2021-11-12 江苏科技大学 Fuel cell bipolar plate and preparation method thereof
KR20220042532A (en) * 2020-09-28 2022-04-05 재단법인대구경북과학기술원 Nanofiber mesh bioelectrode using conductive material and manufacturing method thereof
CN116417567A (en) * 2023-06-09 2023-07-11 深圳海辰储能控制技术有限公司 Positive electrode plate, energy storage device and preparation method

Also Published As

Publication number Publication date
KR101063443B1 (en) 2011-09-08

Similar Documents

Publication Publication Date Title
KR101063443B1 (en) The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof
Li et al. Recent advances in flexible aqueous zinc-based rechargeable batteries
KR101195081B1 (en) Carbon coated aluminum current collector with high conductivity and durability and fabrication method thereof
Barik et al. A high energy density and high rate capability flexible supercapacitor based on electro-spun highly porous SnO 2@ carbon nanofibers
JP5813126B2 (en) Anode materials for lithium ion batteries, including nanofibers
JP5320579B2 (en) Gas diffusion electrode and manufacturing method thereof, membrane electrode assembly and manufacturing method thereof, fuel cell member and manufacturing method thereof, fuel cell, power storage device and electrode material
US20090142647A1 (en) Carbon fiber, porous support-carbon fiber composite and method for producing the same as well as catalyst structure, electrode for solid polymer fuel cell and solid polymer fuel cell
Chee et al. Electrospun nanofiber membranes as ultrathin flexible supercapacitors
JP5648785B2 (en) Fuel cell electrode
CN114824297A (en) Preparation method of high-performance foam carbon electrode material applied to flow energy storage battery
KR101610354B1 (en) Production method of a metal oxide supported carbon nano fiber electrode using electro deposition method, and an energy storage device and a filter using the same
Zhao et al. Nitrogen-doped carbon networks derived from the electrospun polyacrylonitrile@ branched polyethylenimine nanofibers as flexible supercapacitor electrodes
JP2007527099A (en) Carbon nanotube or carbon nanofiber electrode containing sulfur or metal nanoparticles as an adhesive and method for producing the electrode
CN107408706B (en) Porous carbon electrode substrate, method for producing same, gas diffusion layer, and membrane-electrode assembly for fuel cell
CA2863877C (en) Gas diffusion layer for fuel cell, fuel cell, and method of manufacturing gas diffusion layer for fuel cell
JP2000299113A (en) Conductive sheet and electrode base material for fuel cell using it
JP7394923B2 (en) Carbon fiber sheet, gas diffusion electrode, membrane-electrode assembly, polymer electrolyte fuel cell, and method for producing carbon fiber sheet
KR20110125811A (en) Fibrous current collector comprising carbon nano fiber, electrode using the same, and method of manufacturing the same
KR20110033733A (en) Method for producing complex of manganese dioxide and carbon nanofiber and pseudo capacitor including the complex
Lee et al. Electrospun carbon nanofibers as a functional composite platform: A review of highly tunable microstructures and morphologies for versatile applications
KR100992394B1 (en) Anode for secondary battery having negative active material with carbon-metal oxide composite and secondary battery using the same, and fabrication method of negative active material for secondary battery
Li et al. In-situ interface reinforcement for 3D printed fiber electrodes
KR100997418B1 (en) Method of preparing gas diffusion layer having carbon nanotube and carbon compound for fuel cell
JP5777595B2 (en) Fuel cell, carbon composite structure, and manufacturing method thereof
JP5336804B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140902

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150901

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170921

Year of fee payment: 7