KR20110035454A - Nano-fibered membrane for western blot and manufacturing method of the same - Google Patents

Nano-fibered membrane for western blot and manufacturing method of the same Download PDF

Info

Publication number
KR20110035454A
KR20110035454A KR1020090093184A KR20090093184A KR20110035454A KR 20110035454 A KR20110035454 A KR 20110035454A KR 1020090093184 A KR1020090093184 A KR 1020090093184A KR 20090093184 A KR20090093184 A KR 20090093184A KR 20110035454 A KR20110035454 A KR 20110035454A
Authority
KR
South Korea
Prior art keywords
membrane
western blot
hydrophobic polymer
spinning
manufacturing
Prior art date
Application number
KR1020090093184A
Other languages
Korean (ko)
Other versions
KR101170059B1 (en
Inventor
국중기
조기운
김찬
서상철
김철현
서인용
이승훈
김윤혜
Original Assignee
주식회사 아모메디
조선대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모메디, 조선대학교산학협력단 filed Critical 주식회사 아모메디
Priority to KR1020090093184A priority Critical patent/KR101170059B1/en
Priority to EP10820791.1A priority patent/EP2484431B1/en
Priority to CN2010800438162A priority patent/CN102574067A/en
Priority to JP2012532001A priority patent/JP5757449B2/en
Priority to PCT/KR2010/006358 priority patent/WO2011040718A2/en
Priority to US12/893,462 priority patent/US8512612B2/en
Publication of KR20110035454A publication Critical patent/KR20110035454A/en
Application granted granted Critical
Publication of KR101170059B1 publication Critical patent/KR101170059B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/39Electrospinning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: A nano-fiber membrane for western blot and a method for manufacturing the same are provided to easily implement a protein separation process, a protein analyzing process, and various detection processes using a spinning method. CONSTITUTION: A hydrophobic polymer material is dissolved in a solvent in order to obtain a spinning solution. The spinning solution is used for a spinning method in order to obtain a hydrophobic polymer nano-fiber web. The hydrophobic polymer material nano-fiber web is laminated to obtain a nano-fiber membrane for western blot. The hydrophobic polymer material is a composite based on one, two, or more selected from a group including polyvinylidene fluoride, nylon, nitrocellulose, polyurethane, polycarbonate, polystyrene, polylactic acid, polyacrylonitrile, polylactic-co-glycolic acid, polyethyleneimine, polypropyleneimine, polymethylmethacrylate, polyvinylchloride, polyvinylacetate, and polystyrene divinylbenzene copolymer.

Description

웨스턴 블롯용 나노섬유 멤브레인 및 그 제조방법{Nano-fibered Membrane for Western Blot and Manufacturing Method of the Same}Nano-fibered Membrane for Western Blot and Manufacturing Method of the Same}

본 발명은 나노섬유로 구성된 웨스턴 블롯(western blot)용 멤브레인 및 그 제조방법에 관한 것으로서, 구체적으로는 전기방사에 의해 평균섬유경 50∼1000㎚, 평균세공경 0.1∼0.5㎛로 구성되는 웨스턴 블롯용 트랜스퍼 멤브레인(transfer membrane) 및 그 제조방법에 관한 것이다. The present invention relates to a membrane for a western blot composed of nanofibers and a method for manufacturing the same, and specifically, a Western blot composed of an average fiber diameter of 50 to 1000 nm and an average pore diameter of 0.1 to 0.5 μm by electrospinning. It relates to a transfer membrane for a lot and a method of manufacturing the same.

웨스턴 블롯(western blot)은 여러 단백질 혼합물로부터 어떤 특정 단백질을 찾아내는 기법으로서, 찾고자 하는 단백질에 대한 항체(antibody)를 사용하여 항원-항체반응(antigen-antibody reaction)을 일으킴으로써 특정 단백질의 존재 여부를 밝혀내는 가장 효과적인 방법이다. Western blot is a technique for finding a specific protein from several protein mixtures. It uses an antibody to the protein you are looking for to generate an antigen-antibody reaction to determine the presence of a specific protein. This is the most effective way to find out.

현재, 특정 물질을 검출하기 위해서는 고가의 가스 크로마토그래피(GC, gas chromatograph)나 HPLC(high performance liquid chromatograph) 등의 크로마토그래피, ELISA(Enzyme-Linked Immunosorbent Assay), 면역조직화학법(Immunohis technology) 및 DNA 분석 등과 같은 방법을 사용하여 왔으며, 단백질의 경우 웨스턴 블롯을 이용한 항원-항체반응에 의해 특정 단백질을 분리, 분석하는 방법이 일 반적으로 알려져 있다. Currently, to detect a specific substance, chromatography such as gas chromatography (GC) or high performance liquid chromatograph (HPLC), enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (Immunohis technology) and Methods such as DNA analysis have been used, and in the case of proteins, a method of isolating and analyzing specific proteins by antigen-antibody reaction using Western blot is generally known.

웨스턴 블롯은 세포나 조직으로부터 추출된 단백질을 샘플 버퍼(sample buffer)와 섞어 아크릴아미드(acrylamide)로 만든 분자체(molecular sieve)에 올려놓고 전기영동을 하면 샘플 버퍼에 들어있던 SDS(sodium dodecylsulfate, SDS-page) 라는 물질이 단백질 전체에 (-) 전기를 띠게 해서 (+) 전기쪽으로 단백질이 끌려가게 된다. 이때 분자체가 단백질의 진행을 방해하여 작은 분자는 빨리, 큰분자는 느리게 이동하여 여러 크기의 밴드(band)를 형성하게 되는데, 이때 크기에 따라 분리된 젤(gel)위에 멤브레인을 올려놓고 전기를 흘려주면 단백질은 분리된 상태로 멤브레인에 옮겨진다(transfer). 여기서 검출하고자 하는 특정 단백질에 대한 항체(antibody)를 결합시키고 다시 그 항체에 특이적인 2차 항체를 결합시켜 발색 내지는 형광에 의해 나타나는 반응을 X-ray로 이미지화하는 방법이다. 도 1에는 일반적으로 웨스턴 블롯 방법을 이용하여 단백질을 검출하는 과정을 나타낸 것이다. Western blot mixed the protein extracted from the cells or tissues with the sample buffer and placed it in a molecular sieve made of acrylamide, followed by electrophoresis, and the SDS (sodium dodecylsulfate, SDS) contained in the sample buffer. A substance called -page) charges the entirety of the protein and attracts the protein towards the positive. At this time, molecular sieves interfere with the progress of the protein, and small molecules move quickly and large molecules move slowly to form bands of various sizes. At this time, the membrane is placed on a gel separated according to the size and electricity is supplied. Upon shedding, the protein is transferred to the membrane in a separated state. Herein, a method of binding an antibody to a specific protein to be detected and binding a second antibody specific for the antibody to X-ray image of the reaction caused by color development or fluorescence. Figure 1 generally shows the process of protein detection using Western blot method.

이때 사용되는 트랜스퍼 멤브레인은 단백질과 소수성 결합(hydrophobic interaction)을 하기 쉬운 니트로셀룰로오즈(nitrocellulose), 나일론(nylon), 폴리비닐리덴 플루오라이드(PVdF) 등을 원료로 사용하며 평균세공경이 0.2㎛∼0.45㎛로 구성되어 있다. 이러한 멤브레인은 물과 같은 비용매 속에 용매와 고분자를 부어 제작하는 상전이법(phase separation)에 의한 건식(dry), 습식(wet), 건습식(dry-wet casting)과 같은 방법으로 제조되고 있으나 제조단가가 고가이며, 대량생산에는 한계가 있었다. 도 2에는 대표적인 상전이법법에 의해 제조되는 막구조의 형성방법을 나타냈다. The transfer membrane used here uses nitrocellulose, nylon, polyvinylidene fluoride (PVdF), etc., which are easy to hydrophobic interaction with proteins, and has an average pore diameter of 0.2 ㎛ to 0.45. It consists of micrometers. Such membranes are manufactured by methods such as dry, wet, and dry-wet casting by phase separation in which a solvent and a polymer are poured into a non-solvent such as water. The unit price is high and there is a limit to mass production. 2 shows a method of forming a film structure prepared by a typical phase transfer method.

따라서, 본 발명의 발명자들은 방사기법을 이용하여 가격이 저렴하면서 제조방법이 간편하고, 세공구조의 인위적 조절이 가능하고, 표면적이 극대화된 나노섬유로 구성된 멤브레인을 개발함으로써 단백질 검출 및 진단용으로 감도가 우수한 트랜스퍼 멤브레인을 제조함으로써 본 발명을 완성하였다. Therefore, the inventors of the present invention have a low cost, simple manufacturing method using the spin technique, artificial control of the pore structure, and developed a membrane composed of nanofibers with a maximum surface area, thereby increasing sensitivity for protein detection and diagnosis. The present invention has been completed by making a good transfer membrane.

본 발명의 목적은 단백질 검출 및 진단에 사용되는 웨스턴 블롯용 멤브레인을 방사기법을 사용하여 표면적이 극대화된 나노섬유 웹으로 구성된 고감도 멤브레인 및 그 제조방법을 제공하는 것이다. SUMMARY OF THE INVENTION An object of the present invention is to provide a highly sensitive membrane composed of nanofiber webs with a surface area maximized by using a spinning method for Western blot membranes used for protein detection and diagnosis, and a method of manufacturing the membrane.

이러한 목적을 달성하기 위하여, 본 발명에 의하면, 웨스턴 블롯용 멤브레인의 제조방법에 있어서, 소수성 고분자 물질을 용매에 용해하여 방사용액을 제조하는 단계; 상기 방사용액을 방사방법에 의하여 소수성 고분자 나노섬유 방사 웹을 얻는 단계; 상기 얻어진 나노섬유 방사 웹을 라미네이팅(laminating)하여 웨스턴 블롯용 멤브레인을 얻는 단계를 포함하는 것을 특징으로 하는 웨스턴 블롯용 멤브레인의 제조방법이 제공된다.In order to achieve this object, according to the present invention, a method for producing a membrane for Western blot, comprising the steps of dissolving a hydrophobic polymer in a solvent to prepare a spinning solution; Obtaining a hydrophobic polymer nanofiber spinning web by spinning the spinning solution; Laminating the obtained nanofiber spinning web (laminating) is provided a method for producing a membrane for Western blot comprising the step of obtaining a membrane for Western blot.

또한 본 발명에 의하면, 상기 방법에 따라 제조되는 웨스턴 블롯용 멤브레인으로서, 평균 세공경이 0.1∼0.5㎛, 두께가 30∼200㎛, 기공도가 60%이상인 것을 특징으로 하는 웨스턴 블롯용 멤브레인이 제공된다.According to the present invention, there is also provided a membrane for a Western blot prepared according to the above method, wherein the membrane for a Western blot is characterized by having an average pore diameter of 0.1 to 0.5 µm, a thickness of 30 to 200 µm, and a porosity of 60% or more. do.

상기 소수성 고분자 물질로는 예를 들면, PVdF(polyvinylidene fluoride), 나일론(nylon), 니트로셀룰로오스(nitrocellulose), PU(polyurethane), PC(polycarbonate), PS(polystryene), PAN(polyacrylonitrile), PLA(polylatic acid), PLGA,(polylactic-co-glycolic acid) PEI(polyethyleneimine), PPI(polypropyleneimine), PMMA(Polymethylmethacrylate), PVC(polyvinylcholride), PVAc(polyvinylacetate), 폴리스티렌 디비닐벤젠 공중합체(Polystylene divinylbenzene copolymer) 등을 단독 내지 복합화하여 구성될 수 있으며, 특별히 이들에 제약을 두지는 않는다. Examples of the hydrophobic polymer include polyvinylidene fluoride (PVDF), nylon (nylon), nitrocellulose, polyurethane (PU), polycarbonate (PC), polystryene (PS), polyacrylonitrile (PAN), and polylatic (PLA). acid), PLGA, (polylactic-co-glycolic acid) PEI (polyethyleneimine), PPI (polypropyleneimine), PMMA (polymethylmethacrylate), PVC (polyvinylcholride), PVAc (polyvinylacetate), polystyrene divinylbenzene copolymer, etc. It may be configured by combining alone or in combination, there is no particular limitation on these.

상기 용매는 디메틸 포름아미드(di-methylformamide, DMF), 디메틸 아세트마아미드(di-methylacetamide, DMAc), THF(tetrahydrofuran), 아세톤(Acetone), 알코올(Alcohol)류, 클로로포름(Chloroform), DMSO(dimethyl sulfoxide), 디클로로메탄(dichloromethane), 초산(acetic acid), 개미산(formic acid), NMP(N-Methylpyrrolidone), 불소계 알콜류, 및 물로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 한다. The solvent is dimethyl formamide (di-methylformamide, DMF), dimethyl acetamide (di-methylacetamide, DMAc), THF (tetrahydrofuran), acetone (Acetone), alcohol (Alcohol), chloroform (Chloroform), DMSO (dimethylSO) sulfoxide), dichloromethane (dichloromethane), acetic acid (acetic acid), formic acid (formic acid), NMP (N-Methylpyrrolidone), characterized in that at least one member selected from the group consisting of water, and water.

상기 방사 방법은 전기방사(electrospinning), 전기분사(electrospray), 전기분사방사(electrobrown spinning), 원심전기방사(centrifugal electrospinning), 플래쉬 전기방사(flash-electrospinning) 등으로 이루어진 군에서 선택되는 어느 1종인 것을 특징으로 한다.The radiation method is any one selected from the group consisting of electrospinning, electrospray, electrobrown spinning, centrifugal electrospinning, flash-electrospinning, and the like. It is characterized by.

상기 소수성 고분자로 구성된 나노섬유층의 라미네이팅 결합은 후처리 공정인 압착, 가압, 컬렌더링, 열처리, 롤링, 열접합, 초음파 접합, 심 실링 테이프 중 의 어느 하나에 의해 이루어지는 것이 바람직하다. The laminating bond of the nanofiber layer composed of the hydrophobic polymer is preferably made by any one of a post-treatment process such as pressing, pressing, rendering, heat treatment, rolling, thermal bonding, ultrasonic bonding, and seam sealing tape.

본 발명에 의해 제조된 웨스턴 블롯용 멤브레인은 제조공정이 간단하므로 저렴한 비용으로 대량생산이 가능하며, 기존 멤브레인에 비해 우수한 감도를 제공함으로써 단백질 분리, 분석용 및 다양한 검출에 활용이 가능하다. Western blot membrane prepared by the present invention can be mass-produced at low cost because the manufacturing process is simple, and can be used for protein separation, analysis and various detection by providing excellent sensitivity compared to the existing membrane.

예를 들어, 본 발명에 따른 웨스턴 블롯용 나노섬유 웹으로 구성된 멤브레인은 먼저 소수성 고분자를 적절한 용매에 용해하여 방사 가능한 농도로 용액을 제조하고, 방사구로 이송한 후 노즐에 고전압을 인가하여 전기방사(electrospinning)하고, 이를 라미네이팅하여 평균 세공경 0.1∼0.5㎛, 평균 섬유경 50∼1000㎚, 멤브레인 두께 30∼200㎛로 구성된 단백질 분리, 검출용 멤브레인을 제조한다. For example, a membrane composed of a nanofiber web for western blot according to the present invention first dissolves a hydrophobic polymer in an appropriate solvent to prepare a solution at an irradiable concentration, transfers it to a spinneret, and then applies a high voltage to the nozzle to perform electrospinning ( electrospinning) and laminating the same to prepare a membrane for protein separation and detection consisting of an average pore diameter of 0.1 to 0.5 µm, an average fiber diameter of 50 to 1000 nm, and a membrane thickness of 30 to 200 µm.

이하 각 단계별로 상세히 설명한다. Hereinafter, each step will be described in detail.

소수성 고분자 함유 방사용액 제조Preparation of Hydrophobic Polymer-containing Spinning Solution

소수성 고분자를 적당한 용매를 사용하여 방사 가능한 농도로 용해하여 방사용액을 준비한다. 본 발명에 있어서 소수성 고분자 물질로는 PVdF(polyvinylidene fluoride), Nylon, nitrocellulose, PU(polyurethane), PC(polycarbonate), PS(polystryene), PLA, PLGA, PEI(polyethyleneimine), PPI(polypropyleneimine), PMMA, PVC, PVAc, Polystylene divinylbenzene copolymer 등을 단독 내지는 복합화 하여 사용할 수 있으며, 상용성 있는 용매를 사용하여 방사가능한 농도의 방사용액을 제조하여 사용한다.Prepare a spinning solution by dissolving the hydrophobic polymer to a spinnable concentration using a suitable solvent. In the present invention, the hydrophobic polymer material is PVdF (polyvinylidene fluoride), Nylon, nitrocellulose, PU (polyurethane), PC (polycarbonate), PS (polystryene), PLA, PLGA, PEI (polyethyleneimine), PPI (polypropyleneimine), PMMA, PVC, PVAc, Polystylene divinylbenzene copolymer, etc. can be used alone or in combination. Prepare a spinning solution using a compatible solvent.

상기 방사용액 제조에 있어서 소수성 고분자 물질의 함량은 약 5∼50중량%가 적당하며, 5중량% 미만의 경우 나노섬유를 형성하기 보다는 비드(bead)상으로 분사되어 멤브레인을 구성하기 어려우며, 50중량% 초과인 경우에는 점도가 높아 방사성이 불량하여 섬유를 형성하기 곤란한 경우가 있다. 따라서 방사용액의 제조는 특별한 제약은 없으나, 섬유상 구조를 형성하기 쉬운 농도로 섬유의 형상(morphology)을 제어하는 것이 바람직하다. The amount of the hydrophobic polymer material in the spinning solution is about 5 to 50% by weight is appropriate, less than 5% by weight is difficult to form a membrane by spraying onto the beads (bead) rather than forming nanofibers, 50% by weight In the case of more than%, a viscosity may be high and it may be difficult to form a fiber because of poor spinning property. Therefore, the preparation of the spinning solution is not particularly limited, but it is preferable to control the morphology of the fiber to a concentration that is easy to form a fibrous structure.

고분자 나노섬유 웹 형성Polymer Nanofiber Web Formation

상기 제조된 방사용액을 정량펌프를 사용하여 방사팩(spin pack)으로 이송하고, 이때 고전압 조절장치를 사용하여 방사팩에 전압을 인가하여 전기방사를 실시한다. 이때 사용되는 전압은 0.5kV∼100kV까지 조절하는 것이 가능하며, 집전판은 접지를 하거나 (-)극으로 대전하여 사용할 수 있으며, 전기전도성 금속, 박리지 등으로 구성되는 것이 바람직하다. 집전판의 경우 방사시 섬유의 집속을 원활하게 하기 위해 포집장치(suction collector)를 부착하여 사용하는 것이 바람직하다. The prepared spinning solution is transferred to a spin pack using a metering pump. At this time, a high voltage controller is used to apply a voltage to the spinning pack to perform electrospinning. At this time, the voltage used can be adjusted up to 0.5kV ~ 100kV, the current collector may be grounded or charged to the (-) pole, it is preferable to be composed of an electrically conductive metal, release paper and the like. In the case of the current collector plate, it is preferable to use a suction collector attached to smooth the focusing of the fiber during spinning.

또한 방사팩과 집전판까지의 거리는 5∼50㎝로 조절하여 사용하는 것이 바람직하다. 방사시 토출량은 정량펌프를 사용하여 홀당 0.01∼5cc/hole.min으로 토출하여 방사하고, 방사시 온도 및 습도를 조절할 수 있는 챔버(chamber)내에서 상대습도 30-80%의 환경에서 방사하는 것이 바람직하다. In addition, the distance between the spin pack and the current collector is preferably adjusted to 5 to 50 cm. The amount of discharge during spinning is discharged by discharging at 0.01 ~ 5cc / hole.min per hole using a metering pump, and spinning in an environment with a relative humidity of 30-80% in a chamber that can control temperature and humidity during spinning. desirable.

고분자 나노섬유 웹 라미네이팅 단계Polymer Nanofiber Web Laminating Step

제조된 소수성 고분자로 구성된 나노섬유 웹은 압착, 롤링, 열접합, 초음파 접함, 심 실링 테이프(Sim sealing tape) 등의 다양한 방법으로 라미네이팅하여 멤 브레인 두께 30∼200㎛, 평균 세공경 0.1∼0.5㎛가 되도록 한다. The nanofiber web composed of the prepared hydrophobic polymer is laminated by various methods such as crimping, rolling, thermal bonding, ultrasonic bonding, and sim sealing tape, and has a membrane thickness of 30 to 200 µm and an average pore diameter of 0.1 to 0.5 µm. To be

멤브레인 두께가 30㎛ 미만의 경우 웨스턴 블롯시 강직도가 낮아 취급이 불량하며, 200㎛를 초과할 경우 제조 비용이 상승하므로 30∼200㎛가 적당하다. 또한, 멤브레인 평균세공경은 0.1∼0.5㎛가 적당하며, 0.1㎛ 미만의 경우 후처리 공정비용이 상승하고 트랜스퍼 시간이 지연되며, 0.5㎛ 초과이면 트랜트퍼 농도가 낮아 정확한 단백질 분석이 이루어질 수 없는 단점이 있다. If the thickness of the membrane is less than 30㎛ western blotting stiffness is poor handling, if the thickness exceeds 200㎛ 30 ~ 200㎛ is suitable because the manufacturing cost increases. In addition, the average membrane pore size is 0.1 ~ 0.5㎛, if less than 0.1㎛ post-treatment process cost increases, the transfer time is delayed, if more than 0.5㎛ transporter concentration is low, accurate protein analysis can not be achieved There is this.

특히, 라미네이팅을 할 경우 열처리를 동반하면서 할 수 있는데 고분자가 용융되지 않는 범위인 60∼200℃의 온도범위에서 실시하는 것이 바람직하다. 60℃미만의 경우 열처리 온도가 낮아 나노섬유간 융착이 불안정하여 웨스턴 블롯 수행전 메탄올(methanol) 전처리시 나노섬유간 분리가 진행되어 적당한 웨스턴 블롯을 수행하기 어렵게 된다. 또한 열처리 온도가 200℃ 초과시 나노섬유를 구성하는 소수성 고분자의 용융에 의해 세공구조가 막혀 적절한 SDS-page로부터 단백질 전이(transfer)가 이루어지지 않아 정확한 분석이 이루어지지 않는 경향이 있다. In particular, when laminating can be accompanied with a heat treatment, it is preferable to perform in a temperature range of 60 ~ 200 ℃ that the polymer is not melted. If less than 60 ℃ heat treatment temperature is low due to unstable fusion between nanofibers, it is difficult to perform the appropriate western blot due to the separation between nanofibers during methanol pretreatment prior to performing the Western blot. In addition, when the heat treatment temperature exceeds 200 ° C., the pore structure is blocked by the melting of the hydrophobic polymer constituting the nanofibers, so that the protein is not transferred from an appropriate SDS-page, and thus, an accurate analysis does not occur.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 단지 본 발명을 예시하기 위한 것으로 본 발명의 범위가 이들 실시 예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only intended to illustrate the invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.

(실시예 1)(Example 1)

소수성 고분자인 호모(homo)폴리머로 구성된 PVdF(HSV 900)를 20중량%가 되도록 용매 DMAc에 용해하였다. 제조된 용액을 정량펌프를 이용하여 방사노즐로 이 송하고 인가전압 25kV, 방사구와 집전체와의 거리 20㎝, 토출량 분당 0.05cc/g·holl으로 상온, 상압에서 방사를 실시하여 PVdF 나노섬유 방사 웹을 얻었다.PVdF (HSV 900) consisting of a hydrophobic polymer homo was dissolved in solvent DMAc to 20% by weight. The prepared solution was transferred to a spinning nozzle using a metering pump, and spinning PVdF nanofibers at room temperature and atmospheric pressure with an applied voltage of 25kV, a distance of 20cm between the spinneret and the current collector, and a discharge amount of 0.05cc / g · holl per minute. Got the web.

방사에 의해 얻어진 나노섬유 방사 웹의 두께는 약 120㎛였으며, 이 PVdF 방사 웹을 145℃로 가열된 롤러를 이용하여 라미네이팅을 실시하여 PVdF 멤브레인을 제작하였으며, 라미네이팅 후 멤브레인의 두께는 약 80㎛였으며, 평균 세공경의 크기는 0.45㎛를 나타냈다. The thickness of the nanofiber spinning web obtained by spinning was about 120 μm, and the PVdF spinning web was laminated using a roller heated to 145 ° C. to manufacture a PVdF membrane. The thickness of the membrane after lamination was about 80 μm. The average pore size showed 0.45 µm.

도 3에는 실시 예 1에서 얻은 PVdF 멤브레인의 주사전자 현미경사진을 나타낸 것이다. 도 3에서 보는 바와 같이, PVdF 나노섬유의 섬유직경은 대부분 1㎛ 미만이었으며, 평균 500㎚ 정도를 나타냈다. 세공경이 비교적 균일하며 그 구조에 있어서도 3차원적으로 열린 세공구조(3-Dimensional open pore channel)로 형성되어 있음을 알 수 있다. Figure 3 shows a scanning electron micrograph of the PVdF membrane obtained in Example 1. As shown in FIG. 3, the fiber diameter of PVdF nanofibers was mostly less than 1 μm, and the average was about 500 nm. It can be seen that the pore diameter is relatively uniform and the structure is formed in a three-dimensional open pore channel.

(실시예 2 및 3)(Examples 2 and 3)

실시예 2 및 3은 소수성 고분자인 호모폴리머로 구성된 PVdF(761) 단독(실시예 2) 및 공중합체인 PVdF 2801을 PVdF 761과 50:50중량%로 혼합(실시 예 3)하여 실시예 1에서의 방법과 동일한 방법으로 전기방사를 실시하였다. Examples 2 and 3 were prepared by mixing PVdF 761 alone (Example 2) composed of a hydrophobic polymer homopolymer (Example 2) and a copolymer of PVdF 2801 with PVdF 761 at 50: 50% by weight (Example 3). Electrospinning was carried out in the same manner as the method.

제조된 실시예 2 및 3의 샘플은 비교예의 샘플과 비교를 위하여 TGA, XRD, SEM, DSC 분석을 실시하였다. 열분석 결과 비교예와 실시예에 의해 제조된 샘플의 경우 거의 동일한 결과를 나타냈으며, PVdF 고분자의 전형적인 결과를 나타냈다. The prepared samples of Examples 2 and 3 were subjected to TGA, XRD, SEM, DSC analysis for comparison with the sample of the comparative example. Thermal analysis showed almost the same results for the samples prepared by Comparative Example and Example, showing typical results of PVdF polymer.

(비교예)(Comparative Example)

비교를 위하여 상분리법을 이용하여 제조된 상용화 멤브레인인 Pall사(PALL CO., LTD., BioTrace™ PVDF)의 PVdF 멤브레인을 사용하여 웨스턴 블롯을 실시 예 3의 방법과 동일하게 실시하였다. For comparison, Western blot was performed in the same manner as in Example 3 using a PVdF membrane of Pall (PALL CO., LTD., BioTrace ™ PVDF), a commercially available membrane prepared by using a phase separation method.

멤브레인 구조분석Membrane Structure Analysis

실시 예 1 내지 3에 의해 제조된 PVdF 멤브레인과 비교 예에 의해 제조된 상용화 멤브레인의 구조분석을 DSC, XRD, TGA, SEM을 통하여 하였다. SEM 분석결과, 비교 예의 경우에는, 제조된 멤브레인의 주사전자 현미경사진을 나타내는 도 4에서 보는 바와 같이, 세공경이 균일하지 못하고, 또한 세공구조에 있어서도 닫힌 세공구조(closed pore structure)임을 알 수 있다. Structural analysis of the PVdF membranes prepared in Examples 1 to 3 and the commercialized membranes prepared in Comparative Examples were performed through DSC, XRD, TGA, and SEM. As a result of the SEM analysis, in the case of the comparative example, as shown in Fig. 4 showing a scanning electron micrograph of the prepared membrane, the pore diameter was not uniform, and the pore structure also showed a closed pore structure. .

열중량 분석(TGA)결과를 나타낸 도 5로 부터, 상용화 멤브레인인 비교 예와 실시 예의 경우 모두 약 500℃까지는 공기 중에서 분해되지 않는 동일한 거동을 나타내고 있으며, 본 발명의 실시 예들의 경우가 비교 예에 비하여 열적으로 다소 안정하다는 것을 확인할 수 있다.Referring to FIG. 5 showing the result of thermogravimetric analysis (TGA), both the comparative example and the embodiment of the commercialized membrane showed the same behavior that does not decompose in the air up to about 500 ℃, the examples of the present invention It can be seen that it is somewhat thermally stable compared with that.

한편, 본 발명의 실시 예 1과 비교 예에 의해 제조된 각 멤브레인의 기공도(porosity)는 각각 가로ㅧ세로 1㎝씩 절단하여 다음 식 (1)에 의해 측정하였다. On the other hand, the porosity (porosity) of each membrane prepared by Example 1 and Comparative Example of the present invention was measured by the following equation (1) by cutting each 1cm in width.

..........(1) ..........(One)

여기서,

Figure 112009060327966-PAT00002
는 PVdF의 밀도로 1.76g/㎤ 이며,
Figure 112009060327966-PAT00003
는 계산된 값이다. here,
Figure 112009060327966-PAT00002
Is the density of PVdF of 1.76 g / cm 3,
Figure 112009060327966-PAT00003
Is the calculated value.

상기 식에 의해 얻어진 기공도는 실시 예 1의 경우가 73.3%, 비교 예의 경우가 약 67%로 되어 본 발명의 실시 예 1의 방법에 의해 제조된 멤브레인의 가공도가 약 10% 더 크다는 사실을 확인하였다.The porosity obtained by the above formula is 73.3% in Example 1 and about 67% in Comparative Example, indicating that the workability of the membrane prepared by the method of Example 1 of the present invention is about 10% larger. Confirmed.

웨스턴 블롯시험Western Blot Test

상기 실시 예 1과 비교 예의 샘플을 이용하여 웨스턴 블롯을 실시하였다. Western blot was performed using the sample of Example 1 and Comparative Example.

먼저 실시 예 1과 비교 예에서 제조된 샘플을 가로ㅧ세로 각각 8㎝ㅧ9㎝로 미리 잘라놓고 겔(gel)내 단백질과 멤브레인과의 소수성 결합(hydrophobic interaction)을 할 수 있도록 100% 메탄올에 약 5분간 침지하여 활성화시켰다.First, the samples prepared in Example 1 and Comparative Example were precut into 8 cm ㅧ 9 cm in width and length, respectively, and then subjected to about 100% methanol so that hydrophobic interaction between the protein in the gel and the membrane was possible. It was activated by soaking for 5 minutes.

이렇게 활성화된 멤브레인을 트랜스퍼 완충용액(1ㅧtransfer buffer)으로 옮겨준 후 10분간 방치하였다. 이때 이 트랜스퍼 완충용액의 구성은 3.03g/L trisma-base, 14.4g/L Glycine, 20% 메탄올(200ml/L)로 하였다. 트랜스퍼할 겔을 트랜스퍼 완충용액으로 살짝 적셔주고 멤브레인 위에 기포가 생기지 않도록 주의하여 올려놓는다. 겔과 멤브레인을 밀착시킨후 양면에 트랜스퍼 완충용액으로 미리 적셔준 3M 지(3M paper)를 대고 트랜스퍼 키트(Transfer kit)에 장착한다. This activated membrane was transferred to transfer buffer (1 ㅧ transfer buffer) and left for 10 minutes. The transfer buffer was composed of 3.03 g / L trisma-base, 14.4 g / L Glycine, and 20% methanol (200 ml / L). Lightly dampen the gel to be transferred with transfer buffer and place it on the membrane carefully to avoid bubbles. After the gel and the membrane are in close contact with each other, the 3M paper previously wetted with transfer buffer solution is mounted on the transfer kit.

트랜스퍼는 Mini-gel 트랜스퍼 키트를 사용하여 100V에서 1시간 실시하였으며, 이때 발생하는 열을 차단하기 위하여 트랜스퍼 용기(Transfer tank)를 얼음 속에 놓아 실시하였다. 트랜스퍼가 끝난 후 장치를 해체하고 멤브레인을 분리하여 1xTBST(Tris-buffered saline with 0.05% tween 20)로 살짝 찧어준다. 이때 TBST의 구성은 0.2M Tris pH 8 (24.2g Trisma base), 1.37M NaCl (80g NaCl), Adjust pH 7.6 by conc HCl로 이루어진다. Transfer was carried out for 1 hour at 100V using a Mini-gel transfer kit, the transfer tank was carried out in ice to block the heat generated at this time. After transfer, disassemble the device, remove the membrane and gently rinse with 1xTBST (Tris-buffered saline with 0.05% tween 20). TBST consists of 0.2M Tris pH 8 (24.2g Trisma base), 1.37M NaCl (80g NaCl), and Adjust pH 7.6 by conc HCl.

이때 구강상피세포암종 KB 세포주에서 추출한 총 단백질 농도는 20, 10, 5, 2.5, 1㎍이었으며, 10% SDS-page gel을 이용하였다. 전체 트랜스퍼 시간(transfer time)은 약 1시간 40분이었으며, 차단 시간(blocking time)은 1시간 30분이었다. The total protein concentrations of oral epithelial carcinoma KB cell line were 20, 10, 5, 2.5, 1㎍, and 10% SDS-page gel was used. The total transfer time was about 1 hour 40 minutes and the blocking time was 1 hour 30 minutes.

검출대상 단백질은 β-actin이었으며, 1차 항체(First Antibody)로는 마우스로부터 얻은 β-actin 항체(Santa cruz, sc-47778)이었으며, 이를 1:5000으로 희석하여 트랜스퍼 멤브레인과 4℃에서 하루 정도 반응시켰다. 그 후, horseradish peroxidase가 결합되어 있는 이차 항체(Secondary Antibody)인 goat anti-mouse IgG-HRP(Santa cruz, sc-2005, 마우스 면역글로빈을 염소에 주입시켜서 만든 항체)와 반응시킨 후, horseradish peroxiase(양고추냉이에서 추출한 과산화수소 분해효소)에 대한 기질인 과산화수소 용액(Peroxide solution)과 Luminol Enhancer Solution(과산화수소 분해효소에 의해 분해된 산소유리기에 의해 Luminol이 산화되면서 형광을 내게됨; LF-QC1010, ABFRONTIER, Korea)을 넣고 1분간 반응시켰다. 기질과 반응시킨 트랜스퍼 멤브레인을 X-ray 필름에 2분간 노출하여 β-actin 단백질의 발현을 확인하였다. The protein to be detected was β-actin, and the first antibody was β-actin antibody (Santa cruz, sc-47778) obtained from the mouse, and diluted 1: 5000 to react with the transfer membrane at 4 ° C. for about 1 day. I was. After that, it was reacted with goat anti-mouse IgG-HRP (Santa cruz, sc-2005, an antibody prepared by injecting mouse immunoglobin into goats), which is a secondary antibody (Secondary Antibody) to which horseradish peroxidase is bound, and then horseradish peroxiase ( Luminol is fluoresced by oxidizing the hydrogen peroxide solution and Luminol Enhancer Solution (hydrogen peroxide decomposed by hydrogen peroxidase), which are substrates for horseradish hydrogen peroxidase; LF-QC1010, ABFRONTIER, Korea) was added and reacted for 1 minute. The transfer membrane reacted with the substrate was exposed to the X-ray film for 2 minutes to confirm the expression of β-actin protein.

도 6은 실시 예 1과 비교 예에 의해 제조된 멤브레인을 사용하여 웨스턴 블롯을 시행한 결과를 나타낸 것이다. Figure 6 shows the results of Western blot using the membrane prepared by Example 1 and Comparative Example.

도 6에서 보는 바와 같이, 실시 예 1의 경우가 비교 예에 비하여 반응 밴드가 보다 명확하고 뚜렷하게 나타나는 것을 확인할 수 있다. 이것은 본 발명의 실시 예의 멤브레인이 비교 예에 비하여 세공경이 균일하며, 높은 기공도에 의해 보다 큰 비표면적을 가지므로 이에 따라 우수한 민감도(sensitivity)를 보인 것이다. As shown in Figure 6, the case of Example 1 can be seen that the reaction band appears more clearly and clearly than the comparative example. This is because the membrane of the embodiment of the present invention has a more uniform pore diameter than the comparative example and has a larger specific surface area due to high porosity, thereby showing excellent sensitivity.

이상에서는 본 발명을 특정의 바람직한 실시예를 예로 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments and the general knowledge in the art to which the present invention pertains is not limited to the spirit of the present invention. Various changes and modifications will be made by those who possess.

도 1은 PVdF 멤브레인을 이용한 웨스턴 블롯 방법에 의해 특정의 단백질을 검출하는 방법을 나타낸 순서도,1 is a flow chart showing a method for detecting a specific protein by Western blot method using a PVdF membrane,

도 2는 종래 일반적인 상전이법에 의한 멤브레인의 제조방법을 나타낸 순서도.Figure 2 is a flow chart showing a method of manufacturing a membrane by a conventional general phase transition method.

도 3은 본 발명의 실시예 1에 의해 제조된 PVdF 멤브레인의 주사전자 현미경사진 ; (a) 1k, (b) 10k x 배율,3 is a scanning electron micrograph of the PVdF membrane prepared by Example 1 of the present invention; (a) 1k, (b) 10k x magnification,

도 4는 비교예에 의해 제조된 멤브레인의 주사전자 현미경사진 ; (a) 3k, (b) 10k x 배율,4 is a scanning electron micrograph of the membrane prepared by the comparative example; (a) 3k, (b) 10k x magnification,

도 5는 본 발명의 실시예 및 비교예에 의해 제조된 멤브레인의 공기중에서의 TGA 분석 결과; (a) 비교예, (b) 실시예 1(PVdF HSV 900), (c) 실시예 2(PVdF 761), (d) 실시예 3 (PVdF 761/2801),5 shows the results of TGA analysis in air of membranes prepared by Examples and Comparative Examples of the present invention; (a) Comparative Example, (b) Example 1 (PVdF HSV 900), (c) Example 2 (PVdF 761), (d) Example 3 (PVdF 761/2801),

도 6는 본 발명의 실시예 1과 비교예에 의해 제조된 각 멤브레인의 웨스턴 블롯 평가 결과를 나타낸 것이다.Figure 6 shows the results of Western blot evaluation of each membrane prepared by Example 1 and Comparative Example of the present invention.

Claims (9)

웨스턴 블롯용 멤브레인의 제조방법에 있어서,In the manufacturing method of the membrane for Western blot, 소수성 고분자 물질을 용매에 용해하여 방사용액을 제조하는 단계;Dissolving the hydrophobic polymer in a solvent to prepare a spinning solution; 상기 방사용액을 방사방법에 의하여 소수성 고분자 나노섬유 웹을 얻는 단계;Obtaining a hydrophobic polymer nanofiber web by spinning the spinning solution; 상기 얻어진 나노섬유 웹을 라미네이팅하여 웨스턴 블롯용 멤브레인을 얻는 단계를 포함하는 것을 특징으로 하는 웨스턴 블롯용 멤브레인의 제조방법.And laminating the obtained nanofiber web to obtain a membrane for western blot. 제1항에 있어서,The method of claim 1, 상기 소수성 고분자 물질은 PVdF(polyvinylidene fluoride), 나일론(nylon), 니트로셀룰로오스(nitrocellulose), PU(polyurethane), PC(polycarbonate), PS(polystryene), PLA(polylatic acid), PAN(polyacrylonitrile), PLGA,(polylactic-co-glycolic acid) PEI(polyethyleneimine), PPI(polypropyleneimine), PMMA(Polymethylmethacrylate), PVC(polyvinylcholride), PVAc(polyvinylacetate), 및 폴리스티렌 디비닐벤젠 공중합체(Polystylene divinylbenzene copolymer)로 구성되는 군에서 선택되는 어느 1종 또는 2종이상을 복합화하여 구성되는 것을 특징으로 한 웨스턴 블롯용 멤브레인의 제조방법.The hydrophobic polymer material is polyvinylidene fluoride (PVDF), nylon (nylon), nitrocellulose (nitrocellulose), PU (polyurethane), PC (polycarbonate), PS (polystryene), PLA (polylatic acid), PLA (polyacrylonitrile), PLGA, (polylactic-co-glycolic acid) in the group consisting of polyethyleneimine (PEI), polypropyleneimine (PPI), polymethylmethacrylate (PMMA), polyvinylcholride (PVC), polyvinylacetate (PVAc), and polystylene divinylbenzene copolymer Method for producing a membrane for Western blot, characterized in that it is composed by combining any one or two or more selected. 제1항에 있어서,The method of claim 1, 상기 용매는 디메틸 포름아미드(di-methylformamide, DMF), 디메틸 아세트마아미드(di-methylacetamide, DMAc), THF(tetrahydrofuran), 아세톤(Acetone), 알코올(Alcohol)류, 클로로포름(Chloroform), DMSO(dimethyl sulfoxide), 디클로로메탄(dichloromethane), 초산(acetic acid), 개미산(formic acid), NMP(N-Methylpyrrolidone), 불소계 알콜류, 및 물로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 한 웨스턴 블롯용 멤브레인의 제조방법.The solvent is dimethyl formamide (di-methylformamide, DMF), dimethyl acetamide (di-methylacetamide, DMAc), THF (tetrahydrofuran), acetone (Acetone), alcohol (Alcohol), chloroform (Chloroform), DMSO (dimethylSO) Membrane for western blot, characterized in that at least one member selected from the group consisting of sulfoxide, dichloromethane, acetic acid, formic acid, N-Methylpyrrolidone (NMP), fluorine-based alcohols, and water Manufacturing method. 제1항에 있어서,The method of claim 1, 상기 나노섬유 웹을 형성하는 나노섬유의 직경은 50∼1000㎚인 것을 특징으로 하는 웨스턴 블롯용 멤브레인의 제조방법.The diameter of the nanofibers forming the nanofiber web is a method for producing a membrane for Western blot, characterized in that 50 to 1000nm. 제1항에 있어서,The method of claim 1, 상기 방사방법은 전기방사(electrospinning), 전기분사(electrospray), 전기분사방사(electroblown spinning), 원심전기방사(centrifugal electrospinning), 및 플래쉬 전기방사(flash-electrospinning)로 이루어진 군에서 선택되는 어느 1종인 것을 특징으로 하는 웨스턴 블롯용 멤브레인의 제조방법.The radiation method is any one selected from the group consisting of electrospinning, electrospray, electroblown spinning, centrifugal electrospinning, and flash-electrospinning. Method for producing a membrane for Western blot, characterized in that. 제1항에 있어서,The method of claim 1, 상기 라미네이팅은 압착, 가압, 컬렌더링, 롤링, 열접합, 초음파 접합, 심 실링 테이프법 중에서 선택된 어느 하나의 방법으로 수행되는 것을 특징으로 하는 웨스턴 블롯용 멤브레인의 제조방법.The laminating is a method for producing a membrane for Western blot, characterized in that performed by any one method selected from the crimping, pressurization, rendering, rolling, thermal bonding, ultrasonic bonding, seam sealing tape method. 제1항에 있어서,The method of claim 1, 상기 방사용액 전체에 대하여 상기 소수성 고분자 물질의 함량은 5∼50중량%인 것을 특징으로 하는 웨스턴 블롯용 멤브레인의 제조방법.The amount of the hydrophobic polymer material to the total spinning solution is a manufacturing method of the membrane for Western blot, characterized in that 5 to 50% by weight. 제1항에 있어서,The method of claim 1, 상기 라미네이팅 공정은 60∼200℃ 온도범위에서의 열처리를 수반하면서 수행되는 것을 특징으로 하는 웨스턴 블롯용 멤브레인의 제조방법.The laminating process is a manufacturing method of the membrane for Western blot, characterized in that performed with heat treatment in the temperature range of 60 ~ 200 ℃. 제1항 내지 제8항 중 어느 한 항에 따라 제조되는 웨스턴 블롯용 멤브레인으로서, 평균 세공경이 0.1∼0.5㎛, 멤브레인 두께가 30∼200㎛, 기공도가 60% 이상인 것을 특징으로 하는 웨스턴 블롯용 멤브레인.The western blot membrane prepared according to any one of claims 1 to 8, wherein the western blot membrane has an average pore diameter of 0.1 to 0.5 µm, a membrane thickness of 30 to 200 µm, and a porosity of 60% or more. Membrane for Lot.
KR1020090093184A 2009-09-30 2009-09-30 Nano-fibered Membrane for Western Blot and Manufacturing Method of the Same KR101170059B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020090093184A KR101170059B1 (en) 2009-09-30 2009-09-30 Nano-fibered Membrane for Western Blot and Manufacturing Method of the Same
EP10820791.1A EP2484431B1 (en) 2009-09-30 2010-09-16 Nanofiber membrane for western blot and preparation method thereof
CN2010800438162A CN102574067A (en) 2009-09-30 2010-09-16 Nanofiber membrane for western blot and preparation method thereof
JP2012532001A JP5757449B2 (en) 2009-09-30 2010-09-16 Nanofiber membrane for Western blot and method for producing the same
PCT/KR2010/006358 WO2011040718A2 (en) 2009-09-30 2010-09-16 Nanofiber membrane for western blot and preparation method thereof
US12/893,462 US8512612B2 (en) 2009-09-30 2010-09-29 Nano-fibered membrane for western blot and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090093184A KR101170059B1 (en) 2009-09-30 2009-09-30 Nano-fibered Membrane for Western Blot and Manufacturing Method of the Same

Publications (2)

Publication Number Publication Date
KR20110035454A true KR20110035454A (en) 2011-04-06
KR101170059B1 KR101170059B1 (en) 2012-07-31

Family

ID=44043809

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090093184A KR101170059B1 (en) 2009-09-30 2009-09-30 Nano-fibered Membrane for Western Blot and Manufacturing Method of the Same

Country Status (1)

Country Link
KR (1) KR101170059B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018558A1 (en) * 2015-07-28 2017-02-02 주식회사 아모그린텍 Nanofiber based composite false twist yarn and manufacturing method therefor
WO2017113000A1 (en) * 2015-12-29 2017-07-06 Companhia Nitro Química Brasileira Method for obtaining a colloidal dispersion, colloidal dispersion and use thereof
CN110903509A (en) * 2019-11-18 2020-03-24 江苏大学 Preparation method of molecularly imprinted nanocomposite membrane for selectively separating atrazine
CN111068528A (en) * 2019-12-31 2020-04-28 杭州帝凡过滤技术有限公司 Nanofiber composite membrane with base material and preparation method thereof
CN112226867A (en) * 2020-08-19 2021-01-15 西安工程大学 Method for preparing super-soft piezoelectric PVDF yarn
CN113311025A (en) * 2021-07-13 2021-08-27 浙江农林大学 Preparation method of novel intelligent gas sensing material suitable for indoor ammonia gas detection
CN114481448A (en) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 Nanofiber membrane and preparation method and application thereof
WO2023054785A1 (en) * 2021-10-01 2023-04-06 주식회사 레몬 Low-temperature preparation method for inorganic nanofiber web

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102200199B1 (en) 2019-11-12 2021-01-08 주식회사 티맥 Blotting membrane applying hydrophobic material, method of manufacturing the same and blotting device including the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018558A1 (en) * 2015-07-28 2017-02-02 주식회사 아모그린텍 Nanofiber based composite false twist yarn and manufacturing method therefor
US10648105B2 (en) 2015-07-28 2020-05-12 Amogreentech Co., Ltd. Nanofiber based composite false twist yarn and manufacturing method therefor
US10934398B2 (en) 2015-12-29 2021-03-02 Companhia Nitro Quimica Brasileira Method for obtaining a colloidal dispersion, colloidal dispersion and use thereof
WO2017113000A1 (en) * 2015-12-29 2017-07-06 Companhia Nitro Química Brasileira Method for obtaining a colloidal dispersion, colloidal dispersion and use thereof
CN110903509A (en) * 2019-11-18 2020-03-24 江苏大学 Preparation method of molecularly imprinted nanocomposite membrane for selectively separating atrazine
CN110903509B (en) * 2019-11-18 2022-03-22 江苏大学 Preparation method of molecularly imprinted nanocomposite membrane for selectively separating atrazine
CN111068528A (en) * 2019-12-31 2020-04-28 杭州帝凡过滤技术有限公司 Nanofiber composite membrane with base material and preparation method thereof
CN112226867A (en) * 2020-08-19 2021-01-15 西安工程大学 Method for preparing super-soft piezoelectric PVDF yarn
CN114481448A (en) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 Nanofiber membrane and preparation method and application thereof
CN114481448B (en) * 2020-10-23 2023-06-06 中国石油化工股份有限公司 Nanofiber membrane and preparation method and application thereof
CN113311025A (en) * 2021-07-13 2021-08-27 浙江农林大学 Preparation method of novel intelligent gas sensing material suitable for indoor ammonia gas detection
CN113311025B (en) * 2021-07-13 2023-06-27 浙江农林大学 Preparation method of novel intelligent gas sensing material suitable for indoor ammonia gas detection
WO2023054785A1 (en) * 2021-10-01 2023-04-06 주식회사 레몬 Low-temperature preparation method for inorganic nanofiber web

Also Published As

Publication number Publication date
KR101170059B1 (en) 2012-07-31

Similar Documents

Publication Publication Date Title
KR101170059B1 (en) Nano-fibered Membrane for Western Blot and Manufacturing Method of the Same
JP5757449B2 (en) Nanofiber membrane for Western blot and method for producing the same
US11918959B2 (en) Anion exchange polymers and anion exchange membranes incorporating same
KR101139327B1 (en) Nano-fibered Membrane of Hydrophile Property for Western Blot by Plasma Coating and Manufacturing Method of the Same
US20240159704A1 (en) Composite membrane for western blotting containing a pvdf nanofiber web and manufacturing method thereof
WO2019016605A1 (en) Non-woven fiber membranes
Pan et al. Preparation of bipolar membranes by electrospinning
BRPI0617584A2 (en) electrochemical double layer capacitor
CN110124517A (en) A kind of method that the reversed interfacial polymerization of low temperature prepares nanofiber-based composite nanometer filtering film
US11987680B2 (en) Composite ion exchange membrane and method of making same
EP1566251A1 (en) Heat-resistant film and composite ion-exchange membrane
JP6150228B2 (en) Composite membrane and manufacturing method thereof
CN108285643A (en) Cellulose nano-fibrous/the Sulfonated Polyethersulfone Proton Exchange Membrane of one kind and preparation method
CN108649170A (en) A kind of high strength non-woven fabric structure diaphragm and preparation method thereof
CN109338598B (en) Method for forming film and application
JP2003077494A (en) Solid polymer electrolyte reinforcing material and solid polymer electrolyte reinforcement using the same
CN105817146A (en) Preparation method of CNT-modified nanofiltration membrane
Liu et al. Environmentally responsive composite films fabricated using silk nanofibrils and silver nanowires
KR101162102B1 (en) Transfer Membranes for Western Blot Integrated with Papers and Process for Manufacturing the Same
Chakrabarty et al. (3-glycidoxypropyl) Trimethoxy silane induced switchable zwitterionic membrane with high protein capture and separation properties
KR102255170B1 (en) Ion-exchange composite membrane, preparation method thereof and fuel cell comprising the same
Tang et al. A nitrocellulose/cotton fiber hybrid composite membrane for paper-based biosensor
Ji et al. cAMP sensitive nanochannels driven by conformational transition of a tripeptide-based smart polymer
CN106606933A (en) Water separation composite membrane
KR101660994B1 (en) Polymer Electrolyte Membrane for Fuel Cell and Method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150701

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170613

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190617

Year of fee payment: 8