KR20110029987A - The farm scale dual fuel engine generator using biogas and biodiesel - Google Patents
The farm scale dual fuel engine generator using biogas and biodiesel Download PDFInfo
- Publication number
- KR20110029987A KR20110029987A KR20090087890A KR20090087890A KR20110029987A KR 20110029987 A KR20110029987 A KR 20110029987A KR 20090087890 A KR20090087890 A KR 20090087890A KR 20090087890 A KR20090087890 A KR 20090087890A KR 20110029987 A KR20110029987 A KR 20110029987A
- Authority
- KR
- South Korea
- Prior art keywords
- biogas
- biodiesel
- fuel
- supply pump
- glycerin
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/06—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
- F02D19/08—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
- F02D19/081—Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/02—Biological treatment
- C02F11/04—Anaerobic treatment; Production of methane by such processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/14—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours using industrial or other waste gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/20—Sludge processing
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
본 발명은 혼소엔진 발전시스템에 관한 것으로, 바이오디젤의 생산과정에서 발생하는 글리세린을 바이오가스 생산의 원료로 활용하는 혼소엔진 발전시스템에 관한 것이다.The present invention relates to a mixed-use engine power generation system, and relates to a mixed-use engine power generation system utilizing glycerin generated in the production process of biodiesel as a raw material for biogas production.
최근, 지구온난화 방지를 위한 온실가스의 감축과 대체에너지 생산을 위하여 가축분뇨, 음식물쓰레기, 도축부산물 등의 유기성 폐자원을 원료로 활용하여 바이오가스를 생산화하는 바이오가스 생산공정과, 생산된 바이오가스를 활용하기 위한 연구에 관심이 집중되고 있다.Recently, the biogas production process of producing biogas using organic waste resources such as livestock manure, food waste and slaughter by-products as raw materials for the reduction of greenhouse gases and production of alternative energy to prevent global warming. Attention has been focused on the use of gas.
한편, 돼지, 소 , 말, 닭 등 가축을 사육하는 축산농가는 사육과정에서 배출되는 가축분뇨를 직접 또는 위탁 처리해야하는 의무가 있어, 가축분뇨를 퇴비처리 또는 액비처리하여 농경지에 환원하거나 정화처리하여 하천으로 방류하여 왔다. 그러나 충분히 발효되지 않은 퇴비, 액비는 악취발생 및 저품질의 문제로 농경지에 환원하는데 많은 어려움이 있으며, 정화처리 하더라도 발생분뇨가 고농도의 유기물을 함유하고 있어 법적방류수질 기준을 충족하여 하천으로 방류하는데 있어 기술적 어려움이 있었으며, 경제비용 또한 많이 소요되었다.On the other hand, livestock farms that raise livestock such as pigs, cows, horses, and chickens are obliged to directly or consign livestock manure discharged from the breeding process.The manure is composted or liquid-treated to reduce or purify farmland. It has been discharged into the river. However, compost and liquid fertilizers that are not sufficiently fermented have a lot of difficulty in reducing to farmland due to bad odor and low quality problems, and even when purified, manure generated contains high concentrations of organic matter and discharged into rivers by satisfying legal discharge water quality standards There were technical difficulties and economic costs were high.
따라서, 최근에는 가축분뇨의 자원화와 합리적인 관리를 위하여, 바이오가스 생산공정을 매개로 고농도의 유기물을 함유하는 가축분뇨로부터 바이오가스를 생산하고, 바이오가스를 생산하고 남은 혐기소화액을 퇴액비로 자원화하거나, 정화처리하는 방안이 고려되고 있다.Therefore, in recent years, for the purpose of resource management and rational management of livestock manure, biogas is produced from livestock manure containing a high concentration of organic matter through the biogas production process, and the remaining anaerobic digestion after the production of biogas is used as a composting ratio. For this reason, the method of purifying is considered.
한편, 상기 바이오가스의 전력변환을 위해 주로 혼소 또는 전소 엔진 및 마이크로터빈 엔진이 활용되고 있다. On the other hand, mixed power or combustion engine and micro-turbine engine are mainly used for power conversion of the biogas.
그리고, 엔진발전기는, 바이오가스만을 연료고 사용하는 전소엔진 발전기와, 일정량의 경유와 바이오가스를 혼합하여 연소하는 혼소엔진 발전기로 구분한다. The engine generator is divided into an all-engine engine generator that uses only biogas as a fuel and a mixed-electric engine generator that mixes and burns a certain amount of diesel and biogas.
이때, 상기 전소엔진발전기는 바이오가스 중 메탄의 함량의 55% 이하로 발생하는 경우 엔진의 점화에 문제가 발생하는 문제가 있어, 바이오가스의 공급이 안정적이고 바이오가스 중의 메탄농도가 60% 이상으로 일정하게 관리되는 경우 전소엔진 발전기가 용이하나, 그렇지 아니한 경우는 전력생산의 안정성을 확보하기 위해 경유를 보조연료로 사용하는 혼소엔진 발전기를 사용한다.At this time, the burner engine generator has a problem that the ignition of the engine occurs when the generation of less than 55% of the content of methane in the biogas, so that the supply of biogas is stable and the methane concentration in the biogas is 60% or more In case of constant management, all-engine generators are easy, but in other cases, mixed engine generators using diesel as auxiliary fuel are used to secure the stability of power generation.
한편, 농가형 바이오가스 플랜트의 경우, 바이오가스 생산의 주원료인 분이 뇨와 혼합되어 슬러리상으로 배출되는 특성이 있어 바이오가스 생산량이 적다. 또한, 사용자는 소규모 발전을 위한 엔진 시스템을 요구하는 경우가 많다. On the other hand, in the farm-type biogas plant, the main raw material of the biogas production is characterized in that the mixture of urine and discharged in the slurry phase is less biogas production. In addition, users often require engine systems for small-scale power generation.
따라서, 사용자는, 안정적인 바이오가스 발전을 위하여 메탄농도가 55% 이하에서는 엔진점화에 문제가 발생할 수 있는 전소엔진 시스템보다는 보조연료인 경유와 혼합하여 연소하는 혼소엔진시스템을 채택하는 편이 효율 및 유지관리 측면에서 더욱 유리하다.Therefore, for stable biogas power generation, users should adopt a mixed-use engine system that mixes and burns with diesel fuel as auxiliary fuel rather than all-engine system that may cause problems in engine ignition when methane concentration is below 55%. More advantageous in terms of
그러나, 혼소엔진시스템의 경우, 필수적으로 보조연료의 소모가 필요하며, 발전선비 규모에 따른 경제성 확보의 어려움이 상존하고, 특히 보조연료를 약 10-20% 사용한다하여도 발전시스템이 운전상 추가비용이 요구되는 단점이 있다. However, in the case of mixed engine systems, it is necessary to consume auxiliary fuel, and there is a difficulty in securing economic feasibility according to the size of the electricity generation expenses. There is a disadvantage in that cost is required.
따라서, 혼소엔진발전시스템에 대해서는 경유 등 화석연료의 분사량을 최소화하거나 출력에 따라 가스와 경유의 분사비를 최적화하는 제어기법을 개발하거나 연료공급장치를 개선하는 기술이 개발되고 있다.Therefore, technologies for improving the fuel supply system have been developed for the Honso engine power generation system to minimize the amount of injection of fossil fuels such as diesel, or to optimize the injection ratio of gas and diesel according to the output.
한편, 최근 폐식용유와 식물성유지를 재활용하여 석유수입을 줄일 수 있는 대체에너지로 각광받고 있는 바이오디젤은, 무독성의 생분해되는 재생에너지로서 경유에 바이오디젤 20% 첨가시 매연이 37.2% 감소하는 것으로 나타나고 있으며, 인화점(178˚C)이 경유보다 높아 보관 및 사용이 안전하고, 윤활성이 뛰어나 엔진의 성능을 향상시키고 엔진수명을 연장시킬 수 있는 특징이 있다. 또한, 바이오디젤은 디젤자동차기관의 개조없이 사용할 수 있어 기존 혼소엔진 시스템에 직접 적용할 수 있다.On the other hand, biodiesel, which has recently been spotlighted as an alternative energy source to reduce oil imports by recycling waste cooking oil and vegetable oils, is a non-toxic biodegradable renewable energy, which shows a 37.2% reduction in smoke when 20% biodiesel is added to diesel. In addition, the flash point (178 ˚C) is higher than diesel, safe to store and use, and excellent lubricity has the characteristics of improving the performance of the engine and extend the engine life. In addition, the biodiesel can be used without modification of the diesel vehicle engine can be directly applied to the existing mixed engine system.
그러나, 상기 바이오디젤의 생산과정에서 부산물로 발생하는 글리세린은 고농도의 유기성 폐기물로서 추가적인 정제과정을 거쳐 화장품 및 의약품의 원료인 글리세린으로 정제할 수 있으나, 정제공정이 고가이고 농가에서는 이러한 정제장치를 별도로 설치하고 가동할 수 있는 경제적, 기술적 능력이 부족하여 부산물인 글리세린의 처리에 어려움이 있다.However, glycerin produced as a by-product in the production of biodiesel can be purified into glycerin, which is a raw material of cosmetics and pharmaceuticals, after further purification as a high concentration of organic waste, but the purification process is expensive and farms separate such purification apparatus. Lack of economic and technical capacity to install and operate has difficulty in treating by-product glycerin.
따라서, 상기 바이오디젤 생성신 발생하는 글리세린을 재활용할 수 있고, 바 이오가스와 바이오디젤을 사용하여 동일한 발전기의 효율을 얻으면서, 연료 소비량을 줄일 수 있는 혼소엔진 발전시스템이 요구되었다. Accordingly, there is a need for a mixed-use engine power generation system capable of recycling the glycerin generated by the biodiesel production, and reducing the fuel consumption while obtaining the efficiency of the same generator using biogas and biodiesel.
본 발명은 상기와 같은 필요에 의해 발명된 것으로, 동일한 발전기의 효율을 얻으면서, 연료 소비량을 줄일 수 있고, 바이오디젤 생성시 발생하는 글리세린을 재활용할 수 있는 혼소엔진 발전시스템을 제공하는 것을 해결하고자 하는 과제로 한다.The present invention has been invented by the above needs, to achieve the same generator, to reduce the fuel consumption, to provide a mixed engine power generation system that can recycle the glycerin generated during biodiesel production. We assume problem to do.
상기와 같은 과제를 해결하기 위한 본 발명은, 바이오가스를 생산하는 바이오가스생산장치와; 바이오가스를 이송하는 가스송풍장치와; 연료를 공급하는 연료공급펌프와; 가스송풍장치로부터 바이오가스를 공급받고, 연료공급펌프로부터 연료를 공급받는 혼소엔진발전기와; 가스송풍장치와 연료공급펌프를 작동제어하여, 혼소엔진발전기로 공급되는 바이오가스와 연료의 혼합비를 제어하는 제어유닛를 포함하는 혼소엔진 발전시스템에 있어서, 바이오디젤을 생성해서 연료공급펌프로 공급하는 바이오디젤생산장치와; 바이오디젤 생산시 발생되는 글리세린을 바이오가스제조장치로 공급하는 글리세린공급장치가 보강구비되는 한편, 연료공급펌프가, 바이오디젤을 혼소엔진발전기로 공급하고, 제어유닛이, 가스송풍장치와 연료공급펌프를 작동제어하여, 가스송풍장치으로부터의 바이오가스와 연료공급펌프로부터의 바이오디젤의 혼합비를 제어하는 것을 특징으로 한다.The present invention for solving the above problems, the biogas production apparatus for producing a biogas; A gas blowing device for transferring biogas; A fuel supply pump for supplying fuel; A mixed engine generator for receiving biogas from the gas blower and receiving fuel from the fuel supply pump; In a mixed engine power generation system including a control unit for controlling a gas blowing device and a fuel supply pump to control a mixing ratio of biogas and fuel supplied to the mixed engine generator, the biodiesel is produced and supplied to the fuel supply pump. A diesel production apparatus; The glycerin supplying device for supplying the glycerin generated during biodiesel production to the biogas manufacturing apparatus is reinforced, while the fuel supply pump supplies the biodiesel to the mixed engine generator, the control unit, the gas blower and the fuel supply pump. It is characterized by controlling the mixing ratio of the biogas from the gas blower and the biodiesel from the fuel supply pump by operating control.
또한, 본 발명은, 상기 제어유닛이 글리세린공급장치로부터 바이오가스제조장치로의 글리세린 공급량을 제어하는 것을 특징으로 한다.In addition, the present invention is characterized in that the control unit controls the amount of glycerin supplied from the glycerin supply apparatus to the biogas production apparatus.
상기와 같은 본 발명에 따르면, 바이오가스와 바이오디젤을 사용할 수 있어 연료소비량을 줄일 수 있고, 바이오디젤 생성시 생성되는 글리세린을 재활용할 수 있어, 글리세린 처리가 용이한 효과가 있다.According to the present invention as described above, biogas and biodiesel can be used to reduce fuel consumption, and the glycerin produced during biodiesel production can be recycled, thus glycerin treatment is easy.
이하 첨부도면에 의거하여 상세히 설명한다.Hereinafter will be described in detail with reference to the accompanying drawings.
우선, 혼소엔진 발전기의 연료별 에너지 효율을 살펴보면 다음과 같다.First of all, the energy efficiency of each fuel generator of the Honso engine generator is as follows.
30kW급 혼소엔진발전기 출력부하별 에너지효율은 도 1과 같다.The energy efficiency for each output load of a 30kW class mixed-use engine generator is shown in FIG. 1.
상기 30kW급 혼소엔진발전기는, 열교환기 2개(판열교환기 열교환효율 28.51%, 배기가스열교환기 열교환율 29.04%)를 구비하고 있으며, 출력부하별 전기에너지 및 총에너지 효율을 평가하기 위해 경유만을 연료로 하여 에너지효율을 평가한 결과, 부하가 증가함에 따라 시스템 효율은 55.77%에서 94.66%까지 증가하였다.The 30kW class mixed-use engine generator is equipped with two heat exchangers (28.51% plate heat exchanger heat exchange efficiency, 29.04% exhaust gas heat exchanger heat exchange rate), and only diesel fuel to evaluate electric energy and total energy efficiency by output load. As a result of evaluating energy efficiency, the system efficiency increased from 55.77% to 94.66% as the load increased.
또한, 상기 혼소엔진발전기의 연료를 바이오가스 투입없이 경유와 바이오디젤을 혼합비율별 에너지효율을 살펴보면 도 2와 같다.In addition, the energy efficiency of the diesel fuel and biodiesel by mixing ratio is shown in FIG.
상기 바이오디젤은 100% 연료로 사용하였을 때 엔진의 노킹 또는 발전기 헌팅과 같은 문제는 발생하지 않았고, 이상소음이나 엔진의 이상 증상은 발생하지 않았다. The biodiesel did not cause problems such as knocking of the engine or hunting of the generator when used as 100% fuel, and did not generate abnormal noise or abnormal symptoms of the engine.
또한, 상기 바이오디젤을 사용할 경우 에너지효율은 89.69%로 경유를 사용 했을 때 94.66%보다 총에너지 효율은 낮게 나타났으나, 이는 실시예에 사용한 바이 오디젤이 경유보다 낮기 때문이며, 실시예에서 경유를 바이오디젤로 100% 대체 가능하는 것으로 나타났다.In addition, when using the biodiesel, the energy efficiency was 89.69%, and when diesel was used, the total energy efficiency was lower than 94.66%, but this was because the biodiesel used in the examples was lower than the diesel. 100% replaceable with biodiesel.
또한, 바이오가스와 바이오디젤 또는 디젤의 출력부하별 에너지 이용효율은 도 3과 같다. In addition, the energy utilization efficiency for each output load of biogas and biodiesel or diesel is as shown in FIG.
상기 30kW급 혼소엔진발전기를 이용하여 주연료는 67% 메탄 함량을 보이는 바이오가스와 보조연료는 BD0(바이오디젤 0%함유, 100%디젤유), BD25(바이오디젤 25%함유), BD50(바이오디젤 50% 함유), BD75(바이오디젤 75%함유), BD100(바이오디젤 100%함유)를 변화시켜 총에너지 이용효율을 평가한 결과 발전기 출력부하별로 바이오디젤의 함량이 증가할 수록 보조연료의 소모량이 줄어들고 바이오가스의 소모량이 증가하는 경향을 보였다. BD0에서 주연료는 출력부하가 0 - 27.4kW로 증가할 수록 0.78 - 9.30㎥/시간으로 나타났고, 보조연료는 1.4 - 2.3L/시간의 연료소비량을 보였으며, BD100에서 주연료는 출력부하가 0 - 27.4kW로 증가할 수록 1.04 - 9.84㎥/시간으로 나타났고, 보조연료는 1.1 - 2.1L/시간의 연료소비량을 보였다. 따라서 보조연료로 화석연료의 사용시보다 바이오디젤의 사용의 경우가 연료소비량이 적고, 매연 등의 발생을 감소시킬 수 있다.Biogas and auxiliary fuels with 67% methane content are BD0 (0% biodiesel, 100% diesel oil), BD25 (25% biodiesel), and BD50 (biodiesel). As a result of evaluating the total energy use efficiency by changing 50% of diesel), BD75 (75% of biodiesel) and BD100 (100% of biodiesel), the consumption of auxiliary fuel increased as the biodiesel content increased according to the generator output load. This tends to decrease and the consumption of biogas tends to increase. In BD0, the main fuel showed 0.78-9.30㎥ / hour as the output load increased from 0-27.4kW, the auxiliary fuel consumed 1.4-2.3L / hour, and the main fuel in BD100 As it increased from 0 to 27.4kW, it was 1.04-9.84㎥ / hour, and the auxiliary fuel showed 1.1-2.1L / hour fuel consumption. Therefore, the use of biodiesel as a secondary fuel is less fuel consumption than the use of fossil fuel, it is possible to reduce the generation of soot.
상기 도 3을 살펴보면, 총에너지효율은 최고 출력에서 BD0 - BD100까지 바이오디젤이 함량이 증가할 때 에너지 이용효율이 91.12, 89.778, 90.76, 91.82, 90.21%로 나타나 에너지 이용효율의 큰 차이없이 보조연료의 사용을 감소시킬 수 있는 것을 알 수 있다.Referring to FIG. 3, the total energy efficiency is 91.12, 89.778, 90.76, 91.82, 90.21% when the biodiesel content is increased from the highest output to BD0-BD100. It can be seen that the use of can be reduced.
상술한 바와 같이, 바이오가스와 바이오디젤을 사용하더라도 에너지효율에는 큰 차이가 없어, 바이오가스와 바이오디젤을 이용하는 것이 에너지효율면서 매우 유리하다.As described above, there is no significant difference in energy efficiency even if biogas and biodiesel are used, and it is very advantageous and energy-efficient to use biogas and biodiesel.
한편, 상기와 같은 바이오가스와 바이오디젤을 사용하는 본 발명에 따른 혼소엔진 발전시스템을 살펴보면 다음과 같다.On the other hand, look at the mixed engine power generation system according to the present invention using the biogas and biodiesel as described above are as follows.
도 4를 참조하면, 본 발명에 따른 혼소엔진 발전시스템은, 바이오가스를 생산하는 바이오가스생산장치(100)와, 바이오가스생산장치(100)와 연결되는 가스송풍장치(200)와, 연료를 공급하는 연료공급펌프(300)와, 바이오가스생산장치(100) 및 연료공급펌프(300)로부터 바이오가스 및 바이오디젤을 공급받는 혼소엔진발전기(400)와, 가스송풍장치(200)와 연료공급펌프(300)를 작동제어하는 제어유닛(500)과, 바이오디젤을 생성하는 바이오디젤생산장치(700)와, 바이오가스생산장치(100)와 연결된 글리세린공급장치(600)를 포함한다.Referring to FIG. 4, the mixed gasoline power generation system according to the present invention includes a
상기 바이오가스생산장치(100)는, 유기성 폐기물이 투입되는 바이오가스원료저장조(110)와, 바이오가스원료저장조(110)와 연결된 혐기소화조(120)와, 혐기소화조(120)와 연결된 바이오가스백(130)과, 바이오가스백(130)과 연결된 탈황장치(140)로 구성된다.The
상기 바이오가스원료저장조(110)는, 유기성 폐기물이 투입되는 통상의 것이다.The biogas raw
상기 혐기소화조(120)는, 혐기성 미생물을 통해 유기성 폐기물을 분해발효시키는 통상의 것으로, 바이오가스원료저장조(110)로부터 유기성 폐기물을 공급받아 이를 분해하여 바이오가스를 생산한다.The
상기 바이오가스백(130)는, 혐기소화조(120)로부터 바이오가스를 공급받아, 바이오가스를 저장하는 통상의 것이다.The
상기 탈황장치(140)는, 황화합물을 제거하기 위한 통상의 것으로, 바이오가스에 포함되어 있는 황화합물을 제거한다. 이때, 탈황장치(140)는 이미 알려져 있는 공정(흡착법, 흡수법, 미생물 분해법) 등이 이용될 수 있다. 한편, 탈황장치(140)는 제어유닛(500)에 의해 작동제어될 수 있다.The
상기 가스송풍장치(200)는, 별도로 전력을 공급받아 탈황된 바이오가스를 혼소엔진발전기(400)으로 공급하는 통상의 것이다.The gas blowing
상기 연료공급펌프(300)는, 바이오디젤저장조(740)의 바이오디젤을 혼소엔진발전기(400)에 공급하는 통상의 것이다.The fuel supply pump 300 is a conventional one for supplying the biodiesel of the
상기 혼소엔진발전기(400)는, 가스송풍장치(200)로부터 바이오가스를 공급받고, 연료공급펌프(300)로부터 연료를 공급받아 구동된다.The
상기 제어유닛(500)은, 가스송풍장치(200)와 연료공급펌프(300)를 작동제어하여, 혼소엔진발전기(400)로 공급되는 바이오가스와 바이오디젤의 혼합비를 조절한다. 이때, 제어유닛(500)의 설치위치는 한정되지 않으나 가스송풍장치(200) 또는 연료공급펌프(300)에 설치되는 것이 바람직하다.The
상기 바이오디젤생산장치(700)는, 바이오디젤원료저장조(710)와, 바이오디젤원료저장조(710)와 연결되는 반응조(720)와, 반응조(720)와 연결된 분리조(730)와, 분리조(730)와 연결된 바이오디젤저장조(740)로 구성된다.The
상기 바이오디젤원료저장조(710)는, 식물유지 또는 폐식용유가 공급되는 통 상의 탱크이다.The biodiesel raw
상기 반응조(720)는, 바이오디젤원료저장조(710)로부터 식물유지 또는 폐식용유를 공급받아 바이오디젤 및 글리세린을 생성하는 통상의 것으로, 자세한 설명은 생략하기로 한다.The
상기 분리조(730)는, 반응조(720)로부터의 바이오디젤 및 글리세린을 분리하는 통상의 것이다. 이때, 분리조(730)에는 바이오디젤과 글리세린을 뽑아내는 별도의 폄프(미도시)가 구비되어, 밀도차에 의해 상호 분리된 바이오디젤과 글리세린이 글리세린저장조(610)와 바이오디젤저장조(740)로 각각 분리되어 이송된다.The
상기 바이오디젤저장조(740)는, 분리조(730)로부터 바이오디젤을 공급받는 통상의 것이다. The
상기 글리세린공급장치(600)는, 글리세린저장조(610)와, 글리세린저장조(610)와 연결된 글리세린공급펌프(620)로 구성된다.The
상기 글리세린공급펌프(620)는, 글리세린저장조(610)로부터 바이오가스원료저장조(110)로 글리세린이 공급되도록 한다. The
이때, 상기 글리세린공급펌프(620)는, 제어유닛(500)에 의해 작동제어되어, 바이오가스원료저장조(110)로 공급되는 글리세린의 양을 제어한다. 따라서, 글리세린이 바이오가스원료저장조(110)로 안정적으로 공급될 수 있다.At this time, the
이하 본 발명에 따른 혼소엔진 발전시스템의 사용상태를 설명하면 다음과 같다.Hereinafter will be described the state of use of the mixed engine power generation system according to the present invention.
우선, 상기 바이오가스원료저장조(110)에 유기성 폐기물을 투입되면, 유기성 폐기물은 혐기소화조(120)로 이송된다.First, when the organic waste is put into the biogas raw
상기 혐기소화조(120)에 투입된 유기성 폐기물은 혐기성 미생물을 통해 분해되고, 분해과정에서 바이오가스가 생성된다.The organic waste put into the
이때, 상기 혐기소화조(120)에서 생성된 바이오가스는 바이오가스백(130)으로 이송되고, 탈황장치(140)를 매개로 바이오가스에 포함된 대량의 황화합물이 바이오가스로부터 제거된다.At this time, the biogas generated in the
이후 황화합물이 제거된 바이오가스는, 가스송풍장치(200)를 매개로 혼소엔진발전기(400)로 공급된다.The biogas from which the sulfur compound is removed is then supplied to the
한편, 상기 바이오디젤원료저장조(710)로 식물유지 또는 폐식용유가 공급되면, 식물유지 또는 폐식용유는 반응조(720)로 이송된다.On the other hand, when the vegetable oil or waste cooking oil is supplied to the biodiesel raw
상기 반응조(720)에 투입된 식물유지 또는 폐식용유는 반응조(720) 내의 화학반응을 통해 분해되고, 분해과정에서 바이오디젤 및 글리세린이 생성된다.Plant oil or waste cooking oil introduced into the
상기와 같이 생성된 바이오디젤 및 글리세린은 분리조(730)로 이송되고, 분리조(730)에서 각각 분리되어 글리세린저장조(610) 및 바이오디젤저장조(740)로 각각 이송된다.The biodiesel and glycerin produced as described above are transferred to the
이때, 상기 바이오디젤은 연료공급펌프(300)에 의해 혼소엔진발전기(400)로 공급되고, 혼소엔진발전기(400)로 공급된 바이오디젤은 바이오가스와 혼합된다.In this case, the biodiesel is supplied to the
여기서, 상기 제어유닛(500)은, 가스송풍장치(200)와 연료공급펌프(300)를 작동제어하여, 혼소엔진발전기(400)로 공급되는 바이오가스 및 바이오디젤의 양을 조절하여, 바이오가스와 바이오디젤이 적정 혼합비를 이루도록 한다.Here, the
그리고, 상기 글리세린저장조(610)에 저장된 글리세린은 글리세린공급펌프(620)에 의해 바이오가스원료저장조(110)으로 유입된다. 이때, 제어유닛(500)은 글리세린공급펌프(620)를 작동제어하여, 글리세린저장조(610)로부터 바이오가스원료저장조(110)로의 글리세린양을 조절한다.In addition, the glycerin stored in the
계속해서, 상기와 같이 바이오가스원료저장조(110)로 유입된 글리세린은 상술한 과정과 동일한 분해과정을 거쳐, 글리세린의 분해를 통해 다량의 바이오가스가 생산된다. Subsequently, the glycerin introduced into the biogas raw
이하 본 발명에 따른 효과를 설명하면 다음과 같다.Hereinafter, the effects of the present invention will be described.
상기 글리세린은, 분해시 유기성 폐기물보다 수십배 많게 바이오가스가 생성된다. 따라서, 소량의 글리세린으로 많은 양의 바이오가스를 생산할 수 있어, 상대적으로 유기성 폐기물을 적게 소비할 수 있다.The glycerin is biogas generated tens of times more than organic waste during decomposition. Therefore, a small amount of glycerin can produce a large amount of biogas, and can consume relatively less organic waste.
즉, 바이오가스 생산공정에서 가축분뇨만을 원료로 이용하는 경우, 가축분뇨 톤 당 메탄 생산량이 낮아(20-30㎥/톤), 재생에너지의 생산 효과가 낮으나, 바이오디젤의 생산과정에서 발생하는 부산물인 글리세린을 원료로 사용함으로써 혐기소화조를 안정적으로 운전하면서 바이오가스 생산량(100-130㎥/톤)을 증가시킬 수 있다. 한편, 혐기소화조의 운전에서 바이오가스를 안정적으로 생산하기 위해서는 pH, 온도, C/N비 등 운전인자를 안정적으로 유지하는 것이 요구되며, 가축분뇨는 pH의 변화를 완충하는데 요구되는 충분한 알칼리도를 지니고 있어 바이오디젤에서 생산 되는 글리세린을 혐기소화조에 유입하더라도, pH의 변동없이 안정적으로 바이오가스가 생산된다. In other words, when only livestock manure is used as a raw material in the biogas production process, the amount of methane produced per tonne of livestock manure is low (20-30㎥ / ton), and the production effect of renewable energy is low. By using glycerin as a raw material, biogas production (100-130m 3 / ton) can be increased while operating anaerobic digestion tank stably. On the other hand, in order to produce biogas stably in the operation of anaerobic digestion tanks, it is required to maintain operating factors such as pH, temperature, C / N ratio, and livestock manure has sufficient alkalinity required to buffer the pH change. Even if the glycerin produced in biodiesel is introduced into the anaerobic digestion tank, the biogas is stably produced without changing the pH.
또한, 유기성 폐기물을 혐기소화시켜 생산한 바이오가스와 폐식용유 등을 화학반응시켜 생산한 바이오디젤을 혼소엔진발전의 보조연료로 사용하여 화석연료를 전혀 사용하지 않고 바이오가스와 바이오디젤만을 연료로 하는 엔진발전시스템의 구성이 가능하다. 이 경우 화석연료(경유)를 바이오디젤로 대체하여 매연의 발생을 현저히 줄일 수 있으며, 바이오디젤은 윤활성이 뛰어나 엔진의 내구성과 성능을 향상시키는 특성이 있어, 미래에 화석연료에 의지하지 않는 바이오에너지 발전체계를 확립할 수 있다.In addition, biodiesel produced by anaerobic digestion of organic wastes and waste cooking oil is used as a secondary fuel for blended engine power generation, so that only biogas and biodiesel are used as fuel without fossil fuel. It is possible to configure the engine power generation system. In this case, fossil fuels (light oil) can be replaced with biodiesel to significantly reduce the generation of soot. Biodiesel has excellent lubricity, which improves the durability and performance of the engine. A development system can be established.
또한, 국제사회의 정치적, 경제적 의도에 따라 크게 변동할 수 있는 화석연료를 직접 대체할 수 있어, 경제적이고 친환경적인 대체에너지 생산시스템을 구비할 수 있게 된다.In addition, it is possible to directly replace the fossil fuel that can vary greatly depending on the political and economic intentions of the international community, it is possible to have an economical and environmentally friendly alternative energy production system.
더불어, 우리나라는 2013년부터 온실가스 의무감축국에 포함이 확실시되고 있어 화석연료사용을 대체하고 바이오가스와 바이오디젤을 이용하는 엔진발전 시스템을 구축함으로써, 온실가스를 감축할 수 있는 기술체계를 확립할 수 있다.In addition, Korea has been confirmed to be included in the mandatory reduction of greenhouse gases since 2013, so that it is possible to establish a technical system to reduce greenhouse gases by replacing fossil fuels and establishing an engine power generation system using biogas and biodiesel. have.
이에 부가하여, 상기 바이오디젤의 생산과정에서 발생하는 부산물인 글리세린을 혐기소화조에 이송시켜 바이오가스 생산의 원료로 활용함으로써 에너지 생산과정에서 발생하는 폐기물을 시스템 내에서 처리할 수 있어, 부가적인 폐기물의 처리비용을 절감하고 폐기물을 발생하지 않는 친환경적 자원순환형 에너지생산 시스템을 구축할 수 있다. In addition, glycerine, a by-product generated in the production of the biodiesel, is transferred to an anaerobic digester and used as a raw material for biogas production, so that wastes generated in the energy production process can be processed in the system. It is possible to establish an eco-friendly resource recycling energy production system that reduces the processing cost and generates no waste.
도 1은 30kW급 혼소발전기 출력부하별 에너지효율을 나타낸 실시예이고,1 is an embodiment showing the energy efficiency according to the output load of the 30kW mixed-generation generator,
도 2는 경유와 바이오디젤의 혼합비율별 에너지효율을 나타낸 실시예이고,Figure 2 is an embodiment showing the energy efficiency according to the mixing ratio of diesel and biodiesel,
도 3은 바이오가스와 바이오디젤 또는 디젤의 출력부하별 에너지 이용효율을 나타낸 실시예이고,Figure 3 is an embodiment showing the energy utilization efficiency according to the output load of biogas and biodiesel or diesel,
도 4는 본 발명에 따른 혼소엔진 발전시스템을 나타낸 구성도이다. Figure 4 is a block diagram showing a mixed engine power generation system according to the present invention.
- 첨부도면의 주요부분에 대한 용어설명 --Explanation of terms for main parts of attached drawings-
100; 바이오가스생산장치 110; 바이오가스원료저장조100;
120; 혐기소화조 130; 바이오가스백120;
140; 탈황장치 200; 가스송풍장치140;
300; 연료공급펌프 400; 혼소엔진발전기300;
500; 제어유닛 600; 글리세린공급장치500;
610; 글리세린저장조 620; 글리세린공급펌프610;
630; 글리세린공급제어유닛 700; 바이오디젤원료저장조630; Glycerin
710; 반응조 730; 분리조710;
740; 바이오디젤저장조740; Biodiesel Storage Tank
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090087890A KR101129392B1 (en) | 2009-09-17 | 2009-09-17 | The farm scale dual fuel engine generator using biogas and biodiesel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090087890A KR101129392B1 (en) | 2009-09-17 | 2009-09-17 | The farm scale dual fuel engine generator using biogas and biodiesel |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110029987A true KR20110029987A (en) | 2011-03-23 |
KR101129392B1 KR101129392B1 (en) | 2012-03-26 |
Family
ID=43935804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20090087890A KR101129392B1 (en) | 2009-09-17 | 2009-09-17 | The farm scale dual fuel engine generator using biogas and biodiesel |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101129392B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112983635A (en) * | 2021-03-03 | 2021-06-18 | 广东海洋大学 | Water hyacinth methane utilization system and method |
KR102307333B1 (en) * | 2021-05-06 | 2021-09-29 | 이지숙 | Bio generation plant |
KR102347295B1 (en) * | 2021-06-15 | 2022-01-04 | 심인철 | Bio generation plant |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101650086B1 (en) | 2014-12-02 | 2016-08-23 | 한국에너지기술연구원 | Mixed fuel combustion apparatus of bio-oil and petroleum oil and method for producing heat energy using the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5036938B2 (en) * | 2001-07-12 | 2012-09-26 | 前澤工業株式会社 | Organic waste combined treatment apparatus including combination of biogas production apparatus and biodiesel production apparatus, and organic waste treatment method using the same |
KR20100098071A (en) * | 2009-02-27 | 2010-09-06 | 한경대학교 산학협력단 | Green energy system |
-
2009
- 2009-09-17 KR KR20090087890A patent/KR101129392B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112983635A (en) * | 2021-03-03 | 2021-06-18 | 广东海洋大学 | Water hyacinth methane utilization system and method |
KR102307333B1 (en) * | 2021-05-06 | 2021-09-29 | 이지숙 | Bio generation plant |
KR102347295B1 (en) * | 2021-06-15 | 2022-01-04 | 심인철 | Bio generation plant |
Also Published As
Publication number | Publication date |
---|---|
KR101129392B1 (en) | 2012-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Náthia-Neves et al. | Anaerobic digestion process: technological aspects and recent developments | |
Li et al. | Wet wastes to bioenergy and biochar: A critical review with future perspectives | |
Khalil et al. | Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia | |
Thiruselvi et al. | A critical review on global trends in biogas scenario with its up-gradation techniques for fuel cell and future perspectives | |
Budzianowski | A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment | |
Aragón-Briceño et al. | Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge | |
Martins das Neves et al. | Biogas production: new trends for alternative energy sources in rural and urban zones | |
CN103722002B (en) | Based on the consumer waste comprehensively processing method of anaerobic digestion and hydrothermal carbonization | |
Chowdhury | Technical-economical analysis of anaerobic digestion process to produce clean energy | |
Wu et al. | Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system | |
Loganath et al. | Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors | |
WO2017000444A1 (en) | Biochemical-thermochemical method and system for multipoint crosslinking biomass waste | |
KR101775696B1 (en) | Manufacturing method of fuel using sludge | |
CN110465534B (en) | Comprehensive energy utilization system for farm | |
KR101129392B1 (en) | The farm scale dual fuel engine generator using biogas and biodiesel | |
Kozłowski et al. | Current state, challenges and perspectives of biological production of hydrogen in dark fermentation process in Poland | |
KR20150049087A (en) | Methods and system to energize that containing organic waste, domestic waste | |
Kalyuzhnyi | Energy potential of anaerobic digestion of wastes produced in Russia via biogas and microbial fuel cell technologies | |
Harsha et al. | Art of anaerobic digestion: An overview | |
CN103629659A (en) | Process for producing heat by wastewater and biomass | |
Marimuthu et al. | A critical review on potential of energy recovery and carbon saving through anaerobic digestion method in India | |
CN110950516A (en) | Comprehensive treatment system and method for livestock and poultry manure and household garbage | |
Jazbec et al. | Wastewater gas recovery opportunities in a circular economy | |
Singh et al. | A Review on Advancements in Biogas Technologies | |
Sebola et al. | Production of biogas through anaerobic digestion of various waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160225 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170313 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190403 Year of fee payment: 8 |