KR20110045490A - Method for producing aromatic boric acid compound - Google Patents
Method for producing aromatic boric acid compound Download PDFInfo
- Publication number
- KR20110045490A KR20110045490A KR1020090102095A KR20090102095A KR20110045490A KR 20110045490 A KR20110045490 A KR 20110045490A KR 1020090102095 A KR1020090102095 A KR 1020090102095A KR 20090102095 A KR20090102095 A KR 20090102095A KR 20110045490 A KR20110045490 A KR 20110045490A
- Authority
- KR
- South Korea
- Prior art keywords
- temperature
- solvent
- reaction
- yield
- formula
- Prior art date
Links
- -1 aromatic boric acid compound Chemical class 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title abstract description 7
- 239000004327 boric acid Substances 0.000 title abstract 3
- 239000006184 cosolvent Substances 0.000 claims abstract description 16
- 125000003118 aryl group Chemical group 0.000 claims abstract description 10
- 150000004792 aryl magnesium halides Chemical class 0.000 claims abstract description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 43
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 27
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 14
- 239000000460 chlorine Substances 0.000 claims description 9
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 claims description 7
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 6
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 claims description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 3
- 239000008096 xylene Substances 0.000 claims description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 125000004175 fluorobenzyl group Chemical group 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims description 2
- 125000001624 naphthyl group Chemical group 0.000 claims description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 2
- 125000003944 tolyl group Chemical group 0.000 claims description 2
- 239000003814 drug Substances 0.000 abstract description 3
- 239000012776 electronic material Substances 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 36
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 20
- 239000002904 solvent Substances 0.000 description 19
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 18
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 18
- 239000011777 magnesium Substances 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000002425 crystallisation Methods 0.000 description 11
- 230000008025 crystallization Effects 0.000 description 11
- 238000010306 acid treatment Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000005481 NMR spectroscopy Methods 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 238000004809 thin layer chromatography Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 150000001543 aryl boronic acids Chemical class 0.000 description 6
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 6
- HUMMCEUVDBVXTQ-UHFFFAOYSA-N naphthalen-1-ylboronic acid Chemical compound C1=CC=C2C(B(O)O)=CC=CC2=C1 HUMMCEUVDBVXTQ-UHFFFAOYSA-N 0.000 description 6
- 238000010791 quenching Methods 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 5
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 239000011630 iodine Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- ANRQGKOBLBYXFM-UHFFFAOYSA-M phenylmagnesium bromide Chemical compound Br[Mg]C1=CC=CC=C1 ANRQGKOBLBYXFM-UHFFFAOYSA-M 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 2
- APSMUYYLXZULMS-UHFFFAOYSA-N 2-bromonaphthalene Chemical compound C1=CC=CC2=CC(Br)=CC=C21 APSMUYYLXZULMS-UHFFFAOYSA-N 0.000 description 2
- SZNYYWIUQFZLLT-UHFFFAOYSA-N 2-methyl-1-(2-methylpropoxy)propane Chemical compound CC(C)COCC(C)C SZNYYWIUQFZLLT-UHFFFAOYSA-N 0.000 description 2
- AQZGPSLYZOOYQP-UHFFFAOYSA-N Diisoamyl ether Chemical compound CC(C)CCOCCC(C)C AQZGPSLYZOOYQP-UHFFFAOYSA-N 0.000 description 2
- AYDIZIVBZWNEGJ-UHFFFAOYSA-N OBO.CC1=CC=CC=C1 Chemical compound OBO.CC1=CC=CC=C1 AYDIZIVBZWNEGJ-UHFFFAOYSA-N 0.000 description 2
- DCLBYJRXBUZJQP-UHFFFAOYSA-N OBO.FC1=CC=CC=C1 Chemical compound OBO.FC1=CC=CC=C1 DCLBYJRXBUZJQP-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 1
- QDFKKJYEIFBEFC-UHFFFAOYSA-N 1-bromo-3-fluorobenzene Chemical compound FC1=CC=CC(Br)=C1 QDFKKJYEIFBEFC-UHFFFAOYSA-N 0.000 description 1
- WJIFKOVZNJTSGO-UHFFFAOYSA-N 1-bromo-3-methylbenzene Chemical compound CC1=CC=CC(Br)=C1 WJIFKOVZNJTSGO-UHFFFAOYSA-N 0.000 description 1
- BPIUIOXAFBGMNB-UHFFFAOYSA-N 1-hexoxyhexane Chemical compound CCCCCCOCCCCCC BPIUIOXAFBGMNB-UHFFFAOYSA-N 0.000 description 1
- AOPDRZXCEAKHHW-UHFFFAOYSA-N 1-pentoxypentane Chemical compound CCCCCOCCCCC AOPDRZXCEAKHHW-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- HHBZZTKMMLDNDN-UHFFFAOYSA-N 2-butan-2-yloxybutane Chemical compound CCC(C)OC(C)CC HHBZZTKMMLDNDN-UHFFFAOYSA-N 0.000 description 1
- BUWXUSLQPDDDSD-UHFFFAOYSA-N 2-methyl-2-(2-methylbutan-2-yloxy)butane Chemical compound CCC(C)(C)OC(C)(C)CC BUWXUSLQPDDDSD-UHFFFAOYSA-N 0.000 description 1
- UVEFRWMGQRNNDB-UHFFFAOYSA-N 2-pentan-2-yloxypentane Chemical compound CCCC(C)OC(C)CCC UVEFRWMGQRNNDB-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 239000007818 Grignard reagent Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001502 aryl halides Chemical class 0.000 description 1
- IPWKHHSGDUIRAH-UHFFFAOYSA-N bis(pinacolato)diboron Chemical compound O1C(C)(C)C(C)(C)OB1B1OC(C)(C)C(C)(C)O1 IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- GHDIHPNJQVDFBL-UHFFFAOYSA-N methoxycyclohexane Chemical compound COC1CCCCC1 GHDIHPNJQVDFBL-UHFFFAOYSA-N 0.000 description 1
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- BYQADQLDVPAGSR-UHFFFAOYSA-N toluene;hydrobromide Chemical compound Br.CC1=CC=CC=C1 BYQADQLDVPAGSR-UHFFFAOYSA-N 0.000 description 1
- 125000005951 trifluoromethanesulfonyloxy group Chemical group 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/69—Boron compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/025—Boronic and borinic acid compounds
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
Abstract
본 발명은 아릴마그네슘 할라이드와 알킬보로네이트를 일정 온도에서 공용매(co-solvent)의 존재하에서 반응시켜, 방향족 붕소산을 제조하는 방법으로서, 공업적으로 활용 가능한 조건하에서 고수율과 고순도로 방향족 붕소산 화합물을 제조할 수 있고, 합성되는 유기붕소 화합물은 전자소재 및 의약품의 핵심 중간체로 활용할 수 있다.The present invention is a method for producing an aromatic boric acid by reacting an aryl magnesium halide and an alkyl boronate at a constant temperature in the presence of a co-solvent, aromatic in high yield and high purity under industrially applicable conditions The boric acid compound can be prepared, and the organoboron compound synthesized can be used as a key intermediate of electronic materials and pharmaceuticals.
Description
본 발명은 방향족 붕소산 화합물의 제조 방법에 관한 것으로, 좀 더 구체적으로 살펴보면, 아릴마그네슘 할라이드와 알킬보로네이트를 일정 온도에서 공용매의 존재하에서 반응시켜, 방향족 붕소산(또는 아릴 붕소산, 아릴보론산)을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing an aromatic boronic acid compound, and more specifically, to an aromatic boronic acid (or aryl boronic acid, aryl) by reacting an aryl magnesium halide and an alkyl boronate at a constant temperature in the presence of a co-solvent Boronic acid).
방향족 붕소산 화합물 중에 대표적으로 것은 페닐 붕소산(PBA), 나프탈렌 붕소산(NBA), 플루오로벤젠 붕소산(FBA), 톨루엔 붕소산(TBA)이 있다. 이러한 방향족 붕소산 화합물의 기본적인 합성반응식은 다음의 그림에서와 같이 아릴 할라이드를 금속(Mg, Li)으로 활성화시키고 트리알킬보레이트 등의 붕소 화합물과 반응시켜서 붕소화 시킨 후, 급냉에 의해서 아릴 붕소산을 합성하였다(참고문헌 Organic Synthesis, Coll. Vol. IV, p68, John Wiley & Sons(1963)).Representative among aromatic boronic acid compounds are phenyl boronic acid (PBA), naphthalene boronic acid (NBA), fluorobenzene boronic acid (FBA), toluene boronic acid (TBA). The basic synthesis scheme of the aromatic boronic acid compound is as shown in the following figure to activate the aryl halide with a metal (Mg, Li), react with a boron compound such as trialkyl borate and boron, and then aryl boronic acid by quenching (Synthesis Organic Synthesis, Coll. Vol. IV, p68, John Wiley & Sons (1963)).
(반응도식 1) 대표적인 아릴 붕소산의 합성반응식Scheme 1 Synthesis Scheme of Representative Aryl Boronic Acid
(OTF: 트리플루오로메탄술포닐옥시)(OTF: trifluoromethanesulfonyloxy)
이 방법은 사용되는 용매의 가격이 비싸고 취급이 위험한 테트라하이드로퓨란 (THF)를 사용하고, 반응온도 조건으로서 -78℃의 극저온에서 반응을 시켜야만 적정한 수율이 얻어지고, 또한 마그네슘(Mg) 금속이나, 리튬(Li) 금속과 같은 위험한 시약을 사용하므로 수소 발생에 의한 화재, 폭발 위험성이 있어서 공업적인 방법으로는 적절하지 않았다.This method uses tetrahydrofuran (THF), which is expensive and dangerous to handle, and requires a reaction at cryogenic temperatures of -78 ° C as a reaction temperature condition to obtain an appropriate yield, and also to obtain magnesium (Mg) metal, Hazardous reagents such as lithium (Li) metals are used and therefore are not suitable for industrial methods due to the risk of fire and explosion due to hydrogen generation.
두번째 합성 방법으로는 하기 반응도식 2와 같이 팔라듐과 같은 귀금속 촉매와 비스(피나콜라토)디보란과 같은 디보란화합물 등을 활용하는 합성 방법도 실험실적으로는 개발되어 있다고 보고 되었다(참고문헌 J. Org. Chem. 60, 7508 ~ 7510 (1995)). As a second synthesis method, a synthesis method using a noble metal catalyst such as palladium and a diborane compound such as bis (pinacolato) diborane, as shown in Scheme 2, has been reported to be developed in a laboratory (Ref. J). Org.Chem. 60, 7508-7510 (1995)).
(반응도식 2)Scheme 2
그렇지만, 상기 방법도 저온 반응은 아니지만 회수가 어려운 비싼 귀금속 촉매를 사용해야 하고, 가격이 비싼 인(P)계 디클로로비스 (디페닐포스피노 페루세니르) (DPPF)와 같은 리간드를 사용해야만 반응이 진행되어 아직 공업적으로 적용하기에는 어려운 실정이다. However, the above method is also a low-temperature reaction, but difficult to recover expensive noble metal catalyst, and the reaction proceeds only by using a ligand such as phosphorus (P) -based dichlorobis (diphenylphosphino perusenir) (DPPF) It is still difficult to apply industrially.
따라서 경제적이고 공업적으로 적용할 수 있는 합성방법을 개발하기 위하여, 페닐 붕소산의 예비실험을 통한 반응 용매, 반응 온도 및 산처리 방법 등의 조건들을 변경하여 최적의 운전조건을 찾고 공업적으로 활용 가능한 방법을 찾아내고 다음의 발명을 완성하게 되었다.Therefore, in order to develop a synthetic method that can be economically and industrially applied, the conditions of the reaction solvent, reaction temperature, and acid treatment method through preliminary experiments of phenylboronic acid are changed to find the optimum operating conditions and industrial use. The possible methods were found and the following invention was completed.
상기 종래의 방법 즉, 기존의 고전적인 그리나드법은 아주 낮은 온도, 예를 들면, -70℃정도의 온도에서 합성하여야만이 수율이 높게 얻어지는 바, -70℃정도의 운전조건은 공업적으로 적용이 어렵다는 문제가 있었다. 이러한 종래의 방법으 로 공업적으로 제조하려면 최소한 -20℃ 에서 0℃ 내지 실온 부근에서 제조하는 것이 바람직하지만, 이러한 온도범위에서는 수율이 낮고 불순물이 많이 생기는 단점이 있어 왔다. In the conventional method, that is, the conventional classical Grignard method, a high yield is obtained only by synthesizing at a very low temperature, for example, a temperature of about -70 ° C. Therefore, the operating conditions of about -70 ° C are industrially applied. There was a problem that this was difficult. In order to industrially manufacture by such a conventional method, it is preferable to manufacture at least at -20 ° C to around 0 ° C to room temperature. However, there have been disadvantages in that the yield is low and many impurities are generated in this temperature range.
따라서 본 발명은 특정한 공용매(co-solvent)를 활용하므로서 공업적으로 적용 가능한 온도범위(-40 내지 0℃ 범위)에서 수율이 향상된 결과를 얻을 수 있어서 방향족 붕소산을 제조하는 방법을 제공하고자 한다.Accordingly, the present invention is to provide a method for producing an aromatic boronic acid by using a specific co-solvent to obtain a result of improved yield in the industrially applicable temperature range (-40 ~ 0 ℃ range) .
우선, 본 발명자들은, 브로모벤젠에 Mg와 Et2O(디에틸에테르) 또는 THF를 가하여 환류시켜서 Ph-MgBr을 합성한 후 트리메틸 보레이드와 반응시킨 후 10% H2SO4 또는 포화 NH4Cl 또는 2N HCl로 급냉하여 원하는 페닐보론산을 얻는 과정에서, 이를 실험적으로 합성한 후 TLC, HPLC, 13C NMR, 1H NMR, IR 등으로 분석하여 고순도 및 고수율로 합성할 수 있는 최적의 방법을 발명하고자 하였다. 또한, 이들을 합성하는 과정에서 생성물 이외의 다른 부산물이 생성될 수 있는지 그 가능성을 하기 메카니즘을 통해 알아보았다.First, the present inventors synthesized Ph-MgBr by adding Mg, Et 2 O (diethyl ether) or THF to reflux to bromobenzene to react with trimethyl boride, and then reacted with 10% H 2 SO 4 or saturated NH 4. In the process of quenching with Cl or 2N HCl to obtain the desired phenylboronic acid, it is experimentally synthesized and analyzed by TLC, HPLC, 13 C NMR, 1 H NMR, IR, etc. It was intended to invent the method. In addition, the possibility of producing by-products other than the product in the process of synthesizing the possibility was examined through the following mechanism.
1) Mechanism1) Mechanism
본 발명자들은 상기 메커니즘을 통하여 생성물(phenylboronic acid)의 수율에 영향을 줄 수 있는 반응요소로서 (1) 용매, (2) 반응온도, (3) 산처리(quenching) 방법, (4) 결정화 온도임을 고려하여 다양한 실험을 통하여 이들 각각의 영향을 조사하였다.The present inventors believe that the reaction factors that can affect the yield of the product (phenylboronic acid) through the above mechanism are (1) solvent, (2) reaction temperature, (3) quenching method, (4) crystallization temperature. In consideration of each of these effects through various experiments.
(1) 용매의 영향(1) Influence of solvent
사용 용매, 산처리 방법, 결정화 온도를 모두 같게 하고 반응 온도를 실온에 서 -70℃로 낮춰서 상기 실험을 한 결과, 반응 온도를 낮게 하면 수율이 좋아지는 것을 알 수 있었다. 이 결과를 토대로 낮은 온도에서 반응시킬 때 용매의 영향에 대해 알아보기 위해 실험을 하였다. 용매를 THF에서 Et2O로 바꾸고, 반응온도는 -60℃, 결정화 온도는 실온, 산처리 방법은 10% H2SO4로 동일하게 하였다. 그 결과 용매는 Et2O로 하고 반응 온도는 -60℃ ~ -70℃정도가 더 좋은 수율로 생성물을 얻을 수 있다는 사실을 알 수 있었다. 하지만 위의 실험들로는 높은 수율을 얻을 수 없었다. Using the same solvent, acid treatment method, and crystallization temperature and lowering the reaction temperature from room temperature to -70 ° C, the experiment showed that the lower the reaction temperature, the better the yield. Based on these results, experiments were carried out to investigate the effect of solvent on the reaction at low temperatures. The solvent was changed from THF to Et 2 O, the reaction temperature was −60 ° C., the crystallization temperature was room temperature, and the acid treatment method was the same as 10% H 2 SO 4 . As a result, it was found that the solvent was Et 2 O and the reaction temperature was -60 ° C. to -70 ° C., whereby the product was obtained with better yield. However, the above experiments did not yield high yields.
(2) 결정화 온도의 영향(2) influence of crystallization temperature
이어서, 선행문헌 1(Robert M. Washburn; Ernest Levenes; Charles F.Albright; Franklin A.Billig. Org. Synth. Coll., 1963,4,68; 1959,39,3; 에서 보여 지는 것과 같이 다른 인자들 중 결정화 온도를 낮게 할수록 높은 수율을 얻을 수 있을 것으로 예상하여 결정화 온도를 변화시켜 실험 하였다.Subsequently, other factors as shown in Robert M. Washburn; Ernest Levenes; Charles F. Albright; Franklin A. Billig. Org.Synth . Coll., 1963, 4, 68 ; 1959, 39, 3; Among them, the lower the crystallization temperature was expected to obtain a higher yield was tested by changing the crystallization temperature.
용매는 Et2O를 사용하고, 반응온도는 -60℃, 산처리 방법은 10% H2SO4로 동일하게 사용하고 결정화 온도를 실온에서 0℃로 낮추어 실험한 결과 같은 조건에서 실험한 상기 선행문헌 1보다는 더 높은 수율로 합성 할 수 있고, 결정화 온도를 더 낮게 할수록 더 높은 수율로 합성 할 수 있었다. Et 2 O is used as the solvent, the reaction temperature is -60 ° C., and the acid treatment method is the same as that of 10% H 2 SO 4 , and the crystallization temperature is lowered from room temperature to 0 ° C .. It can be synthesized in a higher yield than the literature 1, the lower the crystallization temperature was synthesized in a higher yield.
(3) 산처리 (quenching) 방법의 영향(3) Effect of acid quenching method
상기 결과를 얻고 난 후 산처리 방법은 반응의 수율에 어떠한 영향을 줄 수 있는가를 살펴보기로 하였다. 용매는 THF를 사용하고, 반응온도와 결정화 온도는 실온으로 동일하게 하고, 산처리 방법을 10% H2SO4에서 포화 NH4Cl로 바꾸어 실험하였다.After obtaining the above results, it will be described how the acid treatment method may affect the yield of the reaction. THF was used as the solvent, the reaction temperature and the crystallization temperature were the same at room temperature, and the acid treatment method was changed from 10% H 2 SO 4 to saturated NH 4 Cl.
상기 합성 과정에서 급냉 방법을 10% H2SO4로 사용했을 때보다는 포화 NH4Cl을 사용했을 때가 더 높은 수율을 얻을 수 있었다. 같은 조건에서 실험한 선행문헌 2(Kazuaki Ishihara; Suguru Ohara; Hisashi Yamamoto, Org. Synth. Coll., 2004,10,80; 2002, 79,176)의 수율보다 더 좋은 결과를 얻을 수 있었다. 이것으로 산처리(quenching) 방법을 10% H2SO4를 사용하는 것보다 포화 NH4Cl을 사용하는 것이 더 좋다는 것을 알 수 있었다. Higher yields were obtained when saturated NH 4 Cl was used than when quenching was used with 10% H 2 SO 4 . Better yields were obtained than the yields of prior art 2 (Kazuaki Ishihara; Suguru Ohara; Hisashi Yamamoto, Org. Synth. Coll., 2004 , 10 , 80; 2002, 79, 176), tested under the same conditions. This shows that it is better to use saturated NH 4 Cl than to use 10% H 2 SO 4 in the acid quenching method.
또한, 용매는 THF를 사용하고, 반응온도와 결정화 온도는 실온으로 그대로 두고, 산처리 방법을 2N HCl로 바꾸어 실험하였다. 이 실험에서는 앞서 실험한 포화 NH4Cl의 것보다 더 나은 수율을 얻을 수 있었다. 즉, 산처리 방법을 10% H2SO4를 사용하는 것 보다는 포화 NH4Cl을 사용하는 것이 더 좋고, 포화 NH4Cl보다는 2N HCl을 사용하는 것이 더 좋다는 사실을 알 수 있었다. In addition, as the solvent, THF was used, the reaction temperature and the crystallization temperature were kept at room temperature, and the acid treatment method was changed to 2N HCl. This experiment yielded better yields than that of saturated NH 4 Cl. In other words, it was found that the acid treatment method is better to use saturated NH 4 Cl than 10% H 2 SO 4 and 2N HCl rather than saturated NH 4 Cl.
(4) 공용매의 사용 영향(4) Influence of use of cosolvent
한편, 본 발명의 발명자들은 용매는 Et2O를 사용하고 반응 온도는 0℃ ~ 실온, 산처리는 2N HCl을 사용하고, 결정화 온도는 실온에서 상기 반응을 수행한 결과, 생성물을 약 78%의 수율로 합성할 수 있었는데, 동일한 조건에서 공용매를 사용할 경우 상온에서는 84%의 수율로, -40℃에서는 90%의 수율을 얻을 수 있었다.On the other hand, the inventors of the present invention using Et 2 O as the solvent, the reaction temperature is 0 ℃ ~ room temperature, the acid treatment using 2N HCl, the crystallization temperature of the reaction at room temperature as a result, the product of about 78% It was possible to synthesize in a yield, when using a co-solvent in the same conditions was able to obtain a yield of 84% at room temperature, 90% yield at -40 ℃.
위의 다양한 실험결과를 토대로 하여, 본 발명에서 공업적으로 활용 가능한 최적조건으로 선정하여 용매는 공용매로, 반응온도는 -40 ℃ ~ 실온으로, 산처리 용액은 2N HCl로 사용하여, 하기 실시예에서와 같이 일정한 규모의 PBA, NBA, FBA, TBA의 합성과정을 진행하였다. Based on the results of the above various experiments, the present invention was selected as the optimum conditions that can be used industrially in the present invention by using a solvent as a co-solvent, a reaction temperature of -40 ° C. to room temperature, and an acid treatment solution as 2N HCl. As in the example, the synthesis process of PBA, NBA, FBA, TBA of a certain scale was carried out.
본 발명은 공용매를 이용하여 -40 ℃ ~ 실온 범위내에서, 최적의 합성 방법을 통하여 전자소재 또는 의약품 등의 기초 소재로 유용한 방향족 붕소 화합물을 합성할 수 있다.The present invention can synthesize an aromatic boron compound useful as a base material such as electronic materials or pharmaceuticals through an optimal synthesis method within the range of -40 ℃ to room temperature using a cosolvent.
본 발명은 첫 번째 양태로서, 하기의 반응식에서와 같이 아릴마그네슘 할라이드(화학식 1)와 알킬보로네이트(화학식 2)를 일정 온도에서 공용매(co-solvent)의 존재하에서 반응시켜, 방향족 붕소산(화학식 3)을 제조하는 방법:As a first embodiment of the present invention, an aromatic boronic acid is reacted by reacting an aryl magnesium halide (Formula 1) and an alkyl boronate (Formula 2) in the presence of a co-solvent at a constant temperature, as shown in the following scheme. To prepare the formula (3):
Ar-MgX (화학식 1) + B(OR)3 (화학식 2) → Ar-B(OH)2 (화학식 3)Ar-MgX (Formula 1) + B (OR) 3 (Formula 2) → Ar-B (OH) 2 (Formula 3)
상기식에서, In this formula,
Ar은 방향족으로서 페닐기, 나프틸기, 플루오로벤질기 또는 톨루엔기이고, Ar is an aromatic phenyl group, naphthyl group, fluorobenzyl group or toluene group,
X는 염소 또는 브롬과 같은 할로겐 기이며, X is a halogen group such as chlorine or bromine,
본 발명은 두 번째 양태로서, 본 발명의 공용매는 THF(테트라히드로퓨란), 메틸 테트라히드로퓨란 및 에테르 중 어느 하나를 기본으로 하면서, 툴루엔, 자이렌, 모노클로로벤젠(MCB) 및 오르토-디클로로벤젠(ODCB) 중에서 어느 하나를 선택하여 보조용매로서 공동으로 사용하는 것인 바람직하다.In a second aspect of the invention, the cosolvent of the invention is based on any one of THF (tetrahydrofuran), methyl tetrahydrofuran and ether, with toluene, xylene, monochlorobenzene (MCB) and ortho-dichloro It is preferable that any one of benzene (ODCB) is selected and used jointly as a cosolvent.
또한, 본 발명은 세 번째 양태로서, 본 발명의 온도는 -40 내지 0 ℃의 범위에서 선택하는 것이 바람직하다. 반응온도가 -40℃보다 더 낮은 경우에는 공업적으로 바람직하지 않으며, 0 ℃를 초과하는 경우에는 수율 등이 떨어지는 문제점이 있다.Moreover, this invention is 3rd aspect, It is preferable to select the temperature of this invention in the range of -40-0 degreeC. If the reaction temperature is lower than -40 ℃ is not industrially preferable, if it exceeds 0 ℃ there is a problem that the yield and the like falls.
본 발명의 합성에서 사용되는 시약은 본 발명의 목적을 벗어나지 않은 범위 내에서는 어떤 시약도 사용가능하다. 본 발명의 합성에 사용된 시약 페닐마그네슘브로마이드 (Aldrich, 테트라히드로푸란 중의 1.0 M 용액), 트리메틸 보레이트 (TCI), 1-브로모-3-플루오로벤젠 (Aldrich, 99+%), 2-브로모나프탈렌 (Aldrich, 97%), 브로모벤젠 (Sigma-Aldrich, 99%), 3-브로모톨루엔 (Aldrich, 98%)은 주로 알드리치(Aldrich) 회사로부터 구입하여 정제 없이 사용하였다. 사용된 모든 용매들은 일반적인 정제 방법들에 의해 증류하여 사용하였다. TLC(Thin-Layer Chromatography)는 실리카 겔 60 F254(Merck 25)를 사용하였다. 에틸아세테이트와 헥산(대정화금사 제품)을 TLC의 용리액으로 사용하였다.The reagents used in the synthesis of the present invention may be used as long as the reagents do not depart from the object of the present invention. Reagent phenylmagnesium bromide (Aldrich, 1.0 M solution in tetrahydrofuran) used in the synthesis of the present invention, trimethyl borate (TCI), 1-bromo-3-fluorobenzene (Aldrich, 99 +%), 2-bro Monaphthalene (Aldrich, 97%), bromobenzene (Sigma-Aldrich, 99%), 3-bromotoluene (Aldrich, 98%) were mainly purchased from Aldrich and used without purification. All solvents used were distilled off by the usual purification methods. Thin-Layer Chromatography (TLC) used silica gel 60 F254 (Merck 25). Ethyl acetate and hexane (manufactured by Daejung Chemical Co., Ltd.) were used as the eluent for TLC.
일반적으로, 공용매란 특정한 반응단계 및 비용을 고려하여 특정한 반응에서 같이 사용하는 용매를 총칭하는 것입니다. 예를 들어, 고무를 녹이는데 단지 톨루엔만 가지고 녹이면 시간이 12시간 걸리는 반면에, 여기에 헥산, 에틸아세테이트 등을 소량 첨가하면 용해 시간이 단축시키는 것과 같이, 공용매는 2개 이상의 용매를 공동으로 사용하여 원하는 성능을 추가로 증대하기 위해서도 사용된다.Generally, a cosolvent is a generic term for solvents used together in a specific reaction, taking into account specific reaction steps and costs. For example, co-solvents use two or more solvents, as melting a rubber with only toluene takes 12 hours, whereas adding a small amount of hexane, ethyl acetate, etc. reduces the dissolution time. It is also used to further increase the desired performance.
본 발명에서는 상술한 바와 같이, 아릴 붕소산의 합성을 위한 다양한 실험결과를 토대로 하여 공업적으로 활용 가능한 최적조건으로 선정하는 과정에서 공용매를 사용할 경우, 우연하게도 반응온도를 -40 내지 0 ℃ 에서도 원하는 수율로 생성물을 얻을 수 있다는 사실에 근거하여 본 발명을 완성하게 되었다.In the present invention, as described above, when using a co-solvent in the process of selecting the optimum conditions that can be industrially available on the basis of various experimental results for the synthesis of aryl boronic acid, the reaction temperature by chance even at -40 to 0 ℃ The present invention has been completed based on the fact that the product can be obtained in the desired yield.
본 발명에서 사용되는 기본 용매로서는 선행기술에서 사용되는 바와 같이 THF(테트라히드로퓨란), 메틸 테트라히드로퓨란 및 에테르 중 어느 하나를 사용할 수 있다. 여기서 에테르계 용매로는 THF, 디에틸에테르, 디-n-부틸에테르, 디이소부틸에테르, 디이소펜틸에테르, 디-n-펜틸에테르, 메틸시클로펜틸에테르, 메틸시클 로헥실에테르, 디-n-부틸에테르, 디-sec-부틸에테르, 디이소펜틸에테르, 디-sec-펜틸 에테르, 디-t-아밀에테르, 디-n-헥실에테르 등으로부터 선택된다.As the basic solvent used in the present invention, any one of THF (tetrahydrofuran), methyl tetrahydrofuran and ether can be used as used in the prior art. Here, as the ether solvent, THF, diethyl ether, di-n-butyl ether, diisobutyl ether, diisopentyl ether, di-n-pentyl ether, methylcyclopentyl ether, methylcyclohexyl ether, di-n -Butyl ether, di-sec-butyl ether, diisopentyl ether, di-sec-pentyl ether, di-t-amyl ether, di-n-hexyl ether and the like.
또한, 본 발명의 기본 용매와 함께 사용하는 보조 용매로는 툴루엔, 자이렌, 모노클로로벤젠(MCB) 및 오르토-디클로로벤젠(ODCB) 중에서 어느 하나를 선택하여 사용할 수 있다. In addition, as an auxiliary solvent to be used with the basic solvent of the present invention, any one of toluene, xylene, monochlorobenzene (MCB) and ortho-dichlorobenzene (ODCB) may be selected and used.
생성물의 구조분석 및 순도측정Product structure analysis and purity measurement
본 발의 생성물의 구조분석 등을 위하여 사용되는 1H-NMR, 13C NMR은 400MHz FT-NMR (Bruker사)을 사용하여 측정하였다. 화학적 시프트 (d)는 테트라메틸실란에 관하여 ppm(parts per million)으로 나타내고, 커플링 상수 (J 값)는 hertz로 나타내었다. FT-IR은 실험실에 있는 VERTEX 70(Bruker사)를 사용하여 측정하였다.Used for structural analysis of the product of the present invention 1 H-NMR and 13 C NMR were measured using 400 MHz FT-NMR (Bruker). Chemical shifts (d) are expressed in parts per million (ppm) relative to tetramethylsilane and coupling constants ( J values) are expressed in hertz. FT-IR was measured using VERTEX 70 (Bruker) in the laboratory.
하기의 실시예서는 Mg부터 출발하여 이를 활성화하여 각각의 실시예에서 필요한 아릴마그네슘 할라이드를 직접 제조한 과정을 구체적으로 예시하고 있으나, 이러한 전 과정을 생략하여 직접 알릴 마그네슘 할라이드 시약을 직접 구입하여 바로 알킬보로네이트와 반응시켜 원하는 아릴 붕소산을 제조할 수 있을 것이다. 또한, 하기 실시예와 실험 과정은 본 발명을 보다 잘 이해할 수 있도록 제공되는 것으로서, 청구범위에 정의된 본 발명의 범위를 제한하지는 않는다.The following examples specifically illustrate the process of directly preparing the aryl magnesium halide required in each embodiment starting from Mg to activate it, but by omitting the entire process, the allyl magnesium halide reagent can be directly purchased to directly alkyl. Reaction with boronate may produce the desired aryl boronic acid. In addition, the following examples and experimental procedures are provided to better understand the present invention, and do not limit the scope of the present invention as defined in the claims.
(실시예 1) 페닐 붕소산 (PBA)의 합성Example 1 Synthesis of Phenyl Boronic Acid (PBA)
1)실험방법 1) Experimental method
1ℓ 3구 플라스크에 Mg 15.5g(0.64 mol)을 넣고 진공으로 내부 공기를 제거하고 질소로 세정 3회 실시 후 자기 교반기로 1hr 동안 교반하면서 온도를 200℃까지 상승시켜 마그네슘을 활성화 한다. 온도를 80℃이하로 낮춘 후 여기에 건조 THF/톨루엔 300ml와 요오드 1조각을 넣은 후 1hr동안 환류 조건에서 교반한다. 적가 깔때기에 브로모 벤젠 100g(0.64 mol)을 THF 300ml에 용해한 후 1.5hr 걸쳐서 서서히 투입한다. Mg 15.5g (0.64 mol) was added to a 1 L three-necked flask, and the internal air was removed by vacuum, and washed three times with nitrogen. Then, the temperature was raised to 200 ° C. while stirring for 1 hr using a magnetic stirrer to activate magnesium. After the temperature was lowered below 80 ° C., 300 ml of dry THF / toluene and 1 piece of iodine were added thereto, followed by stirring at reflux for 1 hr. In a dropping funnel, 100 g (0.64 mol) of bromo benzene is dissolved in 300 ml of THF and slowly added over 1.5 hr.
별도의 1ℓ 3구 플라스크에 트리메틸 보레이트 100g(0.96 mol)를 투입하고 THF/톨루엔을 150ml 가하여 -20 ~ 0℃에서 교반시킨다. 여기에 위에서 제조된 페닐마그네슘 브로마이드를 서서히 적가(내부온도 -20 ~ 0℃유지)하여 0℃에서 5h동안 교반시킨다. 반응의 진행 상황은 TLC를 통해 확인한다. 반응이 완료되면 0℃에서 2N HCl 200ml를 가하여 1h 동안 교반시킨 후 실온으로 꺼낸다. EA/H2O로 추출하고 MgSO4 상에서 건조한 후 여과 하고 감압 증류 한다. 얻어진 고체를 EA/헥산 조건에서 재결정하고 여과하여 수율, 순도(by LC)를 측정 한다.100 g (0.96 mol) of trimethyl borate was added to a separate 1 L three-necked flask, and 150 ml of THF / toluene was added and stirred at -20 to 0 ° C. Here, phenylmagnesium bromide prepared above was slowly added dropwise (maintained at -20 to 0 ° C.) and stirred at 0 ° C. for 5 h. The progress of the reaction is checked via TLC. After the reaction was completed, 200 ml of 2N HCl was added at 0 ° C., stirred for 1 h, and then taken out to room temperature. Extract with EA / H 2 O, dry over MgSO 4 , filter and distillation under reduced pressure. The obtained solid is recrystallized under EA / hexane conditions and filtered to determine the yield, purity (by LC).
2)실험 결과2) Experimental result
상기 시험과정을 반응온도 0℃, -10℃, -20℃에서 각각 행한 결과, 평균 수율이 87%로, 순도 99.0%의 백색 고체를 얻을 수 있었다. 1H NMR (400 MHz, CDCl3); δ8.26 (d, 1H, J = 6.7 Hz, Ar-H), 7.74 (d, 1H, J = 6.8 Hz, Ar-H), 7.61 (t, 1H, J = 6.7 Hz, Ar-H ), 7.43-7.54 (m, 1H, Ar-H), 7.41 (t, 1H, J = 6.8 Hz, Ar-H) ppm.The test procedure was carried out at the reaction temperature of 0 ℃, -10 ℃, -20 ℃, respectively, the average yield was 87%, it was possible to obtain a white solid with a purity of 99.0%. 1 H NMR (400 MHz, CDCl 3 ); δ 8.26 (d, 1H, J = 6.7 Hz, Ar-H), 7.74 (d, 1H, J = 6.8 Hz, Ar-H), 7.61 (t, 1H, J = 6.7 Hz, Ar-H), 7.43-7.54 (m, 1H, Ar-H), 7.41 (t, 1H, J = 6.8 Hz, Ar-H) ppm.
(실시예 2) 나프탈렌 붕소산 (NBA)의 합성Example 2 Synthesis of Naphthalene Boronic Acid (NBA)
1)실험방법 1) Experimental method
1ℓ 3구 플라스크에 Mg 12.2g(0.50 mol)을 넣고 진공으로 내부 공기를 제거하고 질소로 세정 3회 실시 후 자기 교반기로 1hr 동안 교반하면서 온도를 200℃까지 상승시켜 마그네슘을 활성화 한다. 온도를 80℃이하로 낮춘 후 여기에 건조 THF/톨루엔 300ml와 요오드 1조각을 넣은 후 1hr동안 환류 조건에서 교반한다. 적가 깔때기에 2-브로모나프탈렌 100g(0.48 mol)을 THF 300ml에 용해한 후 1.5hr 걸쳐서 서서히 투입한다. Mg 12.2g (0.50 mol) was added to a 1L three-necked flask, and the inside air was removed by vacuum, and washed three times with nitrogen. Then, the temperature was raised to 200 ° C while stirring for 1hr with a magnetic stirrer to activate magnesium. After the temperature was lowered below 80 ° C., 300 ml of dry THF / toluene and 1 piece of iodine were added thereto, followed by stirring at reflux for 1 hr. In a dropping funnel, 100 g (0.48 mol) of 2-bromonaphthalene is dissolved in 300 ml of THF and slowly added over 1.5 hr.
별도의 1ℓ 3구 플라스크에 트리메틸 보레이트 74.8g(0.72 mol)를 투입하고 THF/톨루엔을 150ml 가하여 -40 ~ -20℃에서 교반시킨다. 여기에 위에서 제조된 페닐마그네슘 브로마이드를 서서히 적가(내부온도 -40 ~ -20℃유지)하여 0℃에서 5h동안 교반시킨다. 반응의 진행 상황은 TLC를 통해 확인한다. 반응이 완료되면 0℃에서 2N HCl 200ml를 가하여 1h 동안 교반시킨 후 실온으로 꺼낸다. EA/H2O로 추출하고 MgSO4 상에서 건조 후 여과 하고 감압 증류 한다. 얻어진 고체를 EA/헥산 조건에서 재결정하여 여과하여 수율, 순도(by LC)를 측정 한다.Into a separate 1 L three-necked flask, 74.8 g (0.72 mol) of trimethyl borate was added, and 150 ml of THF / toluene was added and stirred at -40 to -20 ° C. Here, phenylmagnesium bromide prepared above was slowly added dropwise (internal temperature maintained at -40 to -20 ° C) and stirred at 0 ° C for 5h. The progress of the reaction is checked via TLC. After the reaction was completed, 200 ml of 2N HCl was added at 0 ° C., stirred for 1 h, and then taken out to room temperature. Extract with EA / H 2 O, dry over MgSO 4 , filter and distillation under reduced pressure. The obtained solid is recrystallized under EA / hexane conditions and filtered to measure the yield and purity (by LC).
2)실험결과2) Experimental results
상기 시험과정을 반응온도 -20℃, -20℃, -40℃에서 각각 행한 결과, 평균 수율이 83%로, 순도 99.3%의 백색 고체를 얻을 수 있었다. 1H NMR (400 MHz, DMSO); δ 9.11 (d, 1H, J = 6.7 Hz, Ar-H), 8.38 (d, 1H, J = 7.0 Hz, Ar-H), 7.92 (d, 1H, J = 7.9 Hz, Ar-H), 7.90 (t, 1H, J = 7.3 Hz, Ar-H), 7.88 (t, 1H, J = 6.4 Hz, Ar-H), 7.54-7.32 (m, 1H, Ar-H), 7.30 (dt, 1H, J HF = 8.3 Hz, J = 2.6 Hz, Ar-H) ppm.The test procedure was carried out at the reaction temperature of -20 ℃, -20 ℃, -40 ℃, respectively, the average yield was 83%, it was able to obtain a white solid with a purity of 99.3%. 1 H NMR (400 MHz, DMSO); δ 9.11 (d, 1H, J = 6.7 Hz, Ar-H), 8.38 (d, 1H, J = 7.0 Hz, Ar-H), 7.92 (d, 1H, J = 7.9 Hz, Ar-H), 7.90 (t, 1H, J = 7.3 Hz, Ar-H), 7.88 (t, 1H, J = 6.4 Hz, Ar-H), 7.54-7.32 (m, 1H, Ar-H), 7.30 (dt, 1H, J HF = 8.3 Hz, J = 2.6 Hz, Ar-H) ppm.
(실시예 3) 플루오로벤젠 붕소산 (FBA)의 합성Example 3 Synthesis of Fluorobenzene Boronic Acid (FBA)
1) 실험방법 1) Experimental method
1ℓ 3구 플라스크에 Mg 14.1g(0.58 mol)을 넣고 진공으로 내부 공기를 제거하고 질소로 세정 3회 실시 후 자기 교반기로 1hr 동안 교반하면서 온도를 200℃까지 상승시켜 마그네슘을 활성화 한다. 온도를 80℃이하로 낮춘 후 여기에 건조 THF/톨루엔 300ml와 요오드 1조각을 넣은 후 1hr동안 환류 조건에서 교반한다. 적가 깔때기에 3-플루오로벤젠 100g(0.57 mol)을 THF 300ml에 용해한 후 1.5hr 걸쳐서 서서히 투입한다. Mg 14.1 g (0.58 mol) was added to a 1 L three-necked flask, and the internal air was removed by vacuum, and washed three times with nitrogen. Then, the temperature was raised to 200 ° C. while stirring for 1 hr using a magnetic stirrer to activate magnesium. After the temperature was lowered below 80 ° C., 300 ml of dry THF / toluene and 1 piece of iodine were added thereto, followed by stirring at reflux for 1 hr. In a dropping funnel, 100 g (0.57 mol) of 3-fluorobenzene was dissolved in 300 ml of THF, and then slowly added over 1.5 hours.
별도의 1ℓ 3구 플라스크에 트리메틸 보레이트 88.3g(0.85 mol)를 투입하고 THF/톨루엔을 150ml 가하여 -30 ~ -40℃에서 교반시킨다. 여기에 위에서 제조된 페 닐마그네슘 브로마이드를 서서히 적가(내부온도 -30 ~ -40℃ 유지)하여 0℃에서 5h동안 교반시킨다. 반응의 진행 상황은 TLC를 통해 확인한다. 반응이 완료되면 0℃에서 2N HCl 200ml를 가하여 1h 동안 교반시킨 후 실온으로 꺼낸다. EA/H2O로 추출하고 MgSO4 상에서 건조 후 여과 하고 감압 증류 한다. 얻어진 고체를 EA/헥산 조건에서 재결정하여 여과하여 수율, 순도(by LC)를 측정 한다.88.3 g (0.85 mol) of trimethyl borate was added to a separate 1 L three-neck flask, and 150 ml of THF / toluene was added and stirred at -30 to -40 ° C. The phenylmagnesium bromide prepared above is slowly added dropwise (maintained at -30 ~ -40 ℃) and stirred for 5 h at 0 ℃. The progress of the reaction is checked via TLC. After the reaction was completed, 200 ml of 2N HCl was added at 0 ° C., stirred for 1 h, and then taken out to room temperature. Extract with EA / H 2 O, dry over MgSO 4 , filter and distillation under reduced pressure. The obtained solid is recrystallized under EA / hexane conditions and filtered to measure the yield and purity (by LC).
2)실험결과2) Experimental results
상기 시험과정을 반응온도 -30℃, -30℃, -40℃에서 각각 행한 결과, 평균 수율이 81.3%로, 순도 99.0%의 백색 고체를 얻을 수 있었다. 1H NMR (400 MHz, CDCl3); δ7.99 (d, 1H, J HF = 7.3 Hz, Ar-H), 7.86 (dd, 1H, J HF = 8.9 Hz, J = 2.6 Hz, Ar-H), 7.48-7.53 (m, 1H, Ar-H), 7.30 (dt, 1H, J HF = 8.3 Hz, J = 2.6 Hz, Ar-H) ppm.The test procedure was carried out at the reaction temperature of -30 ℃, -30 ℃, -40 ℃ respectively, the average yield was 81.3%, it was able to obtain a white solid of 99.0% purity. 1 H NMR (400 MHz, CDCl 3 ); δ 7.99 (d, 1H, J HF = 7.3 Hz, Ar-H), 7.86 (dd, 1H, J HF = 8.9 Hz, J = 2.6 Hz, Ar-H), 7.48-7.53 (m, 1H, Ar -H), 7.30 (dt, 1H, J HF = 8.3 Hz, J = 2.6 Hz, Ar-H) ppm.
(실시예 4) 톨루엔 붕소산 (TBA)의 합성Example 4 Synthesis of Toluene Boronic Acid (TBA)
1) 실험방법1) Experiment Method
1ℓ 3구 플라스크에 Mg 14.3g(0.59 mol)을 넣고 진공으로 내부 공기를 제거하고 질소로 세정 3회 실시 후 자기 교반기로 1hr 동안 교반하면서 온도를 200℃까지 상승시켜 마그네슘을 활성화 한다. 온도를 80℃이하로 낮춘 후 여기에 건조 THF/톨루엔 300ml와 요오드 1조각을 넣은 후 1hr동안 환류 조건에서 교반한다. 적가 깔때기에 3-메틸벤젠 브로마이드 100g(0.58 mol)을 THF 300ml에 용해한 후 1.5hr 걸쳐서 서서히 투입한다. Mg 14.3g (0.59 mol) was added to a 1L three-necked flask, and the internal air was removed by vacuum. After washing three times with nitrogen, the temperature was raised to 200 ° C. while stirring for 1hr with a magnetic stirrer to activate magnesium. After the temperature was lowered below 80 ° C., 300 ml of dry THF / toluene and 1 piece of iodine were added thereto, followed by stirring at reflux for 1 hr. In a dropping funnel, 100 g (0.58 mol) of 3-methylbenzene bromide is dissolved in 300 ml of THF, and slowly added over 1.5 hr.
별도의 1ℓ 3구 플라스크에 트리메틸 보레이트 90.4g(0.87 mol)를 투입하고 THF/톨루엔을 150ml 가하여 -40 ~ -20℃에서 교반시킨다. 여기에 위에서 제조된 그리나드 시약 (마그네슘 유기 금속)을 서서히 적가(내부온도 -40 ~ -20℃ 유지)하여 0℃에서 5h동안 교반시킨다. 반응의 진행 상황은 TLC를 통해 확인한다. 반응이 완료되면 0℃에서 2N HCl 200ml를 가하여 1h 동안 교반시킨 후 실온으로 꺼낸다. EA/H2O로 추출하고 MgSO4 상에서 건조 후 여과 하고 감압 증류 한다. 얻어진 고체를 EA/헥산 조건에서 재결정하여 여과하여 수율, 순도(by LC)를 측정 한다.90.4 g (0.87 mol) of trimethyl borate was added to a separate 1 L three-necked flask, and 150 ml of THF / toluene was added and stirred at -40 to -20 ° C. The Grignard reagent (magnesium organometallic) prepared above was slowly added dropwise (maintained at -40 to -20 ° C) and stirred at 0 ° C for 5 h. The progress of the reaction is checked via TLC. After the reaction was completed, 200 ml of 2N HCl was added at 0 ° C., stirred for 1 h, and then taken out to room temperature. Extract with EA / H 2 O, dry over MgSO 4 , filter and distillation under reduced pressure. The obtained solid is recrystallized under EA / hexane conditions and filtered to measure the yield and purity (by LC).
2) 실험결과2) Experiment result
상기 시험과정을 반응온도 -20℃, -20℃, -40℃에서 각각 행한 결과, 평균 수율이 82%로, 순도 99.0%의 백색 고체를 얻을 수 있었다. 1H NMR (400 MHz, CDCl3); δ8.05 (t, 1H, J = 5.6 Hz, Ar-H), 8.05 (s, 1H, Ar-H), 7.41 (t, 2H, J = 5.6 Hz, Ar-H ), 2.47 (s, 3H, toluene CH3) ppm.The test procedure was carried out at the reaction temperature of -20 ℃, -20 ℃, -40 ℃ respectively, the average yield was 82%, it was able to obtain a white solid of 99.0% purity. 1 H NMR (400 MHz, CDCl 3 ); δ 8.05 (t, 1H, J = 5.6 Hz, Ar-H), 8.05 (s, 1H, Ar-H), 7.41 (t, 2H, J = 5.6 Hz, Ar-H), 2.47 (s, 3H , toluene CH 3 ) ppm.
상술한 실시예 1 내지 4를 전체적으로 고려할 경우, -40 내지 0℃에서 각각 행한 결과, 본 발명에서 합성하고자 하는 방향족 붕소산을 각각의 평균 수율이 81.3% 내지 87%로 얻을 수 있었다. 이들 실시예를 통하여, 본 발명은 공업적으로 활용 가능한 온도 범위, 즉 -40 내지 0℃에서 공용매를 사용함으로써 원하는 수율로 원하는 아릴 붕소산인 PBA, NBA, FBA, TBA를 합성할 수 있음을 확인할 수 있었다. In consideration of the above Examples 1 to 4 as a whole, as a result of each performed at -40 to 0 ℃, the aromatic boronic acid to be synthesized in the present invention was each obtained an average yield of 81.3% to 87%. Through these examples, the present invention confirms that the desired aryl boronic acid PBA, NBA, FBA, TBA can be synthesized in a desired yield by using a cosolvent in an industrially available temperature range, that is, -40 to 0 ° C. Could.
본 발명에서 얻어지는 방향족 붕소산 화합물은 전자소재 또는 의약품 등의 기초 소재로 유용하게 사용될 것이다.The aromatic boronic acid compound obtained in the present invention will be usefully used as a base material for electronic materials or pharmaceuticals.
본 기술 분야의 당업자는 상술한 발명의 상세한 설명 및 실시예를 통하여 다양한 변화 및/또는 변형을 행할 수 있을 것이며, 이러한 변화 및/또는 변형이 본 발명의 취지로부터 벗어남이 없이 수행될 수 있음을 인지할 것이다. 따라서, 첨부된 청구항은 본 발명의 취지 및 범위 내에 속하는 모든 변화 및/또는 변형 양태들을 포함하는 것으로 해석되어야 할 것이다.Those skilled in the art will appreciate that various changes and / or modifications may be made through the above detailed description and examples, and that such changes and / or modifications may be made without departing from the spirit of the invention. something to do. Accordingly, the appended claims should be construed as including all changes and / or modifications within the spirit and scope of the invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090102095A KR20110045490A (en) | 2009-10-27 | 2009-10-27 | Method for producing aromatic boric acid compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090102095A KR20110045490A (en) | 2009-10-27 | 2009-10-27 | Method for producing aromatic boric acid compound |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20110045490A true KR20110045490A (en) | 2011-05-04 |
Family
ID=44240530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090102095A KR20110045490A (en) | 2009-10-27 | 2009-10-27 | Method for producing aromatic boric acid compound |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20110045490A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104311587A (en) * | 2013-11-12 | 2015-01-28 | 广州康瑞泰药业有限公司 | Process for producing fluorine-containing phenylboronic acid |
CN113845537A (en) * | 2021-09-13 | 2021-12-28 | 金仓(上海)医药生物科技有限公司 | 2, 3-dihydrobenzo [ b ] [1,4] dioxan-6-boric acid and preparation method thereof |
-
2009
- 2009-10-27 KR KR1020090102095A patent/KR20110045490A/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104311587A (en) * | 2013-11-12 | 2015-01-28 | 广州康瑞泰药业有限公司 | Process for producing fluorine-containing phenylboronic acid |
CN113845537A (en) * | 2021-09-13 | 2021-12-28 | 金仓(上海)医药生物科技有限公司 | 2, 3-dihydrobenzo [ b ] [1,4] dioxan-6-boric acid and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bowman et al. | Tributylgermanium hydride as a replacement for tributyltin hydride in radical reactions | |
CA2694068C (en) | System for controlling the reactivity of boronic acids | |
KR20110045490A (en) | Method for producing aromatic boric acid compound | |
Heffernan et al. | Ireland–Claisen rearrangement of ynamides: stereocontrolled synthesis of 2-amidodienes | |
CN104098452A (en) | Omega-halo-2-alkynal, method for producing same, and method for producing conjugated z-alken-yn-yl acetate using same | |
Jiang et al. | Preparation of N-phenyl-(S)-prolinol-derived P, N-ligands and their application in Pd-catalyzed asymmetric allylic alkylation | |
CN102076677B (en) | Method for producing 3-methyl-2-thiophenecarboxylic acid | |
CN112552279A (en) | Synthesis method of substituted dibenzothiophene compound | |
Bailey et al. | Reaction of Grignard reagents with diisopropyl-aminoborane. Synthesis of alkyl, aryl, heteroaryl and allyl boronic acids from organo (diisopropyl)-aminoborane by a simple hydrolysis | |
JP5915607B2 (en) | Method for producing thionocarboxylic acid aryl ester | |
CN104151342B (en) | A kind of method synthesizing connection boric acid pinacol ester | |
KR101546144B1 (en) | Process for producing thionocarboxylic acid ester | |
JP2002047292A (en) | Method for producing phenyl boronic acids and triphenyboroxins | |
Faraoni et al. | Transmetallations between aryltrialkyltins and borane: synthesis of arylboronic acids and organotin hydrides | |
TWI576349B (en) | Manufacturing method of borinic acid derivatives and novel borinic acid derivatives | |
Wang et al. | Metal catalyzed tandem Diels–Alder/hydrolysis reactions of 2-boron-substituted 1, 3-dienes | |
Yang et al. | Synthesis and rotational barriers of atropisomers of 1, 2-bis [5-(11H-benzo [b] fluorenyl)] benzenes and related compounds | |
Sviridov et al. | Azidosubstituted arylboronic acids: synthesis and Suzuki–Miyaura cross-coupling reactions | |
JP2008143857A (en) | Process for producing benzofluorene derivative and intermediate thereof | |
KR100965619B1 (en) | Process for preparing substituted aromatic boronic acid compound | |
Chang et al. | One-pot synthesis of multisubstituted quaterphenyls and cyclopropanes | |
JP4203192B2 (en) | Process for producing nitrophenylphenol compounds | |
Ryabukhin et al. | Cyclization of phenyl 3-arylpropionates under the action of HSO 3 F or AlBr 3. | |
JP6235932B2 (en) | Method for producing 2-cyanophenylboronic acid derivative | |
Shi et al. | Titanium (IV) bromide and boron (III) tribromide promoted reactions of arylaldehydes with 3-butyn-2-one, methyl propiolate and propynenitrile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20091027 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20110616 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20120509 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20120208 Comment text: Notification of reason for refusal Patent event code: PE06011S01I Patent event date: 20110616 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |