KR20110045715A - Nano fiber coated fiber structure for waterproof and berathable, and method for making thereof - Google Patents

Nano fiber coated fiber structure for waterproof and berathable, and method for making thereof Download PDF

Info

Publication number
KR20110045715A
KR20110045715A KR1020090102400A KR20090102400A KR20110045715A KR 20110045715 A KR20110045715 A KR 20110045715A KR 1020090102400 A KR1020090102400 A KR 1020090102400A KR 20090102400 A KR20090102400 A KR 20090102400A KR 20110045715 A KR20110045715 A KR 20110045715A
Authority
KR
South Korea
Prior art keywords
fiber structure
moisture
nanofibers
coating layer
nanofiber
Prior art date
Application number
KR1020090102400A
Other languages
Korean (ko)
Other versions
KR101070421B1 (en
Inventor
김연수
최오곤
강영식
손정아
위다연
Original Assignee
웅진케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 웅진케미칼 주식회사 filed Critical 웅진케미칼 주식회사
Priority to KR1020090102400A priority Critical patent/KR101070421B1/en
Publication of KR20110045715A publication Critical patent/KR20110045715A/en
Application granted granted Critical
Publication of KR101070421B1 publication Critical patent/KR101070421B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/001Treatment with visible light, infrared or ultraviolet, X-rays
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • D06M10/10Macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/021Moisture-responsive characteristics hydrophobic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/10Physical properties porous

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE: A method for manufacturing breathable/waterproof fiber which is coated with nanofibers with excellent adhesion is provided to simplify process. CONSTITUTION: A method for manufacturing breathable/waterproof fiber coated with nanfibers comprises: a step of mixing a photoinitiator and polymer spinning solution; a step of electrospinning the polymer spinning solution to the surface of fiber structure; a step of forming a nanofiber-coated layer; a step of irradiating UV ray to the nanofiber-coated layer; and a step of welding the nanofiber-coated layer and fiber structure.

Description

나노 섬유가 코팅된 투습방수 섬유구조체 및 그의 제조 방법{NANO FIBER COATED FIBER STRUCTURE FOR WATERPROOF AND BERATHABLE, AND METHOD FOR MAKING THEREOF}Nanofiber-coated moisture-permeable fiber structure and manufacturing method thereof {NANO FIBER COATED FIBER STRUCTURE FOR WATERPROOF AND BERATHABLE, AND METHOD FOR MAKING THEREOF}

본 발명은 투습방수 섬유구조체 및 그의 제조방법에 관한 것으로 섬유구조체 표면에 다공성의 나노섬유 코팅층이 형성되어 투습성 및 방수성이 우수한 나노 섬유가 코팅된 투습방수 섬유구조체 및 그의 제조 방법에 관한 것이다. The present invention relates to a water-permeable waterproof fiber structure and a method of manufacturing the same, and a nanofiber-coated layer having a porous nanofiber coating layer formed on the surface of the fiber structure, and having a good moisture-permeable and waterproof property.

일반적으로 투습방수 섬유구조체는 100㎛의 빗방울이 섬유 밖에서 섬유 안으로 통과 못하게 하고 몸의 체내에서 방출되는 0.004㎛의 수분을 섬유 안에서 섬유 밖으로 나갈 수 있도록 피막층을 섬유구조체 위에 형성시켜 투습성과 방수성 등이 우수한 스포츠웨어, 군복, 텐트 등에 사용되는 섬유구조체를 의미한다.In general, the moisture-permeable waterproof fiber structure has excellent moisture permeability and waterproofness by forming a coating layer on the fiber structure so that raindrops of 100 μm do not pass into the fiber from the outside of the fiber and 0.004 μm of moisture released from the body can flow out of the fiber in the fiber. It refers to a fiber structure used for sportswear, military uniforms, tents and the like.

종래까지 섬유구조체에 투습방수 기능을 갖도록 하는 방법은 라미네이팅(Laminating) 방식에 의한 미세다공 성막법과 다이렉트 코팅방식에 의한 폴리우레탄 미다공 성막법, 그리고 초고밀도 직물에 의한 방법 등으로 폴리우레탄 고분자 수지를 섬유구조체 표면에 코팅하는 방법이다.Conventionally, a method of providing a moisture-permeable waterproof function to a fiber structure is a polyurethane porous resin by a microporous film forming method using a laminating method, a polyurethane microporous film forming method using a direct coating method, and an ultra high density fabric method. It is a method of coating on the surface of a fibrous structure.

상기 폴리우레탄을 이용한 다이렉트 코팅방식에 의한 종래의 투습방수직물은 DMF(디메칠포름아미드) 및 MEK(메틸에틸케톤) 등과 같이 환경에 유해한 솔벤트를 사용함으로써 환경오염을 초래하는 원인이 되어 최근에는 수분산형 폴리우레탄 코팅액을 이용하고 다단 건조하여 건식다공형 투습방수포를 제작법과 친수무공형의 폴리우레탄을 이용한 건식코팅법 등이 개발되고 있으나, 상기와 같이 폴리우레탄 고분자 수지에 의한 투습성 및 방수성의 특성의 섬유구조체는 폴리우레탄이 가지는 친수성으로 인해 수분이 원활하게 통과하지 못하는 단점이 있으며 제조과정에서 유기용매를 사용하여 섬유구조체의 염료가 유기용매에 의해 변색되는 문제가 발생할 수 있다.The conventional moisture-permeable waterproof fabric by the direct coating method using the polyurethane is the cause of environmental pollution by using solvents harmful to the environment, such as DMF (dimethylformamide) and MEK (methyl ethyl ketone), recently The method of manufacturing dry porous permeable waterproof fabric by using acid-type polyurethane coating solution and drying in multiple stages and dry coating method using hydrophilic non-porous polyurethane have been developed, but as described above, the moisture permeability and waterproof properties of polyurethane polymer resin The fiber structure has a disadvantage in that water does not pass smoothly due to the hydrophilic property of the polyurethane, and may cause a problem that the dye of the fiber structure is discolored by the organic solvent using an organic solvent in the manufacturing process.

따라서, 상기의 문제점이 없는 나노섬유를 이용하여 섬유구조체 표면에 미세다공이 형성된 나노섬유 코팅층을 형성한 투습방수 섬유구조체가 개발되고 있다. 대한민국 공개특허 제2007-0109001호에 기재되어 있는 "폴리우레탄 수지 박막층의 형성 방법"에서는 기저 섬유 위에 10 내지 30㎛의 두께로 폴리우레탄 나노부직포에 비하여 더 낮은 융점 또는 연화점을 가진 폴리에틸렌계 나노 부직포를 적층한 후 그 위에 10 내지 30㎛의 폴리우레탄 나노 부직포를 적층하여 라미네이팅 공정을 거쳐 투습방수포를 제조하는 방법으로서, 종래의 접착제를 사용하여 투습방수포를 제조하는 방법에 비하여 박막의 층을 형성할 수 있는 장점이 있으나 폴리에스테르계 섬유에 적용시, 폴리올레핀계와 폴리에스테르계가 상용성이 없어 계면분리가 되어 접착력이 저하되는 단점이 있으며, 이종의 고분자를 전기방사해야하는 공정을 거쳐 야 하기 때문에 공정이 복잡한 한계가 있다.Therefore, a moisture-permeable waterproof fiber structure in which a nanofiber coating layer in which micropores are formed on a surface of a fiber structure using nanofibers without the above problems has been developed. In the method for forming a polyurethane resin thin film layer described in Korean Patent Publication No. 2007-0109001, a polyethylene-based nano nonwoven fabric having a lower melting point or softening point than a polyurethane nanononwoven fabric with a thickness of 10 to 30 µm on a base fiber is used. After lamination, a method of manufacturing a moisture-permeable waterproof fabric by laminating a polyurethane nano nonwoven fabric having a thickness of 10 to 30 μm thereon, and forming a layer of a thin film as compared to a method of manufacturing a moisture-repellent waterproof fabric using a conventional adhesive. However, when applied to polyester-based fibers, there is a disadvantage that the adhesion between the polyolefin-based and polyester-based is incompatible with the interfacial separation, and the adhesive force is reduced, and the process is complicated because it has to go through the process of electrospinning heterogeneous polymers There is a limit.

또한, 종래의 투습방수 나노섬유 부직포는 기저 섬유와의 접착을 위해 별도의 접착제를 사용하거나 폴리우레탄 나노섬유에 비하여 더 낮은 융점 또는 연화점을 가진 폴리올레핀계 나노섬유 부직포를 형성시키는 단계를 포함한다. 별도의 접착제를 사용하여 기저 섬유에 적층시키는 방법은 투습성이 저하되고 전체적으로 섬유층이 두꺼워 진다는 단점이 있으며, 폴리올레핀계 나노 부직포를 형성시키는 방법은 투습방수 성능이 우수하나 두 번의 전기방사 공정을 거쳐야 되고 폴리올레핀계와 폴리에스테르계 직물과의 상용성이 낮아 계면분리현상에 의해 접착력이 약한 단점이 있다.In addition, conventional moisture-permeable nanofiber nonwoven fabrics include using a separate adhesive for bonding with the underlying fibers or forming a polyolefin-based nanofiber nonwoven fabric having a lower melting point or softening point than polyurethane nanofibers. The method of laminating to the base fiber by using a separate adhesive has a disadvantage in that the moisture permeability decreases and the overall fiber layer becomes thick.However, the method of forming the polyolefin-based nano nonwoven fabric has excellent moisture permeability, but it has to undergo two electrospinning processes. Due to the low compatibility between the polyolefin-based and polyester-based fabrics, there is a disadvantage in that the adhesive strength is weak due to the interface separation phenomenon.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명은 나노섬유층과 섬유구조체 사이에 별도의 접착제나 이종의 고분자를 사용하지 않고 섬유구조체 표면에 직접 나노섬유를 적층하여 나노섬유 코팅층을 형성하여 접착하는 성능이 우수한 나노섬유가 코팅된 투습방수 섬유구조체 및 그 제조방법을 제공하는 것을 목적으로 한다. The present invention is to solve the above problems, the present invention is to form a nanofiber coating layer by laminating the nanofiber directly on the surface of the fiber structure without using a separate adhesive or heterogeneous polymer between the nanofiber layer and the fiber structure An object of the present invention is to provide a moisture-permeable waterproof fiber structure coated with nanofibers having excellent adhesive performance and a method of manufacturing the same.

또한, 본 발명은 고분자 수지 방사용액에 자외선 경화형 광개시제를 첨가하여 섬유구조체 표면에 나노섬유를 적층한 후 자외선을 조사하여 접합하는 단계를 적용하여 공정이 단순하고 접착력이 우수한 나노섬유가 코팅된 투습방수 섬유구조체의 제조방법을 제공하는 것을 목적으로 한다.In addition, the present invention by applying the step of laminating the nanofibers on the surface of the fiber structure by adding an ultraviolet curable photoinitiator to the polymer resin spinning solution, and then irradiating with ultraviolet rays to bond the process is simple and excellent adhesion of nanofibers waterproof moisture-proof coating It is an object to provide a method for producing a fibrous structure.

본 발명은 섬유구조체 표면에 광개시제가 첨가된 고분자 방사액을 전기방사하여 나노섬유 코팅층을 형성하되, 상기 나노섬유 코팅층은 자외선 조사에 의해 상기 섬유구조체와 접합되는 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체를 제공한다.The present invention forms a nanofiber coating layer by electrospinning a polymer spinning solution to which the photoinitiator is added to the surface of the fiber structure, the nanofiber coating layer is bonded to the fiber structure by ultraviolet irradiation, characterized in that the nanofiber is coated Provide a waterproof fiber structure.

또한, 상기 광개시제는 1-하이드록시사이클로헥실페닐케톤(시바 사, Igacure 184)과 디페닐 2,4,6-트리메틸벤조일 포스핀옥사이드(Darocur TPO)를 9:1 내지 1:9로 혼합되어 형성되는 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조 체를 제공한다.In addition, the photoinitiator is formed by mixing 1-hydroxycyclohexylphenyl ketone (Siga Co., Igacure 184) and diphenyl 2,4,6-trimethylbenzoyl phosphine oxide (Darocur TPO) in 9: 1 to 1: 9. It provides a moisture-permeable waterproof fiber structure coated with nanofibers.

또한, 상기 광개시제는 고분자 방사액과 대비하여 0.1~10중량% 첨가되는 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체를 제공한다.In addition, the photoinitiator provides a moisture-permeable waterproof fiber structure coated with nanofibers, characterized in that 0.1 to 10% by weight compared to the polymer spinning solution.

또한, 상기 나노섬유 코팅층은 10 내지 30㎛의 두께인 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체를 제공한다.In addition, the nanofiber coating layer provides a moisture-permeable waterproof fiber structure coated with nanofibers, characterized in that the thickness of 10 to 30㎛.

또한, 상기 나노 섬유가 코팅된 투습방수 섬유구조체는 투습도가 10,000g/㎡/24hr(34℃,습도 90%)이상이고 내수압이 5,000㎜H2O이상인 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체를 제공한다.In addition, the moisture-permeable waterproof fiber structure coated with the nanofibers has a moisture-permeable moisture of 10,000g / ㎡ / 24hr (34 ℃, humidity 90%) and the water resistance is 5,000mmH 2 O or more, characterized in that the waterproof moisture-proof coated nanofibers It provides a fibrous structure.

또한, 본 발명은 투습방수 섬유구조체의 제조방법에 있어서, 고분자 방사액에 광개시제를 첨가하는 혼합단계; 상기 섬유구조체 표면에 광개시제가 첨가된 고분자 방사액을 전기방사하여 나노섬유 코팅층을 형성하는 코팅층 형성단계; 상기 나노섬유 코팅층에 자외선을 조사하여 나노섬유 코팅층과 섬유구조체를 접합하는 접합단계를 포함하는 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체의 제조방법을 제공한다.In addition, the present invention is a method for producing a water-permeable waterproof fiber structure, the mixing step of adding a photoinitiator to the polymer spinning solution; A coating layer forming step of forming a nanofiber coating layer by electrospinning a polymer spinning solution to which a photoinitiator is added to the surface of the fiber structure; It provides a method for producing a moisture-permeable waterproof fiber structure coated with nanofibers, comprising the step of bonding the nanofiber coating layer and the fiber structure by irradiating the nanofiber coating layer with ultraviolet light.

또한, 상기 광개시제는 1-하이드록시사이클로헥실페닐케톤(시바 사, Igacure 184)과 디페닐 2,4,6-트리메틸벤조일 포스핀옥사이드(Darocur TPO)를 9:1 내지 1:9로 혼합되어 형성되는 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체의 제조방법을 제공한다.In addition, the photoinitiator is formed by mixing 1-hydroxycyclohexylphenyl ketone (Siga Co., Igacure 184) and diphenyl 2,4,6-trimethylbenzoyl phosphine oxide (Darocur TPO) in 9: 1 to 1: 9. It provides a method for producing a moisture-permeable waterproof fiber structure coated with nanofibers.

또한, 상기 나노섬유 코팅층은 10 내지 30㎛의 두께로 코팅되는 것을 특징으 로 하는 나노 섬유가 코팅된 투습방수 섬유구조체의 제조방법을 제공한다.In addition, the nanofiber coating layer provides a method for producing a moisture-permeable waterproof fiber structure coated with nanofibers, characterized in that the coating to a thickness of 10 to 30㎛.

또한, 상기 자외선은 0.6 내지 10J/㎠로 조사되는 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체의 제조방법을 제공한다.In addition, the ultraviolet ray provides a method for producing a moisture-permeable waterproof fiber structure coated with nanofibers, characterized in that irradiated with 0.6 to 10J / ㎠.

이하 본 발명에 첨부된 도면을 참조하여 본 발명의 바람직한 일실시예를 상세히 설명하기로 한다. 우선, 도면들 중, 동일한 구성요소 또는 부품들은 가능한 한 동일한 참조부호를 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, it should be noted that in the drawings, the same components or parts denote the same reference numerals as much as possible. In describing the present invention, detailed descriptions of related well-known functions or configurations are omitted in order not to obscure the subject matter of the present invention.

본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.The terms "about "," substantially ", etc. used to the extent that they are used herein are intended to be taken to mean an approximation of, or approximation to, the numerical values of manufacturing and material tolerances inherent in the meanings mentioned, Accurate or absolute numbers are used to help prevent unauthorized exploitation by unauthorized intruders of the referenced disclosure.

도 1은 본 발명의 투습방수 섬유구조체의 제조장치의 일실시예를 나타낸 개념도이고, 도 2는 본 발명의 실시예로 제조된 투습방수 섬유구조체의 단면을 나타낸 전자사진이며, 도 3은 본 발명의 실시예로 제조된 투습방수 섬유구조체의 나노섬유 코팅층을 확대한 전자사진이다.1 is a conceptual diagram showing an embodiment of the apparatus for producing a moisture-permeable waterproof fiber structure of the present invention, Figure 2 is an electrophotograph showing a cross-section of the moisture-permeable waterproof fiber structure produced by the embodiment of the present invention, Figure 3 is the present invention It is an enlarged electrophotographic nanofiber coating layer of the moisture-permeable waterproof fiber structure prepared in Examples.

본 발명에 따른 나노 섬유가 코팅된 투습방수 섬유구조체는 도 2에 도시된 바와 같이 나노섬유가 섬유구조체의 표면에 코팅층을 형성하여 제조되는 것으로 섬유구조체 표면에 광개시제가 첨가된 고분자 방사액을 전기방사하여 나노섬유 코팅층을 형성하되, 상기 나노섬유 코팅층은 자외선 조사에 의해 상기 섬유구조체와 접합된다.The moisture-permeable waterproof fiber structure coated with nanofibers according to the present invention is prepared by forming a coating layer on the surface of the fiber structure as shown in FIG. 2 and electrospinning the polymer spinning solution in which the photoinitiator is added to the surface of the fiber structure. To form a nanofiber coating layer, the nanofiber coating layer is bonded to the fiber structure by ultraviolet irradiation.

상기 섬유구조체는 천연섬유, 합성섬유를 단독 또는 혼합하여 제조되는 직물, 편성물, 펠트, 프레이트, 부직포, 접착직물, 몰드직물, 웹(web) 등 섬유로 구성된 평면상의 원단은 모두 사용할 수 있으나, 나노섬유 코팅층과의 접합력이 가장 우수한 부직포를 사용하는 것이 바람직할 수 있다.The fibrous structure may be any flat fabric composed of fibers such as woven fabrics, knitted fabrics, felts, plates, nonwoven fabrics, adhesive fabrics, mold fabrics, webs, etc., which are manufactured by mixing natural fibers or synthetic fibers alone or in combination. It may be desirable to use a nonwoven fabric with the best adhesion to the fiber coating layer.

상기 나노섬유 코팅층은 나노섬유 부직포와 같은 형태로 섬유구조체에 코팅되는 것으로 도 3과 같이 나노섬유 사이사이로 무수히 많은 미세한 다공을 형성하여 섬유구조체에 투습성 및 방수성을 갖게 한다.The nanofiber coating layer is coated on the fiber structure in the form of a nanofiber nonwoven fabric to form a myriad of fine pores between the nanofibers as shown in FIG. 3 to provide moisture permeability and waterproofness to the fiber structure.

상기 광개시제는 자외선등의 에너지를 흡수하여 중합반응을 시작하게는 물지을 말하는 것으로 단일 분열 자유 라디칼 광개시제, 수소흡인형 자유 라디칼 광개시제 등 여러 종류가 있으며 그 중 하나를 선택적으로 사용할 수 있으나 광개시제의 각각의 특성에 따라 혼합하여 사용하는 것이 바람직할 것이다The photoinitiator refers to a substance that starts the polymerization reaction by absorbing energy such as ultraviolet rays. There are various types such as a single cleavage free radical photoinitiator and a hydrogen suction type free radical photoinitiator, and one of them can be selectively used, but the characteristics of each photoinitiator It would be desirable to mix and use according to

본 발명에서는 1-하이드록시사이클로헥실페닐케톤(시바 사, Igacure 184)과 디페닐 2,4,6-트리메틸벤조일 포스핀옥사이드(Darocur TPO)가 9:1 내지 1:9로 혼합되어 제조되는 것이 바람직할 것이다.In the present invention, 1-hydroxycyclohexylphenyl ketone (Igacure 184, Ciba) and diphenyl 2,4,6-trimethylbenzoyl phosphine oxide (Darocur TPO) is prepared by mixing 9: 1 to 1: 9 Would be desirable.

상기 1-하이드록시사이클로헥실페닐케톤과 디페닐 2,4,6-트리메틸벤조일 포스핀옥사이드가 혼합된 광개시제는 표면에서의 충분한 경화를 이룰 수 있게 해 줄 뿐만 아니라 디페닐 2,4,6-트리메틸벤조일 포스핀옥사이드를 사용함으로 인하여 내부까지 깊숙이 경화가 가능함으로써 두꺼운 코팅층까지도 충분히 경화가 가능한 장점이 있다.The photoinitiator mixed with the 1-hydroxycyclohexylphenyl ketone and diphenyl 2,4,6-trimethylbenzoyl phosphine oxide not only allows sufficient curing at the surface but also diphenyl 2,4,6-trimethyl By using benzoyl phosphine oxide it is possible to cure deep to the inside there is an advantage that can be sufficiently cured even a thick coating layer.

또한, 상기 광개시제는 고분자 방사액과 대비하여 1~10중량% 첨가되는 것이 바람직하며, 보다 바람직하게는 1~6중량% 첨가되는 것이다.In addition, the photoinitiator is preferably added 1 to 10% by weight, more preferably 1 to 6% by weight compared to the polymer spinning solution.

상기 광개시제의 함량이 10중량%를 초과하는 경우에는 전기방사시 나노섬유의 방사성이 현저하게 나빠져 전기방사 자체가 어렵게 될 뿐만아니라 나노섬유를 방사하여 나노섬유 코팅층을 형성시켜도 자외선 조사시 표면 경화가 빨리 되어 코팅층의 내부까지 경화가 되지않아 섬유구조체와의 접착력이 저하되고 광개시제의 함량이 0.1중량% 미만인 경우에는 자외선 조사에 의한 경화효과가 미미하여 섬유구조체와의 접착력이 저하된다.When the content of the photoinitiator exceeds 10% by weight, the radioactivity of the nanofibers is significantly worsened during electrospinning, which makes the electrospinning itself difficult, as well as the surface hardening during ultraviolet irradiation even when the nanofibers are radiated to form a nanofiber coating layer. Since the adhesive force to the fiber structure is not cured until the inside of the coating layer is lowered and the content of the photoinitiator is less than 0.1% by weight, the curing effect due to ultraviolet irradiation is insignificant and the adhesive force to the fiber structure is reduced.

상기 나노섬유 코팅층은 10 내지 30㎛의 두께로 섬유구조체 표면에 코팅되는 것이 바람직하다. 나노섬유 코팅층이 10㎛미만인 경우 투습성은 좋으나 방수성이 떨어질 수 있으며, 나노섬유 코팅층이 30㎛를 초과할 경우에는 방수성은 좋아지나 투습성이 떨어질 수 있다.The nanofiber coating layer is preferably coated on the surface of the fiber structure to a thickness of 10 to 30㎛. If the nanofiber coating layer is less than 10㎛ moisture permeability is good but the waterproofness may fall, if the nanofiber coating layer exceeds 30㎛ water resistance is good but the moisture permeability may be inferior.

상기와 같은 본 발명에 따른 나노섬유가 코팅된 투습방수 섬유구조체의 제조방법은 혼합단계, 코팅층 형성단계, 접합단계로 제조된다.The manufacturing method of the water-permeable waterproof fiber structure coated with nanofibers according to the present invention as described above is prepared by mixing, forming a coating layer, bonding step.

상기 혼합단계는 고분자 방사액에 광개시제를 첨가하는 단계로 상기 광개시제를 고분자 방사액과 대비하여 0.1~10중량%를 고분자 방사액에 첨가하여 광개시제 가 첨가된 고분자 방사액을 제조한다.In the mixing step, a photoinitiator is added to the polymer spinning solution, and 0.1 to 10% by weight of the photoinitiator is added to the polymer spinning solution to prepare the polymer spinning solution to which the photoinitiator is added.

상기 광개시제는 1-하이드록시사이클로헥실페닐케톤(시바 사, Igacure 184)과 디페닐 2,4,6-트리메틸벤조일 포스핀옥사이드(Darocur TPO)를 9:1 내지 1:9로 혼합되어 제조하는 것이 바람직할 것이다.The photoinitiator is prepared by mixing 1-hydroxycyclohexylphenyl ketone (Igacure 184, Ciba) and diphenyl 2,4,6-trimethylbenzoyl phosphine oxide (Darocur TPO) in 9: 1 to 1: 9. Would be desirable.

상기의 광개시제가 첨가된 고분자 방사액을 전기방사하여 섬유구조체 표면에 나노섬유 코팅층을 형성하는 단계로 상기 나노섬유 코팅층은 부직포 제조방식과 동일한 방법으로 코팅층을 형성한다. 상기 나노섬유 코팅층은 10 내지 30㎛의 두께로 코팅되는 것이 바람직하다.Forming a nanofiber coating layer on the surface of the fiber structure by electrospinning the polymer spinning solution to which the photoinitiator is added, the nanofiber coating layer forms a coating layer in the same manner as the nonwoven fabric manufacturing method. The nanofiber coating layer is preferably coated with a thickness of 10 to 30㎛.

상기의 섬유구조체에 코팅된 나노섬유 코팅층에 0.6 내지 10J/㎠의 자외선을 조사하여 나노섬유 코팅층을 섬유구조체에 견고히 접착하는 접합단계로 상기 자외선 조사에 의해 나노섬유 코팅층은 경화되면서 섬유구조체와 접합되고 나노섬유 코팅층이 미세다공이 조절되어 본 발명의 나노섬유가 코팅된 투습방수 섬유구조체를 제조된다.The nanofiber coating layer coated on the fiber structure is a bonding step of firmly bonding the nanofiber coating layer to the fiber structure by irradiating ultraviolet light of 0.6 to 10J / cm 2 and the nanofiber coating layer is bonded to the fiber structure by curing the ultraviolet light. The microporous is controlled in the nanofiber coating layer to prepare a moisture-permeable waterproof fiber structure coated with the nanofiber of the present invention.

상기의 코팅단계에서 나노섬유의 전기방사 방식은 전기적인 힘만을 이용하는 전통적인 전기방사 방식, 에어 공급 전기방사 방식, 에어챔버를 가지고 있는 에어챔버 전기방사 방식 중 어느 방식으로라도 무관하나 나노섬유의 균제도가 우수한 부직포를 제조할 수 있는 에어챔버 전기방사 방식으로 코팅하는 것이 나노섬유 코팅층의 균일한 나노섬유가 코팅된 투습방수 섬유구조체를 제조할 수 있을 것이다.The electrospinning method of the nanofibers in the coating step is irrelevant to any one of the conventional electrospinning method using only electric force, air supply electrospinning method, and air chamber electrospinning method having an air chamber, but it has excellent uniformity of nanofibers. Coating with an air chamber electrospinning method to produce a nonwoven fabric may produce a moisture-permeable waterproof fiber structure coated with a uniform nanofiber of the nanofiber coating layer.

상기와 같은 본 발명의 나노섬유가 코팅된 투습방수 섬유구조체를 제조하기 위한 에어챔버 전기방사 방식의 제조장치로 도 1에 도시된 바와 같이 방사 구금팩 100, 스트림 유도부 200, 제1 집속기 300, 나노섬유 유도부 400, 에어챔버 500, 적층기 600, 제2 집속기 700, 칼렌더부 800로 구성된 제조장치를 사용할 수 있을 것이다.An air chamber electrospinning method for manufacturing a nanofiber-coated moisture-permeable fiber structure of the present invention as shown in Figure 1 spinneret pack 100, stream induction unit 200, the first concentrator 300, A manufacturing apparatus consisting of the nanofiber induction part 400, the air chamber 500, the laminator 600, the second concentrator 700, and the calendar part 800 may be used.

상기와 같이 구성된 제조장치에서 상기 방사 구금팩 100은 복수개의 방사노즐로 구성된 것으로 방사액 공급부에서 공급되는 광개시제가 첨가된 고분자 방사액이 노즐을 통해 전기방사되어 나노섬유를 토출시키는 장치로 상기 방사 구금팩 100의 각각의 방사노즐에 균일한 방사액을 균일한 압력으로 공급하여 방사 구금팩 100에 인가된 전압에 의해 나노섬유를 방사하여 토출시킨다.In the manufacturing apparatus configured as described above, the spinneret pack 100 is composed of a plurality of spinning nozzles. The spinneret is a device for discharging nanofibers by electrospinning a polymer spinning solution to which a photoinitiator supplied from a spinning solution supply unit is electrospun through a nozzle. A uniform spinning solution is supplied to each spinning nozzle of the pack 100 at a uniform pressure to spin and discharge the nanofibers by the voltage applied to the spinneret pack 100.

상기 방사 구금팩 100에서 방사되는 나노섬유는 방향성 없이 토출되므로 토출되는 나노섬유가 일정한 곳으로 유도되도록 방사구금택 100 하단에 스트림 유도부 200가 형성되고, 상기 스트림 유도부 200에 의해 유도되는 나노섬유는 망상구조의 제1 집속기에 분산되어 집속된다.Since the nanofibers emitted from the spinneret pack 100 are discharged without direction, a stream induction part 200 is formed at the bottom of the spinneret tag 100 so that the discharged nanofibers are directed to a predetermined place, and the nanofibers induced by the stream induction part 200 are reticulated. It is distributed and focused on the first concentrator of the structure.

상기 제1 집속기에 집속된 나노섬유는 적층되어 본딩(bonding)되기 전에 하강기류에 의해 망상구조의 통공사이로 나노섬유를 유도하고 이송하는 나노섬유 유도부 400로 유도된다. 상기 하강기류는 나노섬유 유도부 400에 설치되는 기류발생부에서 발생되는 것으로 상기의 기류발생부 410에서 발생된 하강기류는 상기 제1 집속기에 집속되는 나노섬유를 하강시켜 나노섬유 유도부 400로 유도하고 에어챔버 500로 이송시킨다. The nanofibers focused on the first concentrator are guided to the nanofiber guide unit 400 which guides and transports the nanofibers to the through-holes of the network structure by the downdraft before being laminated and bonded. The downdraft is generated in the airflow generation unit installed in the nanofiber induction unit 400, and the downdraft generated in the airflow generation unit 410 lowers the nanofibers focused on the first concentrator to guide the nanofiber induction unit 400. Transfer to air chamber 500.

상기 에어챔버 500는 상광하협(上廣下狹)형태의 이송로 510가 형성되어 이송로를 통과하는 나노섬유는 하강할수록 좁아지는 이송로 510와 하강기류에 의해 점 차 감쇄되고 신장되어 분산 정렬을 하면서 기류를 따라 하강 하게된다. The air chamber 500 has a transport path 510 in the form of a normal light down strait, and the nanofibers passing through the transport path are gradually attenuated and elongated by the transport path 510 and the downdraft which become narrower as they descend. While descending along the airflow.

상기 에어챔버의 이송로 510를 통해 이송되는 나노섬유는 에어챔버 끝단에 형성되는 적층기 600를 통해 토출되어 제2 집속기 700에 집적된다.The nanofibers transferred through the transport path 510 of the air chamber are discharged through the stacker 600 formed at the end of the air chamber and integrated in the second concentrator 700.

상기 제2 집속기에 섬유구조체가 놓여있어 섬유구조체 표면체 나노섬유가 부직포 형태의 코팅층이 형성된다. The fiber structure is placed in the second concentrator so that the surface structure of the fiber structure nanofibers is formed of a nonwoven fabric coating layer.

또한, 제2 집속기 700의 하단에서 상기 기류발생부 410에서 발생된 하강기류를 배출시킬 수 있는 배기부 900가 형성될 수 있을 것이다.In addition, an exhaust unit 900 capable of discharging downdrafts generated by the airflow generator 410 may be formed at a lower end of the second concentrator 700.

본 발명은 나노섬유 코팅층이 섬유구조체의 접착은 자외선 조사로 나노섬유 코팅층을 경화하여 섬유구조체와 접합되고 자외선 조사로 나노섬유의 미세기공을 조절하여 투습성과 방수성이 우수한 초박막의 코팅층을 가진 섬유구조체를 제조하는 효과가 있다.According to the present invention, the nanofiber coating layer bonds the fiber structure to the fiber structure by curing the nanofiber coating layer by UV irradiation, and adjusts the micropores of the nanofiber by UV irradiation to control the fiber structure having an ultra-thin coating layer having excellent moisture permeability and water resistance. There is an effect to manufacture.

또한, 별도의 접착제나 이종의 고분자를 이용하지 않고 광개기제가 첨가된 고분자 방사액을 전기방사하여 제조되는 나노섬유의 코팅층을 형성하는 것으로 공정이 간소화되어 대량생산에 유리한 효과가 있다.In addition, by forming a coating layer of nanofibers prepared by electrospinning a polymer spinning solution to which a photoinitiator is added without using an adhesive or a heterogeneous polymer, the process is simplified and thus advantageous in mass production.

상기와 같이 제조된 본 발명의 나노섬유 코팅층이 섬유구조체는 고성능 필터재료, 각종 포장재 등으로 활용할 수 있을 뿐만 아니라 각종 와이퍼, 의료 및 의류등 전산업분야에 유용하게 사용할 수 있다.The fiber structure of the nanofiber coating layer of the present invention prepared as described above can be used not only as a high performance filter material, various packaging materials, but also useful in all industries such as various wipers, medical and clothing.

이하, 실시예를 통하여 본 발명은 구체적으로 살펴본다. 그러나 본 발명은 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the present invention is not limited to the following examples.

실시예Example

수평균 분자량이 90,000인 폴리우레탄 수지를 N,N-디메틸포름아미드에 8중량%로 용해하여 용액을 제조한 다음에 이 용액에 1-하이드록시 사이클로 헥실 페닐케톤 (시바사, Igacure 184)과 디페닐 2,4,6-트리메틸벤조일 포스핀 옥사이드 (Darocur TPO)를 4:1로 혼합된 광개시제를 폴리우레탄 수지 대비 3 중량%를 폴리우레탄 용액에 첨가하여 방사용액을 제조하였다. 제조된 방사용액을 레오미터 (Rheometer DV, Brookfield co., USA)를 이용하며 측정한 점도가 530 센티포아스(cps) 이었다. 또한 컨덕터비티 메터 (Conductivity meter, CM-40G, TOA electronics Co., 일본)로 측정한 전기전도도가 0.279 mS/m이다.A solution was prepared by dissolving a polyurethane resin having a number average molecular weight of 90,000 in N, N-dimethylformamide at 8% by weight, and then preparing 1-hydroxy cyclohexyl phenylketone (Sivasa, Igacure 184) and di A spin solution was prepared by adding 3 wt% of a photoinitiator mixed with phenyl 2,4,6-trimethylbenzoyl phosphine oxide (Darocur TPO) in a 4: 1 ratio to a polyurethane solution. The prepared spinning solution was measured using a rheometer (Rheometer DV, Brookfield Co., USA) and the viscosity measured was 530 centipoas (cps). The conductivity is also 0.279 mS / m, as measured by a conductor meter (CM-40G, TOA electronics Co., Japan).

상기에서 제조된 광개시제가 첨가된 고분자 방사용액을 도 1에 도시된 방사장치를 이용하여 The polymer spinning solution to which the photoinitiator is prepared is added using the spinning apparatus shown in FIG. 1.

방사 구금의 방사노즐 수는 480홀로 하고 인가 전압은 25kV, 방사거리는 20 ㎝로 하고 공급되는 에어 속도는 8 m/sec 하고, 집속장치의 왕복운동은 30회/min으로 하여 섬유구조체로 구성된 컬렉터상에 섬유직경 400~500nm의 나노섬유 코티층을 형성하고 코티층의 두께는 25㎛로를 제조하였다. The number of spinning nozzles in the spinneret is 480 holes, the applied voltage is 25kV, the spinning distance is 20 cm, the air speed is 8 m / sec, and the reciprocating movement of the focusing device is 30 times / min. A nanofiber corti layer having a fiber diameter of 400 to 500 nm was formed and a thickness of the corti layer was prepared at 25 μm.

상기 섬유구조체는 폴리에스테르로 제조되는 부직포를 사용하였다.The fibrous structure used a nonwoven fabric made of polyester.

상기와 같은 방법으로 제조된 나노섬유가 코팅된 섬유구조체를 메탈할라이드 램프를 이용하여 4.0 J/㎠의 조사에너지로 자외선 경화하여 투습방수 섬유구조체를 제조하였다.The nanofiber-coated fiber structure prepared by the above method was UV-cured by irradiation energy of 4.0 J / cm 2 using a metal halide lamp to prepare a moisture-permeable waterproof fiber structure.

비교예Comparative example

상기 실시예 1과 동일한 방법으로 제조하되 수평균 분자량이 90,000인 폴리우레탄 수지를 N,N-디메틸포름아미드에 8중량%로 용해하여 용액을 제조한 다음에 광개시제 첨가없이 방사하여 섬유직경 200~300nm의 나노섬유 코팅층을 형성하고 코티층의 두께는 25㎛의 투습방수 섬유구조체를 제조하였다. Prepared in the same manner as in Example 1 except that a polyurethane resin having a number average molecular weight of 90,000 was dissolved in N, N-dimethylformamide at 8% by weight to prepare a solution, and then spun without adding a photoinitiator to have a fiber diameter of 200 to 300 nm. To form a nanofiber coating layer and the thickness of the corty layer was prepared a waterproof breathable fiber structure of 25㎛.

* 상기 실시예와 비교예를 통해제조된 투습방수 섬유구조체를 AATCC Test Method 135-1995로 41℃에서 세탁 후 텀블건조 방법으로 건조한 후 ASTM E96(CaCl2)법에 의해 34℃, 습도 90%에서 24시간 동안 투습도를 평가하였고, 내수도는 ISO 0811에 의해 상승속도 600㎜/min로 측정하여 그 결과를 표 1에 나타내었다.* The moisture-permeable waterproof fiber structure manufactured through the above Examples and Comparative Examples was washed at 41 ° C. with AATCC Test Method 135-1995 and dried by a tumble drying method, followed by ASTM E96 (CaCl 2) method at 34 ° C., humidity 90%, 24%. Moisture permeability was evaluated over time, and the water resistance was measured at an ascending rate of 600 mm / min by ISO 0811 and the results are shown in Table 1.

구분division 코팅층 두께(㎛)Coating layer thickness (㎛) 투습도(g/㎡/24hr)Permeability (g / ㎡ / 24hr) 내수압(㎜H2O)Hydraulic pressure (mmH 2 O) 실시예Example 2525 10,50010,500 6,0006,000 비교예Comparative example 2525 6,5006,500 3,0003,000

상기 표 1의 결과에서 나타나듯이 본 발명에 따른 투습방수용 코팅물이 코팅된 실시예의 투습방수 섬유구조체는 비교예의 섬유구조체보다 투습도 및 내수도가 모두 2배가 가까이 높은 것을 알 수 있다.As shown in the results of Table 1, the moisture-permeable waterproof fiber structure of the embodiment coated with the moisture-permeable waterproof coating according to the present invention can be seen that the moisture permeability and the water resistance are nearly twice higher than the fiber structure of the comparative example.

따라서, 본 발명의 제조방법으로 제조된 투습방수 섬유구조체는는 ASTM E96(CaCl2)법에 의해 34℃, 습도 90%에서 24시간 동안 평가한 투습도가 10,000 g/㎡/24hr 이상이고, ISO 0811에 의해 상승속도 600 mm/min으로 평가한 내수압이 5,000 mmH2O 이상임을 알 수 있다.Therefore, the moisture-permeable waterproof fiber structure prepared by the manufacturing method of the present invention is the water vapor transmission rate of 10,000 g / ㎡ / 24hr or more evaluated at 34 ℃, 90% humidity by 24 hours by ASTM E96 (CaCl2) method, according to ISO 0811 It can be seen that the water pressure measured at the rising speed of 600 mm / min is 5,000 mmH 2 O or more.

도 1은 본 발명의 투습방수 섬유구조체의 제조장치의 일실시예를 나타낸 개념도.1 is a conceptual view showing an embodiment of the apparatus for producing a moisture-permeable waterproof fiber structure of the present invention.

도 2는 본 발명의 실시예로 제조된 투습방수 섬유구조체의 단면을 나타낸 전자사진.Figure 2 is an electrophotograph showing a cross section of the moisture-permeable waterproof fiber structure produced by the embodiment of the present invention.

도 3은 본 발명의 실시예로 제조된 투습방수 섬유구조체의 나노섬유 코팅층을 확대한 전자사진.Figure 3 is an enlarged electrophotographic nanofiber coating layer of the moisture-permeable waterproof fiber structure prepared in the embodiment of the present invention.

<도면의 주요부분에 대한 부호설명><Code Description of Main Parts of Drawing>

100: 방사 구금팩 110: 방사액 공급장치100: spinneret pack 110: spinning liquid supply device

200: 스트림 유도부 300: 제1 집속기200: stream guide unit 300: first focusing device

400: 나노섬유 유도부 500: 에어챔버400: nanofiber induction part 500: air chamber

600: 적층기 700: 제2 집속기600: stacker 700: second focusing machine

800: 칼렌더부 900: 배기부800: calendar unit 900: exhaust unit

Claims (9)

섬유구조체 표면에 광개시제가 첨가된 고분자 방사액을 전기방사하여 나노섬유 코팅층을 형성하되,A nanofiber coating layer is formed by electrospinning a polymer spinning solution containing a photoinitiator on the surface of the fiber structure, 상기 나노섬유 코팅층은 자외선 조사에 의해 상기 섬유구조체와 접합되는 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체.The nanofiber coating layer is moisture-permeable waterproof fiber structure coated with nanofibers, characterized in that bonded to the fiber structure by ultraviolet irradiation. 제1항에 있어서,The method of claim 1, 상기 광개시제는 1-하이드록시사이클로헥실페닐케톤(시바 사, Igacure 184)과 디페닐 2,4,6-트리메틸벤조일 포스핀옥사이드(Darocur TPO)를 9:1 내지 1:9로 혼합되어 형성되는 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체.The photoinitiator is formed by mixing 1-hydroxycyclohexylphenyl ketone (Igacure 184, Ciba, Inc.) and diphenyl 2,4,6-trimethylbenzoyl phosphine oxide (Darocur TPO) in 9: 1 to 1: 9. Nanofiber-coated moisture-permeable fiber structure characterized in that the coating. 제1항에 있어서,The method of claim 1, 상기 광개시제는 고분자 방사액과 대비하여 0.1~10중량% 첨가되는 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체.The photoinitiator is a moisture-permeable waterproof fiber structure coated with nanofibers, characterized in that added 0.1 to 10% by weight compared to the polymer spinning solution. 제1항에 있어서,The method of claim 1, 상기 나노섬유 코팅층은 10 내지 30㎛의 두께인 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체.The nanofiber coating layer is a moisture-resistant waterproof fiber structure coated with nanofibers, characterized in that the thickness of 10 to 30㎛. 제1항에 있어서,The method of claim 1, 상기 나노 섬유가 코팅된 투습방수 섬유구조체는 투습도가 10,000g/㎡/24hr(34℃,습도 90%)이상이고 내수압이 5,000㎜H2O이상인 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체.The moisture-permeable waterproof fiber structure coated with the nanofibers has a moisture-permeability of 10,000 g / m 2 / 24hr (34 ° C., a humidity of 90%) and a water resistant pressure of 5,000 mmH 2 O or more, wherein the moisture-permeable waterproof fiber structure is coated with nanofibers. . 투습방수 섬유구조체의 제조방법에 있어서,In the manufacturing method of the moisture-permeable waterproof fiber structure, 고분자 방사액에 광개시제를 첨가하는 혼합단계;Adding a photoinitiator to the polymer spinning solution; 상기 섬유구조체 표면에 광개시제가 첨가된 고분자 방사액을 전기방사하여 나노섬유 코팅층을 형성하는 코팅층 형성단계;A coating layer forming step of forming a nanofiber coating layer by electrospinning a polymer spinning solution to which a photoinitiator is added to the surface of the fiber structure; 상기 나노섬유 코팅층에 자외선을 조사하여 나노섬유 코팅층과 섬유구조체를 접합하는 접합단계를 포함하는 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체의 제조방법.Method of manufacturing a water-permeable waterproof fiber structure coated with nanofibers, comprising the step of bonding the nanofiber coating layer and the fiber structure by irradiating the nanofiber coating layer with ultraviolet light. 제6항에 있어서,The method of claim 6, 상기 광개시제는 1-하이드록시사이클로헥실페닐케톤(시바 사, Igacure 184)과 디페닐 2,4,6-트리메틸벤조일 포스핀옥사이드(Darocur TPO)를 9:1 내지 1:9로 혼합되어 형성되는 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체의 제조방법.The photoinitiator is formed by mixing 1-hydroxycyclohexylphenyl ketone (Igacure 184, Ciba, Inc.) and diphenyl 2,4,6-trimethylbenzoyl phosphine oxide (Darocur TPO) in 9: 1 to 1: 9. Method for producing a moisture-permeable waterproof fiber structure coated with nanofibers. 제6항에 있어서,The method of claim 6, 상기 나노섬유 코팅층은 10 내지 30㎛의 두께로 코팅되는 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체의 제조방법.The nanofiber coating layer is a method for producing a moisture-permeable waterproof fiber structure coated with nanofibers, characterized in that the coating to a thickness of 10 to 30㎛. 제6항에 있어서,The method of claim 6, 상기 자외선은 0.6 내지 10J/㎠로 조사되는 것을 특징으로 하는 나노 섬유가 코팅된 투습방수 섬유구조체의 제조방법.The ultraviolet ray is a method for producing a moisture-permeable waterproof fiber structure coated with nanofibers, characterized in that irradiated with 0.6 to 10J / ㎠.
KR1020090102400A 2009-10-27 2009-10-27 Nano fiber coated fiber structure for waterproof and berathable, and method for making thereof KR101070421B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090102400A KR101070421B1 (en) 2009-10-27 2009-10-27 Nano fiber coated fiber structure for waterproof and berathable, and method for making thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090102400A KR101070421B1 (en) 2009-10-27 2009-10-27 Nano fiber coated fiber structure for waterproof and berathable, and method for making thereof

Publications (2)

Publication Number Publication Date
KR20110045715A true KR20110045715A (en) 2011-05-04
KR101070421B1 KR101070421B1 (en) 2011-10-06

Family

ID=44240731

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090102400A KR101070421B1 (en) 2009-10-27 2009-10-27 Nano fiber coated fiber structure for waterproof and berathable, and method for making thereof

Country Status (1)

Country Link
KR (1) KR101070421B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018099910A1 (en) 2016-11-29 2018-06-07 Advanced Materials Design & Manufacturing Limited Process for making hybrid (fiber-nanofiber) textiles through efficient fiber-to-nanofiber bonds comprising novel effective load-transfer mechanisms
CN108368670A (en) * 2015-10-14 2018-08-03 海克私人有限公司 Method for providing water proofing property
CN113293508A (en) * 2021-04-14 2021-08-24 内蒙古工业大学 Composite fiber membrane and preparation method and application thereof
CN113430828A (en) * 2021-06-23 2021-09-24 清华大学 Fiber product and preparation method thereof
CN113756089A (en) * 2021-10-26 2021-12-07 成都海蓉特种纺织品有限公司 Low-air-permeability fabric and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437871B1 (en) 2013-01-21 2014-09-15 포항공과대학교 산학협력단 Anti-wettable linear structure, method of making the same and fibrous membrane using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803704B1 (en) 2006-08-30 2008-02-15 한국전기연구원 Manufacturing methods of bulk polymer containing aligned cnts(carbon nanotubes) by uv(ultraviolet) rays

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368670A (en) * 2015-10-14 2018-08-03 海克私人有限公司 Method for providing water proofing property
EP3362599A4 (en) * 2015-10-14 2019-05-29 HeiQ Pty Ltd Process for providing water repellency
WO2018099910A1 (en) 2016-11-29 2018-06-07 Advanced Materials Design & Manufacturing Limited Process for making hybrid (fiber-nanofiber) textiles through efficient fiber-to-nanofiber bonds comprising novel effective load-transfer mechanisms
CN113293508A (en) * 2021-04-14 2021-08-24 内蒙古工业大学 Composite fiber membrane and preparation method and application thereof
CN113430828A (en) * 2021-06-23 2021-09-24 清华大学 Fiber product and preparation method thereof
CN113756089A (en) * 2021-10-26 2021-12-07 成都海蓉特种纺织品有限公司 Low-air-permeability fabric and preparation method and application thereof
CN113756089B (en) * 2021-10-26 2023-05-23 成都海蓉特种纺织品有限公司 Low-air-permeability fabric and preparation method and application thereof

Also Published As

Publication number Publication date
KR101070421B1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
KR101070421B1 (en) Nano fiber coated fiber structure for waterproof and berathable, and method for making thereof
WO2017209536A1 (en) Filter medium, method for manufacturing same, and filter module comprising same
US20170065917A1 (en) Non-woven fiber fabric, and production method and production device therefor
KR20090128097A (en) Method of manufacturing water-proof and moisture-permeable fabric comprising nano fiber web
KR101631252B1 (en) Breathable and Waterproof Fabric and Manufacturing Method thereof
KR20210158800A (en) Composite membrane and method for producing a composite membrane
KR101234044B1 (en) Ultraviolet-curable type fabric for waterproof and breathable and preparing the same
KR20110105655A (en) The process of making hydrophilic membrane with electrospun nanofiber and device
KR20210158801A (en) Composite membrane and method for producing a composite membrane
KR102055725B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
KR20180007817A (en) 2-layer filter for blocking fine and yellow dust containing nanofiber web and its manufacturing method
KR101058913B1 (en) Apparatus for manufacturing nanofiber nonwoven fabric by electrospinning and nanofiber nonwoven fabric produced therefrom
KR101812787B1 (en) Waterproof ventilation sheet and method for manufacturing the same
KR20170068984A (en) Breathable and waterproof fabric and manufacturing method thereof
KR20090114764A (en) Vent filter and vent filter manufacturing method for head lamp of car
KR20100024123A (en) Sheet of wall papers having moisture absorption
KR101234048B1 (en) Ultraviolet-curable type waterproof and berathable fabric having deodrant and antistatic, and a method of fabricating the same
KR20060022406A (en) A non-woven fabric composed of nanofiber with excellent water repellency and oil repellancy, and method of manufacturing for the same
WO2018226076A2 (en) Filter medium, manufacturing method therefor, and filter unit including same
KR101131946B1 (en) Coating for waterproof and berathable, coating method and fabric for waterproof and berathable
KR101635039B1 (en) Water-proof and moisture-permeable fabric and method of manufacturing the same
KR20180007821A (en) Multi-layer filter for blocking fine and yellow dust containing nanofiber web and its manufacturing method
KR100987134B1 (en) Nano-fiber wallpaper with nano silver
EP3832641A1 (en) Laminate sound-absorbing material
KR20090128106A (en) Method of manufacturing water-proof and moisture-permeable fabric comprising nano fiber web

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150930

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160921

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170906

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180920

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190926

Year of fee payment: 9