KR20110032033A - Recovery of tungsten and cobalt from hardmetal alloy sludge by the hydrometallurgical process using aqua regia - Google Patents

Recovery of tungsten and cobalt from hardmetal alloy sludge by the hydrometallurgical process using aqua regia Download PDF

Info

Publication number
KR20110032033A
KR20110032033A KR20090089334A KR20090089334A KR20110032033A KR 20110032033 A KR20110032033 A KR 20110032033A KR 20090089334 A KR20090089334 A KR 20090089334A KR 20090089334 A KR20090089334 A KR 20090089334A KR 20110032033 A KR20110032033 A KR 20110032033A
Authority
KR
South Korea
Prior art keywords
cemented carbide
tungsten
cobalt
tungstic acid
carbide sludge
Prior art date
Application number
KR20090089334A
Other languages
Korean (ko)
Other versions
KR101143566B1 (en
Inventor
김희준
강경식
김지혜
김은영
Original Assignee
리컴 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 리컴 주식회사 filed Critical 리컴 주식회사
Priority to KR1020090089334A priority Critical patent/KR101143566B1/en
Publication of KR20110032033A publication Critical patent/KR20110032033A/en
Application granted granted Critical
Publication of KR101143566B1 publication Critical patent/KR101143566B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: A method for collecting tungsten and cobalt from a hard metal alloy sludge by hydrometallurgical process using aqua regia is provided to collect tungsten, cobalt, and nickel through simple processes without oxidation processes. CONSTITUTION: A method of processing hard metal alloy sludge comprises following steps. Hard metal alloy sludge is put into the aqua regia, so mixed solution is manufactured(S110). The mixed solution is stirred and filtered, so tungstic acid is collected(S120). Cobalt hydroxide and nickel hydroxide are created and collected(S135). The collected tungstic acid is dissolved in ammonia solution and filtered in order to remove impurities which are not dissolved. Hydrochloric acid is added and heated to manufacture high purity tungstic acid(S150).

Description

왕수 습식처리법에 의한 텅스텐 초경합금 슬러지로부터 텅스텐과 코발트의 회수{RECOVERY OF TUNGSTEN AND COBALT FROM HARDMETAL ALLOY SLUDGE BY THE HYDROMETALLURGICAL PROCESS USING AQUA REGIA}Recovery of tungsten and cobalt from tungsten cemented carbide sludge by an aqua reclamation method {RECOVERY OF TUNGSTEN AND COBALT FROM HARDMETAL ALLOY SLUDGE BY THE HYDROMETALLURGICAL PROCESS USING AQUA REGIA}

본 발명은 텅스텐 초경합금 슬러지에 함유되어 있는 텅스텐(W), 코발트(Co), 니켈(Ni)의 회수방법에 관한 것으로, 좀 더 상세하게는 초경절삭공구의 제조공정에서 발생하는 텅스텐 초경합금 가공 슬러지를 왕수로 처리하여 탄화텅스텐은 텅스텐산(WO32H2O, WO3H2O)으로 변환시켜 회수하고, 코발트, 니켈은 침출, 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering tungsten (W), cobalt (Co) and nickel (Ni) contained in tungsten cemented carbide sludge, and more particularly, tungsten cemented carbide processing sludge generated in the manufacturing process of cemented carbide cutting tools. Tungsten carbide is converted to tungstic acid (WO 3 2H 2 O, WO 3 H 2 O) by treatment with aqua regia, and cobalt and nickel are leached and recovered.

텅스텐 초경합금은 탄화텅스텐(WC)를 코발트(Co)로 결합한 복합재료로서 주로 고경도와 고강도가 요구되는 절삭용 초경공구의 소재로 사용되고 있으며, 이외에도 금형, 석유채굴 및 암석분쇄용 공구로써 사용되고 있다. 일반적으로 초경공구의 제조공정은 텅스텐 탄화물, 금속 결합제(코발트 또는 니켈), 그리고 첨가물의 혼합 및 분쇄공정 → 건조 및 조립화 공정 → 성형공정 → 소결공정 → 후처리공정 (기계가공 또는 열간정수압 처리)을 포함하여 이루어진다. 소결된 초경공구는 최종 제품으로 출하되기 전에 기계가공을 포함한 후처리 공정을 거치게 되는데, 이때 초경합금 슬러지들이 다량으로 발생하게 된다. 이 슬러지에는 텅스텐, 코발트 니켈 등과 같은 희유금속들이 함유되어 있으므로, 슬러지의 순환활용이 자원 확보의 관점에서 매우 중요하다. Tungsten cemented carbide is a composite material that combines tungsten carbide (WC) with cobalt (Co), and is mainly used as a cutting tool for high hardness and high strength. In addition, it is used as a tool for die, petroleum mining and rock grinding. In general, cemented carbide tools are manufactured from tungsten carbide, metal binder (cobalt or nickel), and additives in the mixing and grinding process → drying and granulation process → molding process → sintering process → post-treatment process (machining or hot hydrostatic treatment) It is made, including. Sintered carbide tools undergo a post-treatment process, including machining, before they are shipped to the final product, where a large amount of cemented carbide sludge is generated. Since the sludge contains rare metals such as tungsten and cobalt nickel, the sludge circulation is very important from the viewpoint of securing resources.

초경합금 스크랩 또는 슬러지의 순환활용은 크게 i) 적절한 처리 후 초경합금의 원료분말로 재사용하거나, ii) 스크랩으로부터 텅스텐, 코발트와 같은 희유금속을 개별적으로 회수하여 산업 원료화 하는 것으로 대별된다. 이를 위한 방법으로는 용해법, 직접재활용, 반 직접재활용, 습식재활용 등이 있는데 최근 들어 고순도 금속소재의 수요가 증가함에 따라 습식재활용에 대한 관심이 높아지고 있다.The recycling of cemented carbide scrap or sludge is largely divided into i) reuse of the raw material of cemented carbide after proper treatment, or ii) recovery of rare metals such as tungsten and cobalt from the scrap into industrial raw materials. Methods for this purpose include melting, direct recycling, semi-direct recycling, and wet recycling. Recently, as the demand for high-purity metal materials increases, interest in wet recycling is increasing.

초경합금 슬러지의 경우 주로 습식재활용법을 이용하여 처리한다. 산 처리법의 경우 코발트 및 니켈을 먼저 추출하고, 산에 불용성인 탄화텅스텐은 잔사로 회수하는 방법이다. 이 경우 잔사로 회수되는 탄화텅스텐의 순도가 낮아서 초경합금의 원료로 재사용하는 것이 불가능하다. 따라서 잔사로 남겨진 탄화텅스텐을 고온에서 하소하여 텅스텐산화물(WO3)로 변환시킨 다음 알칼리에 용해하고 정제를 행하여 순도를 높이기도 한다. 알칼리 처리법의 경우 슬러지를 탄산소다(Na2CO3)와 혼합, 용융하여 탄화텅스텐을 물에 가용성인 텅스텐소다(Na2WO4)로 변환시켜 회수하거나 슬러지를 먼저 하소하여 탄화텅스텐을 텅스텐산화물로 변환시킨 다음 가성소다(NaOH)용액에 용해하여 회수하는 방법이다. 이 때 코발트와 니켈은 산화물로서 잔사로 남게 되며 산 처리법으로 회수한다. 이와 같은 방법들은 텅스텐의 회수를 위하여 에너지 소모가 많은 고온 산화공정을 거친다는 단점이 있다. 또한 코발트와 니켈의 완전한 추출이 어렵다.Cemented carbide sludge is mainly treated by wet recycling. In the case of acid treatment, cobalt and nickel are first extracted, and tungsten carbide insoluble in acid is recovered as a residue. In this case, since the tungsten carbide recovered as a residue is low in purity, it is impossible to reuse it as a raw material for cemented carbide. Therefore, the residual tungsten carbide is calcined at high temperature, converted to tungsten oxide (WO 3 ), dissolved in alkali, and purified to increase purity. In the case of alkali treatment, sludge is mixed with sodium carbonate (Na 2 CO 3 ) and melted to convert tungsten carbide into tungsten soda (Na 2 WO 4 ) soluble in water, and recovered or calcined sludge first to convert tungsten carbide to tungsten oxide. After conversion, the solution is dissolved in a caustic soda (NaOH) solution and recovered. At this time, cobalt and nickel remain as oxides and are recovered by acid treatment. These methods have the disadvantage of undergoing a high energy consumption high temperature oxidation process for the recovery of tungsten. In addition, complete extraction of cobalt and nickel is difficult.

이를 개선하기 위하여 본 발명의 목적은 초경합금 슬러지로부터 텅스텐, 코발트, 니켈을 회수함에 있어서, 에너지 소모가 많은 산화공정을 거치지 않고 왕수 처리에 의하여 텅스텐, 코발트, 니켈을 직접 회수하기 위한 방법을 제공하는데 있다. 보다 구체적으로 초경합금 슬러지를 왕수 처리를 함으로써 텅스텐을 100%를 회수할 뿐 아니라 코발트와 니켈을 98%이상 회수할 수 있는 방법을 제공하는데 있다.In order to improve this, an object of the present invention is to provide a method for directly recovering tungsten, cobalt, and nickel by aqua regia treatment without recovering tungsten, cobalt, and nickel from cemented carbide sludge, without undergoing an energy-consuming oxidation process. . More specifically, the present invention provides a method for recovering cobalt and nickel at least 98%, as well as recovering 100% of tungsten by aqua regia treatment of cemented carbide sludge.

상기의 문제점을 해결하기 위하여 본 발명은 왕수에 초경합금 슬러지를 투입하여, 상기 초경합금 슬러지에 함유된 탄화텅스텐을 텅스텐산으로 분리 회수하는 것을 특징으로 하는 초경합금 슬러지 처리방법을 제공한다. 또한 상기 텅스텐산의 분리 회수에 얻어진 여액의 pH를 조절하여 상기 여액에 함유된 코발트, 니켈은 각각 코발트수산화물, 니켈수산화물로 침전, 회수하는 단계를 더 포함하는 초경합금 슬러지 처리방법에 관한 것이다. 회수된 텅스텐산을 암모니아에 용해한 후 미용해 불순물잔사를 제거하고 염산을 가하여 고순도 텅스텐산을 제조할 수 있다. 하기 도 1을 참조하여 본 발명에 대해 보다 상세히 설명하고자한다. 하기 도 1은 본 발명에 따른 텅스텐 초경합금 슬러지로부터 텅스텐과 코발트의 회수공정개발을 도시한 블록도 이다.In order to solve the above problems, the present invention provides a cemented carbide sludge treatment method comprising putting tungsten carbide in the aqua regia, separating tungsten carbide contained in the cemented carbide sludge with tungstic acid. In addition, the cobalt and nickel contained in the filtrate by adjusting the pH of the filtrate obtained by separating and recovering tungstic acid are related to the cemented carbide sludge treatment method further comprising the step of precipitating and recovering cobalt hydroxide and nickel hydroxide, respectively. The recovered tungstic acid can be dissolved in ammonia and then undissolved to remove impurities residue and hydrochloric acid can be added to produce high purity tungstic acid. Hereinafter, the present invention will be described in more detail with reference to FIG. 1. 1 is a block diagram showing the development of the recovery process of tungsten and cobalt from tungsten cemented carbide sludge according to the present invention.

본 발명은 a)왕수에 초경합금 슬러지를 투입하여 혼합액을 제조하는 단계(110);The present invention comprises the steps of: a) preparing a mixed solution by adding cemented carbide sludge to aqua regia (110);

b)상기 혼합액을 교반하고 여과 분리하여 텅스텐산을 회수하는 단계(120); b) recovering tungstic acid by stirring and filtering the mixed solution (120);

c) 회수된 텅스텐산을 암모니아수에 용해한 후(130) 여과하여 미용해 불순물잔사를 제거하고(140) 염산을 첨가, 가열하여 고순도 텅스텐산으로 제조하는 단계(150); 및c) dissolving the recovered tungstic acid in aqueous ammonia (130), filtering to remove undissolved impurity residues (140), and adding hydrochloric acid to heat to prepare high-purity tungstic acid (150); And

d)상기 여과 분리하여 얻어진 여액의 pH를 5 ~ 7 로 조절하여(135) 코발트수산화물과 니켈수산화물을 생성하고 이를 회수하는 단계; (145)를 포함한다.d) adjusting the pH of the filtrate obtained by the filtration separation to 5 to 7 (135) to produce and recover cobalt hydroxide and nickel hydroxide; 145.

본 발명에 의한 방법은 산화공정을 거치지 않고 고효율의 텅스텐, 코발트, 니켈을 회수할 수 있는 장점이 있다. 상기 a) 단계에서 왕수의 농도는 25 ~ 100vol%인 것이 본 발명에서 텅스텐을 텅스텐산화물로 침출시키기에 효과적인 농도이다. 종래발명에서는 초경합금 슬러지를 처리하는 과정에서, 니켈 코발트 등 텅스텐을 제외한 유가금속들을 산으로 먼저 침출 분리한 후, 텅스텐을 분리하여 회수하였을 경우 회수율이 높지 않은 단점이 있었으나 , 본 발명은 텅스텐을 왕수에 투입시켜 직접 텅스텐산화물로 만들어 회수함으로써 텅스텐을 100% 회수할 수 있는 놀라운 방법을 제시한다. The method according to the present invention has the advantage of recovering high efficiency tungsten, cobalt and nickel without undergoing an oxidation process. The concentration of aqua regia in step a) is 25 to 100 vol%, which is an effective concentration for leaching tungsten to tungsten oxide in the present invention. In the present invention, in the process of treating cemented carbide sludge, valuable metals other than tungsten, such as nickel cobalt, are leached and separated first with acid, and there is a disadvantage in that the recovery rate is not high when tungsten is separated and recovered. It provides an amazing method to recover 100% of tungsten by injecting it directly into tungsten oxide and recovering it.

본 발명은 상기 b)단계에서 교반 온도는 75~100℃인 것을 특징으로 한다. 본 발명자는 교반 온도를 실온으로 할 때와 비교해서 고온으로 하였을 때 놀랍게도 텅스텐, 코발트, 니켈들을 100%가까운 고효율로 회수 할 수 있음을 발견하게 되어 본 발명을 제시하게 되었다. 상기 75℃미만에서 교반하였을 경우 슬러지에 함유된 탄화텅스텐이 텅스텐산으로의 전환효율과 코발트, 니켈의 회수효율이 저하되는 단점이 있으며, 100℃초과하였을 경우, 왕수가 기화되어 왕수의 손실을 가져와 반응이 효과적으로 일어나지 못할 수 있다.The present invention is characterized in that the stirring temperature in step b) is 75 ~ 100 ℃. The present inventors have found that the present invention has been found to be able to recover tungsten, cobalt, nickel with high efficiency close to 100% when the stirring temperature is higher than that at room temperature. Tungsten carbide contained in the sludge has a disadvantage in that the conversion efficiency to tungstic acid and cobalt, nickel recovery efficiency is lowered when the temperature is lower than 75 ° C. The reaction may not occur effectively.

상기 a) 단계에서 상기 초경합금 슬러지는 왕수 1L 당 5 ~ 300g을 투입하는 것이 좋으며, 상기 b) 단계에서 교반은 15 ~ 120분 동안 수행하여 반응이 충분이 일어나게 하는 것이 좋다. In step a), the cemented carbide sludge is preferably added 5 to 300g per 1L of aqua regia, and in step b), stirring is preferably performed for 15 to 120 minutes to allow sufficient reaction to occur.

상기 c) 단계에서 회수된 텅스텐산을 암모니아수에 용해한 후 여과하여 미용해 불순물잔사를 제거하고 염산을 첨가, 가열함으로서 고순도 텅스텐산을 제조할 수 있다.상기 c)단계에서 분리된 텅스텐산을 물로 세척하여 텅스텐산에 흡착되어 있는 불순물과 산을 제거할 수 있다.The tungstic acid recovered in step c) is dissolved in ammonia water, filtered to remove impurities, unresolved impurity residues, and hydrochloric acid may be added and heated to prepare high purity tungstic acid. The tungstic acid separated in step c) is washed with water. In this way, impurities and acids adsorbed on the tungstic acid can be removed.

본 발명은 상기 d)단계에서, b)단계의 여과 분리하여 얻어진 여과액의 pH를 5 ~ 7 ,바람직하게는 6.5로 조절하여 코발트수산화물과 니켈수산화물을 생성시켜 이를 회수하는 단계를 포함하며, 상기 d)단계에서 pH 조절은 수산화나트륨, 암모니아수, 수산화칼륨, 석회석으로부터 선택되는 1종 이상의 염기성화합물을 첨가하여 조절하는 것을 특징으로 한다.The present invention comprises the step of adjusting the pH of the filtrate obtained by the filtration separation of step b) in step d) to 5-7, preferably 6.5 to produce cobalt hydroxide and nickel hydroxide to recover them. In step d), the pH is adjusted by adding at least one basic compound selected from sodium hydroxide, ammonia water, potassium hydroxide and limestone.

본 발명은 초경합금 슬러지로부터 텅스텐, 코발트, 니켈을 회수함에 있어서, 종래 발명에 비하여 에너지 소모가 많은 산화공정을 거치지 않고 간단한 공정으로 고효율의 텅스텐, 코발트, 니켈을 회수할 수 있는 장점이 있다. 보다 구체적으로 초경합금 슬러지를 왕수에 투입하여 고온에서 반응시킴으로써 텅스텐을 100%에 가까운 효율로 회수 할 수 있는 장점이 있다. 그리고 여과액을 pH를 조절하는 간단한 공정을 통해서 코발트와 니켈을 95%이상의 고효율로 회수할 수 있는 장점이 있다.The present invention has the advantage of recovering tungsten, cobalt, nickel from a cemented carbide sludge in a simple process without a high energy consumption oxidation process compared to the conventional invention. More specifically, there is an advantage that the tungsten can be recovered with efficiency close to 100% by adding cemented carbide sludge to aqua regia and reacting at high temperature. In addition, cobalt and nickel can be recovered with a high efficiency of more than 95% through a simple process of adjusting the pH of the filtrate.

이하는 본 발명의 구체적인 설명을 위하여 일예를 들어 설명하는 바, 본 발명이 하기 실시 예에 한정되는 것은 아니다.Hereinafter, the present invention will be described by way of example for specific description of the present invention, but the present invention is not limited to the following examples.

[실시예1]Example 1

유리 반응조에 초경합금 슬러지 50g을 100vol.%왕수 1L에 투입한 후 100℃에서 마그네틱 바를 이용하여 60분 동안 교반하였다. 상기 교반된 혼합액을 실온으로 냉각한 다음 여과 분리하여 텅스텐산을 회수하였다. 분리된 텅스텐산은 50ml증류수로 3차례 세척한 후 건조하였다. 상기 회수된 텅스텐산은 25vol.% 암모니아수에 용해한 후 여과하여 미용해 불순물을 제거하였다. 불순물을 제거한 텅스텐 용액 100ml에 진한염산 1당량을 첨가한 후 100℃로 가열하여 고순도 텅스텐산을 제조하였다. 수소분위기에서 환원하여 텅스텐 분말을 얻었다. 그리고 상기 여과 분리하여 얻어진 여과액에 수산화나트륨을 넣어 pH를 6.5으로 맞춘 후, 여과 분리하여 생성된 코발트수산화물과 니켈수산화물을 회수하였다.50 g of cemented carbide sludge was added to 1 L of 100 vol.% Aqua regia in a glass reactor and then stirred at 100 ° C. for 60 minutes using a magnetic bar. The stirred mixture was cooled to room temperature and then filtered to recover tungstic acid. The separated tungstic acid was washed three times with 50 ml distilled water and dried. The recovered tungstic acid was dissolved in 25 vol.% Ammonia water and filtered to remove undissolved impurities. High purity tungstic acid was prepared by adding 1 equivalent of concentrated hydrochloric acid to 100 ml of the tungsten solution from which impurities were removed, followed by heating to 100 ° C. Tungsten powder was obtained by reducing in a hydrogen atmosphere. And sodium hydroxide was added to the filtrate obtained by the filtration separation to adjust the pH to 6.5, and the cobalt hydroxide and the nickel hydroxide produced by the filtration separation were recovered.

상기 회수된 텅스텐, 코발트, 니켈의 회수율은 각각 100%이었다.The recoveries of the recovered tungsten, cobalt and nickel were 100%, respectively.

[실시예2]Example 2

유리 반응조에 초경합금 슬러지 50g을 25vol.%왕수 1L에 투입한 후 80℃에서 마그네틱 바를 이용하여 120분 동안 교반하였다. 상기 교반된 혼합액을 실온으로 냉각한 다음 여과 분리하여 텅스텐산을 회수하였다. 회수된 텅스텐산을100 vol.%암모니아수로 용해한 다음 여과하여 미용해 불순물잔사들을 제거하였다. 여과액에 염산 1당량을 가한 다음 100℃로 가열하여 고순도 텅스텐산을 제조하였다. 분리된 텅 스텐산은 50ml증류수로 3차례 세척한 후 건조하였다. 그리고 상기 여과 분리하여 얻어진 여과액에 수산화나트륨을 넣어 pH를 6.5으로 맞춘 후, 여과 분리하여 생성된 코발트수산화물과 니켈수산화물을 회수하였다. 상기 회수된 텅스텐산을 수소분위기에서 환원하여 텅스텐 분말을 얻었다.50 g of cemented carbide sludge was added to 1 L of 25 vol.% Aqua regia in a glass reactor and then stirred at 80 ° C. for 120 minutes using a magnetic bar. The stirred mixture was cooled to room temperature and then filtered to recover tungstic acid. The recovered tungstic acid was dissolved in 100 vol.% Ammonia water and then filtered to remove impurities. Hydrochloric acid was added to the filtrate and then heated to 100 ° C. to prepare high purity tungstic acid. The separated tungstic acid was washed three times with 50 ml distilled water and dried. And sodium hydroxide was added to the filtrate obtained by the filtration separation to adjust the pH to 6.5, and the cobalt hydroxide and the nickel hydroxide produced by the filtration separation were recovered. The recovered tungstic acid was reduced in a hydrogen atmosphere to obtain tungsten powder.

상기 회수된 텅스텐의 회수율은 100%이며, 코발트 니켈의 회수율은 각각 90%이였다.The recovery of the recovered tungsten was 100%, and the recovery of the cobalt nickel was 90%, respectively.

[실시예3]Example 3

상기 실시예1과 동일하게 실시하되 초경합금 슬러지를 100g을 투입한 것 외에는 상기 실시예1과 동일하게 실시하였다.The same process as in Example 1 was carried out, except that 100 g of cemented carbide sludge was added thereto.

상기 회수된 텅스텐, 코발트, 니켈의 회수율은 각각 100%이었다.The recoveries of the recovered tungsten, cobalt and nickel were 100%, respectively.

[비교예1][Comparative Example 1]

상기 실시예1과 동일하게 실시하되 교반온도를 25℃로 유지한 점 외에는 상기 실시예1과 동일하게 실시하였다.The same procedure as in Example 1 was conducted except that the stirring temperature was maintained at 25 ° C.

상기 회수된 텅스텐산의 회수율은 95%이며, 코발트와 니켈의 회수율은 각각 83, 86%이였다.The recovery rate of the recovered tungstic acid was 95%, and the recovery rates of cobalt and nickel were 83 and 86%, respectively.

도 1은 본 발명에 따른 텅스텐 초경합금 슬러지로부터 텅스텐과 코발트의 회수공정개발을 도시한 블록도 이다.1 is a block diagram showing the development of the recovery process of tungsten and cobalt from tungsten cemented carbide sludge according to the present invention.

Claims (9)

왕수에 초경합금 슬러지를 투입하여, 상기 초경합금 슬러지에 함유된 탄화텅스텐을 텅스텐산으로 분리 회수하는 것을 특징으로 하는 초경합금 슬러지 처리방법.The cemented carbide sludge treatment method of the tungsten carbide contained in the cemented carbide sludge by separating the tungsten carbide into the aqua regia. 제 1항에 있어서,The method of claim 1, 상기 텅스텐산의 분리 회수에 의해 얻어진 여액의 pH를 조절하여 상기 여액에 함유된 코발트, 니켈을 각각 코발트수산화물, 니켈수산화물로 분리 회수하는 단계를 더 포함하는 것을 특징으로 하는 초경합금 슬러지 처리방법.Cemented carbide sludge treatment method further comprising the step of separating and recovering cobalt and nickel contained in the filtrate by cobalt hydroxide and nickel hydroxide, respectively, by adjusting the pH of the filtrate obtained by separating and recovering tungstic acid. 제 1항에 있어서,The method of claim 1, a)왕수에 초경합금 슬러지를 투입하여 혼합액을 제조하는 단계;a) preparing a mixed solution by adding cemented carbide sludge to aqua regia; b)상기 혼합액을 교반하고 여과 분리하여 텅스텐산을 회수하는 단계; b) recovering tungstic acid by stirring and filtering the mixed solution; c)상기 회수된 텅스텐산을 암모니아수에 용해한 후 여과하여 미용해 불순물을 제거하고 염산을 첨가, 가열하여 고순도 텅스텐산을 제조하는 단계; 및c) dissolving the recovered tungstic acid in ammonia water, filtering to remove undissolved impurities, and adding and heating hydrochloric acid to produce high purity tungstic acid; And d)상기 b)단계에서 여과 분리하여 얻어진 여액의 pH를 5 ~ 7로 조절하여 코발트수산화물과 니켈수산화물을 생성하고 이를 회수하는 단계;d) adjusting the pH of the filtrate obtained by the filtration separation in step b) to 5 to 7 to produce cobalt hydroxide and nickel hydroxide and recovering them; 를 포함하는 초경합금 슬러지 처리방법.Cemented carbide sludge treatment method comprising a. 제 3항에 있어서,The method of claim 3, wherein 상기 a) 단계에서 왕수의 농도는 25 ~ 100vol%인 초경합금 슬러지 처리방법.Cemented carbide sludge treatment method of the aqua regia concentration in step a) is 25 ~ 100vol%. 제 3항에 있어서,The method of claim 3, wherein 상기 b)단계에서 상기 교반은 75 ~ 100℃에서 이루어지는 것을 특징으로 하는 초경합금 슬러지 처리방법.The cemented carbide sludge treatment method of step b), wherein the stirring is performed at 75 to 100 ° C. 제 3항에 있어서,The method of claim 3, wherein 상기 c)단계에서 pH 조절은 수산화나트륨, 암모니아수, 수산화칼륨, 석회석으로부터 선택되는 1종 이상의 염기성화합물을 첨가하여 조절하는 것을 특징으로 하는 초경합금 슬러지 처리방법.Cemented carbide sludge treatment method characterized in that the pH adjustment in step c) is adjusted by adding one or more basic compounds selected from sodium hydroxide, ammonia water, potassium hydroxide, limestone. 제 3항에 있어서,The method of claim 3, wherein 상기 a) 단계에서 상기 초경합금 슬러지는 왕수 1L 당 5 ~ 300g을 투입하는 것을 특징으로 하는 초경합금 슬러지 처리방법.The cemented carbide sludge treatment method of step a), wherein the cemented carbide sludge is added to 5 ~ 300g per 1L of aqua regia. 제 3항에 있어서,The method of claim 3, wherein 상기 b) 단계에서 교반은 15 ~ 120분 동안 수행하는 초경합금 슬러지 처리방법.Cemented carbide sludge treatment method performed in step b) is carried out for 15 to 120 minutes. 제 3항에 있어서,The method of claim 3, wherein 상기 c)단계에서 분리하여 회수된 고순도 텅스텐산을 물로 세척하여 불순물을 제거하는 단계;를 더 포함하는 초경합금 슬러지 처리방법.Cemented carbide sludge treatment method further comprising the step of removing impurities by washing the high-purity tungstic acid separated and recovered in step c) with water.
KR1020090089334A 2009-09-22 2009-09-22 Recovery of tungsten and cobalt from hardmetal alloy sludge by the hydrometallurgical process using aqua regia KR101143566B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090089334A KR101143566B1 (en) 2009-09-22 2009-09-22 Recovery of tungsten and cobalt from hardmetal alloy sludge by the hydrometallurgical process using aqua regia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090089334A KR101143566B1 (en) 2009-09-22 2009-09-22 Recovery of tungsten and cobalt from hardmetal alloy sludge by the hydrometallurgical process using aqua regia

Publications (2)

Publication Number Publication Date
KR20110032033A true KR20110032033A (en) 2011-03-30
KR101143566B1 KR101143566B1 (en) 2012-05-09

Family

ID=43936838

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090089334A KR101143566B1 (en) 2009-09-22 2009-09-22 Recovery of tungsten and cobalt from hardmetal alloy sludge by the hydrometallurgical process using aqua regia

Country Status (1)

Country Link
KR (1) KR101143566B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182094A (en) * 2021-09-16 2022-03-15 王仕斌 Comprehensive recycling method for valuable metals in hard alloy grinding material
CN115305364A (en) * 2022-09-16 2022-11-08 江西理工大学 Method for decomposing and recycling tungsten-containing waste by using phosphorus-nitric mixed acid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431706B1 (en) * 2011-12-23 2014-08-21 희성금속 주식회사 A preparation method of tungsten compounds and cobalt compounds through a tungsten carbide scrap recycling
CN104386755B (en) * 2014-11-06 2016-06-08 上海阿拉丁生化科技股份有限公司 A kind of preparation method of high-purity wolframic acid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI64646C (en) * 1980-06-19 1983-12-12 Outokumpu Oy HYDROMETALLURGICAL FOERFARANDE FOER UTVINNING AV VAERDEMETALLER UR METALLISKA LEGERINGAR
JP4957432B2 (en) * 2007-07-27 2012-06-20 トヨタ自動車株式会社 Catalytic metal recovery method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182094A (en) * 2021-09-16 2022-03-15 王仕斌 Comprehensive recycling method for valuable metals in hard alloy grinding material
CN114182094B (en) * 2021-09-16 2024-05-24 王仕斌 Comprehensive recycling method for valuable metals in hard alloy grinding material
CN115305364A (en) * 2022-09-16 2022-11-08 江西理工大学 Method for decomposing and recycling tungsten-containing waste by using phosphorus-nitric mixed acid

Also Published As

Publication number Publication date
KR101143566B1 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
KR102008582B1 (en) A Method for Preparing Nickel-Cobalt-Manganese Complex Sulfate Solution by Recycling A Waste Cathode Material of Lithium Secondary Battery Using Solvent Extraction Process to Control Impurities
CN105969993B (en) A kind of method of high arsenic smoke dust synthetical recovery processing
CN103255289B (en) Method for removing arsenic matte by alkaline leaching at oxygen pressure and recovering arsenic
JP5483009B2 (en) A method of recovering tungsten from cemented carbide scrap.
JP5344154B2 (en) Tungsten recovery process
CN110205482B (en) Comprehensive recovery method of cobalt-removing slag of zinc smelting organic matter
CN106119560B (en) Zinc-cobalt separation method
KR101191042B1 (en) Process for making high purified nickel sulfate from nickel concentrates, nickel matte
JP5344170B2 (en) Tungsten recovery process
EP3345701A1 (en) Process for producing nickel powder
KR101431706B1 (en) A preparation method of tungsten compounds and cobalt compounds through a tungsten carbide scrap recycling
CN105154683A (en) Method for separating and recycling valuable metal in tungsten slag
KR101581860B1 (en) Method for preparing high-purity ammonium paratungstate using waste super hard metal scrap
CN112226630B (en) Method for extracting valuable metal elements from laterite-nickel ore by hydrochloric acid leaching method and acid-base regeneration circulation
KR101239861B1 (en) Recovery Method of Tungsten and Cobalt from Scrapped Hard Metal
JP2018062691A (en) Method for collecting tungsten concentrate from cobalt-tungsten raw material
CN108950199A (en) A method of it being used for the nickel and cobalt solution of synthesis of ternary presoma using the preparation of nickel sulfide cobalt ore
CN102304620A (en) Comprehensive recovery and treatment method of waste nickel-hydrogen battery
KR101143566B1 (en) Recovery of tungsten and cobalt from hardmetal alloy sludge by the hydrometallurgical process using aqua regia
CN112458280A (en) Method for extracting valuable metals by leaching low grade nickel matte with acidic etching solution
CN103194604A (en) Method for recovering tantalum, silver and manganese in waste and old tantalum capacitor
CN101693554A (en) Method for extracting vanadium pentoxide from stone coal ores
CN113060765A (en) Oxygen-enriched decomposition process of tungsten raw material
JP6726396B2 (en) Nickel powder manufacturing method
CN114875252B (en) Recovery method of tungsten-containing waste

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170317

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190430

Year of fee payment: 8