KR20110021713A - 변속 가능한 동력원으로부터 전력을 생산하는 기계를 위한 변속 장치, 그러한 장치를 구비한 전력 생산용 유닛과 풍력 터빈 및 변속비 조절 방법 - Google Patents

변속 가능한 동력원으로부터 전력을 생산하는 기계를 위한 변속 장치, 그러한 장치를 구비한 전력 생산용 유닛과 풍력 터빈 및 변속비 조절 방법 Download PDF

Info

Publication number
KR20110021713A
KR20110021713A KR1020107019903A KR20107019903A KR20110021713A KR 20110021713 A KR20110021713 A KR 20110021713A KR 1020107019903 A KR1020107019903 A KR 1020107019903A KR 20107019903 A KR20107019903 A KR 20107019903A KR 20110021713 A KR20110021713 A KR 20110021713A
Authority
KR
South Korea
Prior art keywords
speed
transmission
elements
paths
input
Prior art date
Application number
KR1020107019903A
Other languages
English (en)
Inventor
루멘 안토노브
버나드 퐁네뜨
카를 엠. 드 브리스
Original Assignee
에스4 에너지 비.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스4 에너지 비.브이. filed Critical 에스4 에너지 비.브이.
Publication of KR20110021713A publication Critical patent/KR20110021713A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/102Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts the input or output shaft of the transmission is connected or connectable to two or more differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0078Linear control, e.g. PID, state feedback or Kalman
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20012Multiple controlled elements
    • Y10T74/20018Transmission control

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Structure Of Transmissions (AREA)

Abstract

동일한 두 개의 차동 메카니즘들(13, 113)이 속도 상승 장치(4)에 의해 풍력 발전기의 회전자(1)에 연결된 입력 축(11)과 동기식 발전기(3)에 연결된 출력 축(12) 사이에 장착된다. 두 개의 유성 기어들(14, 114)이 상기 출력 축(12)에 결속된다. 두 개의 유성 캐리어들(17, 117)들은 상기 입력 축(11)에 결속된다. 따라서 두 개의 환형(annulus) 기어들(16, 116)이 동일한 속도로 회전한다. 이들은 서로에 대하여 역의 관계에 있는(reversing) 약간 다른 변속비(66, 166)를 통해 비교 차동 메카니즘(141)의 두 입력 요소들(22, 23)에 연결된다. 상기 차동 메카니즘(141)의 케이지(146)는 상기 요소들(22, 23)의 회전 속도 간의 절대 값 차이의 절반의 속도로 회전한다. 기어부(147, 148)에 의한 다중화(multiplication) 후, 이 낮은 속도가 전기 발전기와 같은의 조절 장치(32)의 회전자(133)에 적용된다. 상기 조절 발전기(32)에 의해 적용되는 토크를 조절함으로써 상기 변속비가 조절 또는 조정(adjusted or regulated)된다. 동기식 발전기(3)의 회전 속도를 완전하게 안정화하고, 상기 조절 장치(32)를 이용하여 상시적으로 네트워크에 연결할 수 있게 함으로써, 적은 양의 에너지만을 소비하게 된다.

Description

변속 가능한 동력원으로부터 전력을 생산하는 기계를 위한 변속 장치, 그러한 장치를 구비한 전력 생산용 유닛과 풍력 터빈 및 변속비 조절 방법 {TRANSMISSION DEVICE FOR A MACHINE FOR PORDUCING ELECTRICITY FROM A VARIABLE-SPEED MOTIVE SOURCE, UNIT FOR PRODUCING ELECTRICITY AND WIND MACHINE BOTH SO EQUIPPED, AND METHOD OF ADJUSTING A TRANSMISSION RATIO}
본 발명은 풍력 터빈 분야나 변속 가능한 동력원(variable-speed motive power source)에 연결되는 발전기에 관련된 다른 분야에 관한 것이다.
더 구체적으로, 본 발명은 변속 가능한 동력원, 특히, 풍력 터빈 회전자(rotor)로부터 전력을 생산하는 기계의 변속 장치에 관한 것이다.
또한, 본 발명은 풍력 터빈 회전자에 의해 구동되어 전력을 생산하는 유닛에 관한 것이다.
아울러, 본 발명은 변속 장치 또는 전력을 생산하는 유닛이 장비된 풍력 터빈에 관한 것이다.
현재로서는, 효율에 비해 여전히 생산이나 구동 비용이 상당히 높기 때문에 풍력 터빈의 사용은 상당히 제한되어 있다. 따라서 풍력 터빈에 의해 생산되는 킬로와트(kilowatt)당 비용을 낮추는 것이 핵심적이다. 이는 또한 수메가 와트와 같은 고용량의 전력을 생산할 수 있는 고출력 풍력 터빈 붐에 있어 필요한 전제 조건이다.
주된 어려움들 중 하나는 풍력 터빈 회전자가 회전하는 속도의 변화 폭이 상당히 넓은 범위에 있더라도 주파수가 안정된 전류를 생산해야한다는 것이며, 이러한 속도의 변화 폭은 또한 상당히 넓은 범위에서의 풍속의 변화 폭과 관련되어 있다. 일반적으로, 풍속이 0(zero)에 근접한 최소의 속도와 초속 15m에 근접하는 최대의 속도 사이에서 풍력 터빈을 가동하기 위한 노력이 계속되고 있다. 풍력 터빈 회전자의 회전 속도는 대체로 분당 1회전에서 30회전 사이에서 변화한다.
이러한 문제점을 해소하고자 하는 다양한 제안들이 있다. 무엇보다도, 설치된 대부분의 풍력 터빈들은 비동기식 발전기로서, 발전기 입력축(input shaft)에서 작은 속도의 변화 폭이 허용될 수 있다. 속도의 범위를 확장하는 적합성을 향상시키기 위해, 일부 제조 업자들은 그들의 풍력 터빈에 두 개의 발전기, 바람이 약한 동안에 사용되는 작은 것과 바람이 강한 동안에 사용되는 큰 것을 연결하기도 한다.
또한, 전극의 수(number of poles)가 가변되는 발전기를 구비하는 풍력 터빈이 알려져 있다. 연결된 전극의 수를 달리하는 방식으로, 이러한 발전기는 전극의 수가 다른 상태에서도 작동할 수 있으며, 따라서 회전 속도가 달라지는 것에 부응하게 된다.
모든 경우에서, 생산된 전류의 주파수는 발전기의 회전 속도 함수에 따라 변화되어, 전력망(grid)에 연결하는 것을 불가능하게 하거나 전력망에 적합한 주파수를 얻기 위해 복잡한 변환 과정을 필요로 한다. 특히, 2-발전기(2-generator) 기술은 전력망으로의 공급시 하나의 발전기에서 다른 발전기로의 스위칭을 수반하고, 따라서 생산된 전류의 주파수와 위상(phase)을 그 전력망의 그것들과 적합하게 조절할 필요가 있다. 이러한 문제점으로 인해 설치 비용이 증가되고 풍력 터빈의 효율은 크게 개선되지 못하고 있다.
또한, 풍력 터빈 발전기용 변속 장치가 국제 공개특허 WO 2004/088132A1을 통해 알려진 바 있다. 이 장치는 풍력 터빈 회전자와 발전기의 회전자 사이에서 변속하는 주 경로(main route)와 유압 토크 컨버터가 있는 평행 조절 경로(parrellel regulating route)를 이용한다. 그러나 발전기 구동 속도의 안정화에는 충분하지 못하다. 생산된 전류의 주파수는 50 내지 60헤르츠(herz) 사이에서 변동을 거듭하게 된다. 컨버터는 에너지를 열로 낭비하게 된다.
국제 공개특허 WO 81/01444는 회전자와 발전기 축 사이에 유압식, 기계식 또는 전자식 변속기(variator)를 통과하는 평행 조절 경로를 제공한다. 변속기는, 한편으로는 회전자의 속도와 다른 한편으로는 발전기 축의 속도를 나타내는 두 개의 신호 함수에 따라 제어된다. 모터로 작동하는 이 변속기는 발전기에 의해 생산된 에너지의 적어도 10에서 15%를 소비할 정도로 많은 양의 제어 에너지를 필요로 한다.
최근의 구현 방안들, 특히 상기에서 언급된 방안들에서, 생산된 전류는 지역적인 전력망(local grid), 예를 들어, 주택들의 그룹에 사용될 수 있다. 그러나 이러한 풍력 터빈들을 국가적인 전력망(national grid)에 연결하는 것은 여전히 어렵거나 불가능한 실정이다.
본 발명의 목적은, 비용 및/또는 복잡도를 줄이고 및/또는 전력 생산에서의 에너지 효율 및/또는 주파수 안정화를 향상시키는 관점에서 상술한 단점들의 적어도 일부를 해소하기 위한 것이다.
본 발명에 따르면, 회전 속도가 가변되는 동력원, 특히, 풍력 터빈 회전자로부터 전력을 생산하는 기계를 위한 변속 장치로서, 지지 구조물(supporting structure), 동력원에 연결된 입력 축(input shaft), 상기 기계의 회전자에 연결되는 출력 축(output shaft) 및 적어도 두 개의 변속 경로들을 구비하되, 적어도 하나의 변속 경로가 적어도 세 개의 회전 부재(rotary member)들을 구비하는 차동 메카니즘(differential mechanism)을 통과하는 변속 장치에 있어서, 상기 변속 경로들 중 하나는 동역학적 결합(dynamic coupling) 관계이면서 운동역학적 비결합(kinematic uncoupling) 관계이고 그 각각이 상기 변속 장치의 다른 부분들에 연결됨으로 인하여 서로에 대하여 상대 속도를 가지는 두 개의 회전 요소(rotary element)들을 구비하고, 상기한 상대 속도는 두 개의 회전 요소들 사이에서 상기 기계의 회전자를 설정된 속도, 특히, 실질적으로 일정한 속도로 유지하는 방향으로 변화하는 토크를 발생시키는 조절 장치(regulating apparatus)에서 상대 회전을 일으키도록 구성함 특징으로 한다.
본 발명의 실시 예에 따르면, 그러한 토크의 변화는 그 토크와 상기 장치(apparatus)에서의 회전 속도 사이에서 상기 장치(apparatus)의 특징적인 관계에 의해 정의된다. 선택에 따라, 토크의 변화는 제어, 특히, 상기 기계의 회전자의 속도를 조절하는 제어 루프에 의해 결정된다.
상기 두 회전 요소들 사이에서 상기 조절 장치에 의해 적용되는 토크의 변화는 간단한 방식으로 상기 차동 메카니즘에 의해 설정되는 변속비에 영향을 주는 것을 가능하게 하며, 결과적으로는 상기 변속 장치의 입력 축과 출력 축 사이의 변속비에 영향을 주는 것을 가능하게 한다.
결국, 동력원의 회전 속도가 극단적으로 낮더라도, 예를 들어, 분당 1회전에 근접한다 하더라도, 원한다면, 본 발명에 따른 변속 장치는 전력망에 전력을 공급하는 전력 생산 기계의 입력부(input)에서 설정 속도, 대체로 일정한 속도를 유지하는 것을 가능하게 한다.
따라서, 예를 들면, 상기 변속 장치는 전력 생산 기계에 의해 전력이 공급되는 전력망을 일정하게 유지할 수 있는 가능성을 제공함으로써, 전력망의 주파수에 일치시키기 위해 상기 기계에 의해 생산된 전류의 주파수를 주기적으로 조절하는 것을 방지할 수 있게 하고, 따라서 이러한 목적의 대규모(bulky), 고가의 장비를 제공해야 할 필요가 없게 된다.
상기 조절 장치의 최대 출력은 극히 제한된 상태로, 예를 들어, 상기 기계(the main machine)의 출력의 3 내지 5% 정도 또는 그 미만으로 유지될 것이다.
상기 조절 장치는 상기 전력 생산 기계를 구동하기 위해 상기 출력 축으로 보충되는 추가의 기계적인 에너지를 상기 변속 장치에 투입(inject)하는 모터일 수 있다. 이러한 조절 모터가 전기 모터라면, 상기 전력 생산 기계로부터의 생산분을 이용한 전력을 끌어와 전원을 공급받을 수 있다.
그러나 본 발명에 따르면, 상기 조절 장치는 전기 발전기임이 바람직하다. 이러한 발전기는 풍력 터빈이나 다른 형태의 전력 생산 유닛의 여러 기능적 부품(functional member)들로 전원을 공급할 수 있다. 이러한 기능성 부품들은, 예를 들면, 상기 풍력 터빈의 지향 방향을 맞추는 모터, 상기 회전자의 블레이드들이 지향하는 방향을 맞추는 모터, 조명 또는 발광 신호 장치(illuminated signalling device)들 등등일 수 있다. 초과 전력은 축전기 및/또는 상기 전력 생산 기계로 공급되는 기계적 힘을 증가시키기 위해 상기 변속 장치의 출력 축을 구동하는 전기 모터의 전원을 공급하는데 이용될 수 있다.
제어가 가능할 때에는, 발전기 또는 다른 조절 장치는 극히 정밀한 조절을 가능하게 하는 고유의 전기 신호에 의해 제어될 수 있다. 상기 전기 신호는 상기 생산 기계의 회전자의 회전 속도와 이 속도에 대한 기준 값을 상시적으로(permanent) 또는 주기적으로 비교한 후 생성될 수 있다. 또한, 상기 신호의 기본 값을 생성함에 있어, 입력 축의 회전 속도를 고려하는 것도 가능하며, 이러한 기본 값에 따른 상기 신호 값을 변화시킴으로써 상기 생산 기계의 회전자 속도가 조절된다.
상기 조절 장치는 전극의 수를 변화시킬 수 있는 형태의 전기 발전기일 수 있다. 이러한 발전기는 회전자(rotor)와 고정자(stator) 사이에서 운동 속도와는 다른 전기적인 속도로 작동할 수 있다. 이는 상기 변속 장치의 설계(layout)와 예상되는 작동 환경이 조절 발전기(regulating generator)에서 고정자에 대한 회전자의 운동역학적 속도의 광범위한 변화에 대해 적응하는 사양을 필요로 하는 경우에, 상기 전기 발전기의 효율과 출력을 최적화할 수 있다는 이점이 있다.
상기한 두 개의 요소들 사이에 상기 조절 장치를 직접 설치하는 것도 가능하다. 다시 말해서, 상기 조절 장치에서, 상기 두 요소들의 회전 속도 차와 동일한 상대 속도가 존재한다. 예를 들어, 전기 발전기의 회전자는 상기 요소들 중 하나와 함께 회전하는 반면에, 이 경우에서, 일반적으로 고정자로 알려진 다른 부품은 상기 요소들 중 다른 하나와 회전하는 요소이다. 이러한 구성에서, 상기 조절 장치의 에너지, 전형적으로는 전기 에너지 결합과, 또한, 이를 제어하고 다른 어떤 존재할 수 있는 링크의 작동과 조절을 위해 회전식 연결 구조(rotary connection)가 요구된다. 더욱이, 전기 발전기의 일반적인 예에서, 이러한 장치(apparatus)는 상기 회전자와 고정자 사이의 상대 속도가 적어도 분당 1000회전 정도일 때에만 만족스럽게 작동한다. 이는 상기 조절 장치가 소정의 전력 값(power value)을 가짐을 의미한다.
본 발명은 상기한 두 회전 요소들 사이에 상기 장치(apparatus)를 직접 설치하는 것을 포함하는 유용한 해결 방안을 제안한다. 이러한 본 발명의 특정한 구조(special feature)에서, 상기한 두 요소들은 두 요소들의 회전 속도들의 절대 값 사이의 차이, 가능하게는 가중치가 주어진 차이(possibly the weighted difference)를 나타내는 회전 출력부(rotary output)를 가지는 비교 차동 기어세트(comparative differential gearset)의 두 입력부(input)들에 연결되며, 상기 장치(apparatus)의 축은 상기 회전 출력부에 연결된다.
대체로, 상기 장치(apparatus)는 상기 회전 출력부와 상기 지지 구조물 사이에 장착되고, 다른 유용한 특징적인 구조에 따르면, 상기 장치(device)는 상기 비교 차동 기어세트의 회전 출력부의 회전 속도에 대하여 상기 장치(apparatus)의 축의 회전 속도를 증가시키는 수단을 구비한다.
따라서, 상기 조절 장치는 고정식 고정자(fixed stator)를 구비할 수 있으며, 회전자 또는 다른 이동부의 속도의 절대 값은 현저하게 감소된다. 회전 결합(rotary coupling)은 더 이상 필요치 않으며, 상기 장치(apparatus)의 입력 속도가 상기 비교 차동 기어세트의 출력 속도에 대하여 가능한 한 많이 증가될 수 있으므로, 상기 두 회전 요소들 사이에는 가급적 낮은 속도의 차이를 갖도록 할 수 있게 된다.
한 실시 예에서, 상기 장치는 상기 두 회전 요소들을 서로에 대하여 반대 방향으로 회전하게 하는 수단을 구비한다. 이 경우, 상기 비교 차동 기어세트는 서로 대향하는 두 태양 기어(sun gear)들과 치합(meshing)하는 유성 피니언(planet pinion)들을 구비하는 형태일 수 있다. 상기 유성 피니언들은 상기 요소들 중 하나를 각각 구성하게 되는 두 개의 태양 기어들의 속도들의 대수적 평균값(algebraic mean)(따라서 서로에 대하여 반대되는 방향의 속도일 때는 절대 값의 차이의 절반)과 같은 속도로 회전하는 케이지(cage)에 의해 유지된다.
하기의 구체적인 실시 예들의 설명에서 볼 수 있는 바와 같이, 동일한 방향에서 두 회전 속도들 사이의 차이, 말하자면 가중된 차이를 나타내는 속도를 출력부에서 제공할 수 있는 비교 차동 기어세트 또한 있을 수 있다.
상기에서, '가중된 차이(weighted difference)'라 함은 다른 상수들을 곱한 두 개의 값(두 개의 속도 값) 사이의 계산된 차이를 의미한다. 따라서, 예를 들면, 회전 속도들이 같은 절대 값을 가질 때, 0이 아닌(non-zero) 가중된 차이가 얻어진다. 이는 하기에서 설명된 일부 실시 예들에서, 특히, 상기 조절 장치에서 상기 두 요소들의 회전 속도의 절대 값에 비례하는 속도를 발생시키는 데 유용하다.
더 일반적으로, 본 발명은 변속 경로를 따라 기계적으로 연속된 두 요소들 사이에 운동역학적인 장애(kinematic interruption)를 발생시키는 것, 상기 회전 출력부가 상기한 두 요소들의 속도들의 절대 값 사이의 차이, 말하자면 가중된 차이로 나타나는 속도에서 회전하게 설계된 비교 차동 기어세트의 두 입력부들에 이들 두 요소들을 연결하는 것, 상기 회전 출력부를 전기 발전기, 펌프 등등 또는 모터와 같은 에너지 투입기(injector) 등의 동역학적 조절 에너지 분배 장치(dynamic regulating energy tapping apparatus)에 연결하는 것을 교시하는데, 이러한 장치(apparatus)는 고유하게 내재된 특성이나 이 특성과 조합되는 제어를 통해 상기 변속 경로의 회전 속도, 상기 변속 경로에 의해 전달되는 토크, 상기 두 요소들의 회전 속도들 사이의 미끄러짐(slip) 등등을 조절하거나 설정한다.
선택에 따라서는, 상기 두 개의 요소들을 구비하는 변속 경로는 각 요소의 회전 속도를 증가시키는 수단을 구비한다. 따라서 상기 두 요소들은 더 빠르게 회전하며, 상기 두 요소들 사이의 주어진 속도 차이는 상기 조절 장치의 더 낮은 동력과 상기 변속 경로를 통과하는 동력의 더 낮은 부분에 상응한다.
간단한 실시 예로는, 상기한 요소들 중 하나는 상기 입력, 출력 축들 중 하나와 고정된 비율로 치합하는 관계이며, 다른 하나는 상기 차동 메카니즘의 회전 부재와 고정된 비율로 치합하는 관계에 있으며, 회전 부재 자체는 상기 입력, 출력 축들 각각과 가변 비율로 치합하는 관계에 있다.
바람직한 실시 예로는, 적어도 하나의 상기 차동 메카니즘은 세 개의 회전 부재들을 구비하는 두 개의 차동 메카니즘을 구비하고, 상기한 적어도 두 개의 변속 경로들은 상기 차동 메카니즘들 중 하나의 회전 부재를 다른 메카니즘의 대응하는 회전 부재로 각각 연결하는 세 개의 변속 경로를 구비한다.
상기 두 개의 요소들은 상기 세 개의 경로들 중 하나의 일부를 형성하는 것이 일반적이다.
이러한 실시 예는, 동일하지는 않더라도 절대 값이 서로 상당히 근접하는 속도에서 상기한 두 개의 요소가 항상 회전하는 것을 보장하는 것을 가능하게 함으로써, 상기 변속 장치의 입력 축과 출력 축 사이의 변속비가 매우 넓은 범위에서 변화하더라도 상기 조절 장치에 포함된 에너지를 아주 작게, 이론적으로는 소망하는 정도로 작게 할 수 있다.
선택에 따라서는, 상기한 세 개의 변속 경로들 중 하나는 상기 입력 축에 결속된 변속 부재를 구비하는 입력 경로이고, 상기 세 개의 변속 경로들 중 다른 하나는 상기 출력 축에 결속된 변속 부재를 구비하는 출력 경로이다. 따라서 상기 변속 장치는 상기 입력 축과 출력 축 사이에 평행하게 장착되며 또한 세 번째 변속 경로에 의해 서로 결합되는 두 개의 차동 메카니즘들을 구비하는 것을 고려할 수 있다.
상기 변속 장치의 작동 체계가 상기 조절 장치의 동역학적 작용에 의존하도록 상기 장치는 상기 두 개의 차동 메카니즘들 간의 차이 및/또는 상기 변속 경로들 중 적어도 하나에서의 차이 및/또는 상기 조절 장치로의 상기 두 회전 요소들의 결합에서의 차이를 가진다.
한 실시 예에서, 이는 상기 에너지 생산 기계가 일정 속도로 설정되어야만 하고 따라서 변속비가 상기 입력 축의 속도의 직접 함수일 때 적합하며, 상기 두 개의 요소들에 의해 상기 장치(apparatus)에 적용되는 회전 속도는 상기 입력 축의 속도의 함수에 따라 변화한다. 따라서 상기 장치(apparatus)의 회전 속도는 상기 변속비를 결정하게 된다.
이러한 예에서, 상기 입력 축에 가해지는 구동 토크가 상기 입력 축의 회전 속도와 함께 점차 증가하는 풍력 터빈의 회전자로 이루어진 동력원인 경우, 상기 입력 축의 속도가 증가할 때 상기 장치(apparatus)로 가해지는 회전 속도를 증가시키는데 유용하다. 따라서 전기 발전기와 같은 상기 장치(apparatus)가 그 자체로서 회전 속도와 함께 증가되는 토크 특성을 가질 때, 상기 전기 발전기의 토크 증가는 상기 두 개의 요소들을 포함하는 상기 변속 경로에서의 토크 증가를 동반한다. 상기 조립체는 자기 조절(self-regulating)을 할 수도 있다. 예를 들면, 전기 발전기로 이루어진 조절 장치에 적용되는 여기(excitation)를 변화시킴으로써, 미세한 조절이 가능하게 된다.
상기한 차동 메카니즘들 중 하나는 상기 입력 축과 출력 축에 각각 연결된 두 개의 회전 부재들과, 상기 입력 축의 속도와 상기 출력 축의 속도의 평균, 가능하게는 가중치가 주어진 평균(weighted mean)을 생성하는 제3의 회전 부재를 구비하는 방식으로 장착될 수 있다. 특히, 상기 입력 축의 속도의 함수일 경우, 적어도 간접적으로 다른 차동 메카니즘의 제3 회전 부재에 적용되는 얻어진 평균이 상기한 다른 차동 메카니즘으로 하여금 상기 입력 축과 출력 축 사이에서 원하는 변속비를 생성하도록 가중치(weighting)가 선택된다. 이러한 조립체에서, 앞서 언급한 바와 같이, 상기 변속 경로들 중 하나는 상기 조절 장치에 의해 제공되는 동역학적 결합(dynamic coupling)에 의해 연결되는 운동역학적인 장애(kinematic interruption)를 가지고 있다.
선택에 따라서는, 상기한 두 개의 차동 메카니즘들은 서로 동일하다. 제1의 버전(version)에서, 상기한 세 개의 변속 경로들 중 적어도 하나는 그 하나의 변속 경로가 연결하는 상기한 두 개의 회전 부재들 사이에서, 상기한 세 개 변속 경로들 중 다른 하나에 의해 그 다른 하나의 변속 경로가 연결하는 상기한 두 개의 회전 부재들 사이에서 설정된 변속비와 다른 변속비를 설정한다.
선택에 따라서는, 상기한 메카니즘들은 서로 동일하고 상기한 세 개의 변속 경로들 중 둘은 동일한 변속비를 설정하며, 특히, 상기 차동 메카니즘들 중 하나의 회전 부재와 다른 하나의 차동 메카니즘의 회전 부재가 공동으로 회전(common rotation)하는 것을 각각 보장하는 완고한 연결(rigid connection)들을 구성하게 된다.
상기한 두 개의 차동 메카니즘들의 두 제3의 회전 부재들을 서로 연결하는 제3의 경로는 두 회전 부재들 사이에서 속도의 차이를 발생시키기 위해 다른 기계적인 변속비를 가질 수 있다.
제2의 버전에서, 상기한 두 개의 차동 메카니즘들은 동일한 설계이면서 다른 잇수비(tooth ratio)를 가지고 있다. 상기한 세 개의 변속 경로들은 바람직하게는 동일한 변속비를 설정한다.
바람직하게는, 상기한 두 메카니즘들은 동축으로 정렬되고, 상기 변속 경로들 중 적어도 하나, 바람직하게는 두 개의 상기 변속 경로들은 상기 메카니즘들 중 하나에 각각 속하는 두 회전 부재들을 공동으로 회전하는 것을 보장하는 연결들이다.
특히, 상기 입력 축의 속도에 대한 상기 출력 축 속도의 높은 상승율(step-up ratio)과 이러한 비율의 넓은 범위가 요구되는 풍력 터빈들과 같은 장비에 있어서, 상기 차동 메카니즘은 상기 출력 축에 연결된 태양 기어, 회전 반작용 부재(rotary reaction member)로 이루어진 링 기어 및 상기 입력 축에 연결되며 캐스케이드 내에 장착된 두 유성 피니언(planet pinion)들의 적어도 한 세트(set)를 지지하는 유성 캐리어(planet carrier)를 구비하는 주전원 기어세트(epicyclic gearset)의 형태로 제작되며, 상기한 두 유성 피니언(planet pinion)들 중 하나는 상기한 태양 기어에 치합하고, 다른 하나는 상기 링 기어와 치합한다. 이러한 형태의 차동 메카니즘은, 상기 링 기어의 속도가 각각 상기 태양 기어의 속도와 같은 속도로부터 상기 태양 기어의 속도의 몇 분의 1(fraction)과 같은 속도로 변화함에 따라, 1로부터 무한대로 변화하는 상승율(step-up ratio)을 제공한다는 주목할만한 특징이 있다. 상기한 비율(fraction)은 상기 태양 기어와 링 기어 사이의 잇수비(tooth ratio)와 같다. 이는 상기 링 기어의 치형의 수가 상기 태양 기어의 치형의 수의 두 배인 차동 메카니즘을 선택하는 것을 가능하게 한다는 점에서 매우 유용하다.
본 발명의 두 번째 주제는 전력을 생산하기 위하여 상기한 첫 번째 주제에 따른 변속 장치 및 동기식 전력 생산 기계를 포함하는 유닛이다. 본 발명은 상기한 전력 생산 기계의 속도를 실질적으로 완전하게 안정되게 함으로써, 이 기계로 하여금 주파수와 위상(phase)의 관점에서 안정된 전류를 공급하게 한다.
선택에 따라서는, 상기한 전력 생산 유닛은 상기 전력 생산 기계의 회전자의 회전 속도를 감지하는 센서 및 회전자의 회전 속도와 설정값(setpoint) 간 차이의 함수에 따라 상기 장치(apparatus)를 제어하여 회전 속도를 조절하는 제어 루프를 구비한다.
본 발명의 세 번째 주제는 상기한 첫 번째 주제에 따른 변속 장치 및/또는 상기한 두 번째 주제에 따른 전력 생산 유닛을 구비하는 풍력 터빈이다.
본 발명의 또 다른 양태에 따르면, 동력원과 부하(load) 사이의 변속비를 설정하는 방법은 동력원과 부하 사이에 두 개의 차동 메카니즘이 위치되고, 이들 차동 메카니즘들은 각각 적어도 세 개의 회전 부재들을 구비하며, 상기 메카니즘들 중 하나의 각 회전 부재는 개별 변속 경로에 의해 다른 메카니즘의 개별 회전 부재에 연결되고, 상기 경로들 중 하나는 동역학적 결합 장치(apparatus)의 작용에 의해 연결된 두 개의 회전 요소를 구비하고, 상기한 결합 장치(apparatus)는 조절됨을 특징으로 한다.
본 발명의 다른 특징이나 이점 등은 하기의 상세한 설명을 통해 더 명확해질 것이나 실시 예에 의해 한정되지는 않는다.
도 1은 본 발명에 따른 풍력 터빈의 제1 실시 예를 나타내는 축 방향 단면도이고,
도 2는 도 1에 도시된 풍력 터빈에 사용된 주전원 기어세트(epicyclic gearset)를 개략적으로 나타내는 정면도이며,
도 3은 상기한 주전원 기어세트의 차원적(dimensional), 기하학적인 일부 특징 및 동작에서의 일부 특징을 나타내는 반 정면도이고,
도 4 내지 도 10은 도 1과 유사하면서 다른 실시 예들에 관련된 구성들을 도시하고 있으며,
도 11과 도 12는 비교 차동의 두 가지의 다른 형태들을 도시하고 있다.
회전 요소들 상에 그려진 해칭(hatching)은 회전 요소들이 회전하는 방향을 나타낸다. 유성 피니언들의 경우에는 그들 자신의 축을 중심으로 회전한다.
도 1에 도시된 실시 예에서, 부분적으로만 도시된 풍력 터빈은 본 발명에 따른 변속 장치(6)가 이어진 입력 상향 기어부(input step up gearing)(4)를 통해 전력 생산 기계(3)의 회전자(2)를 구동하는 풍력 터빈 회전자(1)를 구비한다. 상기 기계(3)의 고정자(7)는 단지 상징적으로만 도시된 지지 구조물(8)에 고정된다. 본 발명의 바람직한 실시 예에 따르면, 상기 전력 생산 기계(3)는 완전하게 안정된 속도, 예를 들면, 분당 1500회 회전하여 전력망에 적합한 50헤르츠(hertz) 전류를 안정적으로 생산하는 동기식 발전기일 수 있다. 상기 풍력 터빈 회전자(1)는 바람의 강도에 따라 대체로 분당 1회전에서 30회전 사이 범위의 높은 가변 속도(variable speed)로 회전한다. 상기 상향 기어부(4)는 이 속도를 일정 배율(constant factor), 예를 들어 50배까지 증가시킨다. 따라서, 동시에 상기 변속 장치(6)의 입력 축(11)을 구성하기도 하는 상기 상향 기어부(4)의 출력 축은, 본 실시 예에서, 분당 50회전 내지 1500회전 사이 범위의 속도로 회전하게 된다. 상기 변속 장치(6)는 그 입력 축(11)의 회전 속도에 대한 상기 기계(3)의 회전자(2)에 결속된 출력 축(12)의 회전 속도를 30에서 1배까지 연속적으로 상승시키는 변속비를 설정하게 된다.
상기 변속 장치(6)는 차동 메카니즘(13), 본 실시 예에서는 세 개의 회전 부재들, 말하자면, 상기 출력 축(12)에 연결된 태양 기어(14)와, 반작용 회전 부재를 이루는 링 기어(16)와 상기 입력 축(11)에 연결된 유성 캐리어(planet carrier)(17)로 이루어진 유성 또는 주전원 기어세트(planetary or epicyclic gearset)를 구비한다. 상기 유성 캐리어(17)는 캐스케이드 내에 장착되면서 서로 치합된 두 개의 유성 피니언(18, 19)들의 적어도 한 세트를 지지한다. 상기 유성 피니언(18)은 상기 태양 기어(14)의 외측 치형 세트와 치합하고, 상기 유성 피니언(19)은 상기 링 기어(16)의 내측 치형 세트와 치합한다.
캐스케이드 내의 유성 피니언 쌍들을 구비하는 이러한 유형의 주전원 기어세트는 다음과 같은 특징들을 가진다: 상기 입력 축(11)과 출력 축(12) 사이의 변속비가 1:1이면, 상기 태양 기어(14), 링 기어(16) 및 유성 캐리어(17)가 같은 속도로 회전한다. 변속비가 30:1(상기 출력 축(30)의 회전 속도가 상기 입력 축(11) 회전 속도의 30배)일 경우, 상기 링 기어(16)는 상기 입력 축(11) 및 출력 축(12)과 같은 방향으로, 상기 태양 기어(14)의 회전 속도에 R1/R2의 비율을 곱한 값에 근접한 속도로 회전한다. 여기서, R1은 상기 태양 기어의 치형 세트 반경이고, R2는 상기 링 기어(16)의 치형 세트 반경이다(도 3 참조). 다시 말해서, 특히, R1/R2의 비율로서 상당히 합리적이라 할 수 있는 1/2이 선택되었다면, 상기 링 기어(16)의 회전 속도는 항상 동일한 방향일 것이며, 입력 속도 Ve가 30배까지 변화하고 전체 변속비가 Vs/Ve일 때, 2배까지만 변화할 수 있을 것이다. 상기 링 기어(16)에 작용하는 반작용 토크(CR)는 상기 입력 축(11)의 회전 방향(SR)의 반대 방향을 향할 필요가 있다. 도 3에 도시된 바에 따르면, 점선으로 나타내진 위치와 실선으로 나타내진 위치 사이에서 상기 유성 캐리어(17)에 의해 수행되는 회전은 α0로 지시되어 있다. 모든 세 개의 회전 부재들(14, 16, 17)이 동일한 방향으로 회전할 때, 상기 태양 기어(14)와 링 기어(16) 각각은 상기 유성 캐리어(17)의 회전 α0와 동일하고, α1과 α2로 지시된 각도만큼 증가된 회전을 수행한다. 이들 두 각도는 원호 길이에 상응하기 때문에 α21=R1/R2인 비율의 관계에 있다.
따라서 상기 변속비는 (α01)/α0와 같다. 각도 α0는 상기 입력 축(11)이 입력 속도 Ve를 나타내고, (α01)는 분당 1500회전으로 설정되는 출력 속도 Vs를 나타낸다. 앞서 언급한 바로부터, 상기 링 기어(17)의 속도 Vc는 다음과 같이 계산될 수 있다: Vc = Ve + (Vs - Ve)(R1/R2).
본 발명에 따른 상기 변속 장치는 상기 링 기어(16)의 회전 속도 Vc를 조절함으로써, 상기한 연결 관계에 따라 상기 출력 축(12)은 바람직한 값 Vs로 회전하거나 및/또는 Vs/Ve의 비율이 바람직한 값을 갖게 된다.
상기 링 기어(16)의 회전 속도에 대한 제어를 가능하게 하기 위해, 본 발명에 따른 상기 변속 장치(6)는 상기 입력 축(11)과 출력 축(12) 사이에 두 개의 변속 경로(TC, TD)를 설정한다. 운동역학적 경로(TC)는 상기 차동 메카니즘(13)과, 상기 태양 기어(14)를 상기 출력 축(12)에 완고하게(rigid) 연결하는 중간 축(21)을 구비한다. 동역학적 경로(TD)는 상기 차동 메카니즘(13)과, 상기 링 기어(16)와 출력 축(12) 사이에서 특정한 동역학적 링크에 의해 연결된 운동역학적 장애를 구비한다.
더 구체적으로, 상기 변속 경로(TD)는 동력 전달 관계에 있으면서 한편으로는 동시에 운동역학적으로는 분리되고 서로에 대한 회전을 유발하는 상대 속도를 가지는 두 개의 회전 요소(22, 23)들을 구비한다. 이러한 특정한 실시 예에서, 제1의 상기 회전 요소(22)는 상기 링 기어(16)의 회전 속도에 고정된 비율의 속도로 회전한다. 이를 위해, 상기 제1 회전 요소(22)는 상기 링 기어(16)의 외측 치형 세트(22)와 치합하는 피니언(24)에 결속된다. 제2의 상기 회전 요소(23)는 상기 출력 축(12)의 속도에 고정된 비율의 속도로 회전한다. 이를 위해, 상기 제2 회전 요소(23)는 상기 출력 축(12)에 결속된 기어 휠(28)과 치합하는 피니언(27)에 결속된다. 상기 중간 축(21)은 상기 태양 기어(14)와 상기 기어 휠(28) 사이에서 연장된다. 따라서 상기 기어 휠(28)이 상기 중간 축(21)과 한 몸체의 형태로 회전하고, 고정 비율로 상기 피니언(27)과 치합하기 때문에, 상기 변속 경로(TC, TD)들은 일단에서 상기 차동 메카니즘(13)에 의해, 타단에서는 상기 기어 휠(28)에 의해 서로 연결된다. 상기한 두 개의 회전 요소(22, 23)들은 상기 출력 축(12)과 입력 축(11)의 전체 축(overall axis)(31)에 평행하면서 일정 거리를 둔 위치에 고정된 공통의 기하학적 축(geometric axis)(29)을 중심으로 회전할 수 있게 장착되며, 상기 전체 축(31)은 또한 상기 차동 메카니즘(13)과 상기 중간 축(21)의 축(axis)이 된다.
상기 회전 요소(22, 23)들 사이에 조절 장치(32)가 결합되어 상기 기계(3)의 회전자(2)를 설정된 속도, 특히, 실질적으로 일정한 속도로 유지하는 방향에서 변화하는 토크를 설정하게 된다.
도시된 예에서, 상기 조절 장치(32)는 회전자(33)가 상기 링 기어(16)에 대하여 설정된 속도로 회전하는 상기 요소(22)에 결속된 전기 발전기, 예를 들면, 교류 발전기이다. 상기 전기 발전기(32)의 고정자(34)는 통상의 고정자와 같이 고정되는 대신에, 본 실시 예에서는 상기 출력 축(12)에 대하여 설정된 속도로 회전하는 상기 제2 회전 요소(23)와 한 몸체의 형태로 회전하는 회전성 고정자이다.
한편에서 상기 피니언(24)과 상기 링 기어(16)의 외측 치형 세트(26) 사이의 잇수비(tooth ratio), 다른 한편에서 상기 피니언(27)과 기어 휠(28) 사이의 잇수비(tooth ratio)는 다음과 같다: ⅰ) 상기 회전 요소(22, 23)들이 같은 방향으로 회전하고, ⅱ) 상기 링 기어(16)에 결합된 상기 회전 요소(22)의 회전 속도가 상기 출력 축(12)에 결합된 상기 회전 요소(23)의 회전 속도보다 항상 더 크다.
R2/R1 = 2인 실시 예에서, 상기 링 기어(16)의 가능한 최소의 속도는 상기 출력 축(12) 속도의 절반이다. 따라서, 상기 출력 축(12)에 대한 상기 요소(23)의 회전 속도의 두 배 정도까지 상기 링 기어(16)에 대한 상기 요소(22)의 회전 속도를 점차 증가시킴으로써, 상기 제1 회전 요소(22)가 상기 제2 회전 요소(23)보다 항상 더 빠르게 회전하는 것을 보장할 수 있다.
일반적으로, 이러한 상승율(step-up ratio)이 상대적으로 높게 선택됨으로써 상기 입력 축(11)과 출력 축(12)의 속도에 비해 상기 회전 요소(22, 23)들은 상대적으로 더 높은 속도로 회전하게 된다. 예를 들어, 상기 제2 회전 요소(23)는 분당 14,000회전의 속도로 회전하고, 상기 제1 회전 요소(22)는 분당 15,000회전과 30,000회전 사이의 속도로 회전하게 설계하는 것이 가능하다.
모든 작동 속도에서, 상기 회전자(33)는 상기 회전성 고정자(34)보다 더 빠르게 회전한다. 상기 회전자(33)와 고정자(34) 사이에 존재하는 전자기력들은 상기 회전자(33), 나아가서는 상기 링 기어(16)를 감속하는 방향으로, 그리고 상기 고정자(34), 나아가서는 상기 출력 축(12)을 가속하는 방향으로 작용한다. 따라서 에너지 전달은 상기 동역학적 변속 경로(TD)를 따라 상기 차동 메카니즘(13)으로부터 상기 출력 축(12)으로 이루어진다. 이는 또한, 상기 기어(14)가 유성 피니언(18)으로부터 그 기어의 회전 방향(SR; 도 3)의 토크를 받기 때문에 상기 운동역학적 변속 경로(TC)를 통해서 상기 입력 축(11)으로부터 상기 출력 축(12)으로 에너지 전달이 이루어진다. 따라서, 본 실시 예에서, 두 개의 변속 경로들이 상기 출력 축(12)을 구동한다.
상기 동역학적 변속 경로(TD)를 통해 전달되는 토크는 상기 입력 축(11) 상의 입력 토크에 비례한다. 상기 출력 축(12)의 속도 Vs는 일정하기 때문에, 상기 고정자(34)에 대한 상기 회전자(33)의 회전 속도는 상기 입력 축(11)의 회전 속도 Ve만의 함수이다. 더욱이, 풍력 터빈과 같은 동력원의 특수한 경우에서, 상기 입력 축(11) 상의 토크는 상기 입력 축(11)의 회전 속도 Ve와 함께, 예를 들면 비례하게 증가한다. 결과적으로, 본 발명에 따른 조절은 상기 고정자(34)에 대한 상기 회전자(33)의 회전 속도가 증가될 때, 상기 회전자(33)와 고정자(34) 사이의 전자기적 토크가 증가될 것을 수반한다. 고정자에 대한 회전자의 회전 속도의 함수로서 토크와 관련하여 적절하게 선택된 특성 곡선을 가지는 조절 장치(32)를 선정함으로써, 조절 제어 회로를 필요로 하지 않으면서도 상기 전력 생산 기계(3)의 회전자(2)의 회전 속도를 자동으로 안정화할 수 있는 변속 장치가 창출된다.
그러나 도시된 실시 예에서, 상기 전력 생산 기계(3)의 회전자(2)의 회전 속도의 미세 조절 및 더 나은 정밀도를 달성한다는 관점에서, 조절 장치가 제공된다. 이는 상기 출력 축(12)의 회전 속도를 감지하는 센서(36), 상기 회전자(2)의 회전 속도에 대한 기준 설정값을 저장하는 메모리 또는 그에 상당하는 소자(37), 상기 출력 축(12)의 실제 속도와 설정값 사이에 있을 수 있는 차이를 측정하기 위한 비교기(38) 및 상기 회전 요소(23)에 제공된 하나 또는 둘 이상의 회전 접촉자(41)를 통해 상기 고정자(34)에 가해지는 여기 전류(excitation current)로 상기 비교기(38)로부터의 출력을 변환하는 회로(39)를 구비한다. 도시된 실시 예에서는, 개선 방안의 하나로서, 상기 입력 축(11)의 회전 속도 Ve를 감지하는 센서(42)가 설치되어 있다. 상기 센서(42)는 상기 속도 Ve의 함수로서의 여기 전류 값의 범위를 선정하기 위한 신호를 상기 회로(39)로 보낸다. 상기 출력 축(12)의 회전 속도 Vs가 불충분해지려 할 때, 상기 발전기(32)의 여기(excitation)가 증가하여 상기 링 기어(16)를 좀더 감속하고 따라서 상기 입력 축(11)과 출력 축(12) 사이의 변속비를 약간 증가시키는 것을 촉진한다. 반대로, 대칭성으로 인하여, 속도 Vs가 과도해지려 한다면, 상기한 제어 및 조절 회로는 변속비를 낮추기 위해 상기한 여기를 약간 감소시킨다.
도시되지 않은 방식으로는, 자동 속도 변환을 연속적으로 수행하는 장치 또는 유한한 수의 비율을 갖는 하나의 장치(one with a finite number of ratios)가 상기 변속 경로(TD) 상에, 예를 들면, 상기 피니언(24)과 고정자(34) 사이에 배치될 수 있다. 이 장치의 자동 제어는 상시적으로 또는 주기적으로 상기 회전자(33)의 회전 속도를 조절하려는 성향을 가짐으로써, 상기 고정자(34)의 회전 속도에 대한 최적의 차이를 구현해낸다. 이를 통해 상기 조절 발전기(32)의 효율을 향상시키고, 특히, 상기 입력 축(11)의 속도 Ve가 높은 상태에서 상기 회전자(33)와 고정자(34) 사이의 속도 차를 줄임으로써 상기 발전기(32)에 의해 흡수되는 동력이 현저하게 절감될 수 있다. 이론상으로, 앞서 언급된 상기 제어 회로는 상기 속도 변환 장치에 의해 이루어지는 변속비의 함수에 따라 상기 발전기(32)의 여기를 자동으로 보정한다. 또한, 상기 회로(39)에 상기 속도 변환 장치에 의해 이루어지는 비율을 상기 회로(39)에 알리는 신호의 입력을 제공하는 것도 가능할 것이다. 따라서 상기 회로(39)는 상기 기계(3)의 회전자(2)의 회전 속도에서의 변동에 대한 반작용보다 수행되는 여기의 변동을 예측할 수 있다. 더욱이, 상기 속도 변환 장치가 존재한다는 것은 한편으로는 상기 링 기어(16)와 피니언(24) 사이에, 다른 한편으로는 기어 휠(28)과 상기 피니언(27) 사이에 앞서 언급한 바와는 다른 비율을 제공하는 것을 가능하게 하며, 어떠한 경우라도 이는 단지 실시 예로서 제시된 것이다.
상기 속도 변환 장치의 대안 또는 그에 부가하여, 상기 발전기(32)를 전극 변화 발전기의 형태로 제작할 수 있다. 이러한 알려진 형태의 발전기는 고정자의 기계적 구조에 대한 회전자 전극들의 변동되는 전기적 회전(variable electrical rotation)을 수행한다. 이러한 방식에서는, 회전자와 고정자 사이의 전기적 속도 차를 변경하는 것, 특히, 최적화하는 것이 가능하다. 이를 위해, 상기 회로(39)는 상기 감지기(42)에 의해 공급되어 상기 입력 속도 Ve를 나타내는 신호를 고려하여 상기 회전 접촉자(41) 또는 추가로 제공될 수 있는 다른 어떠한 회전 접촉자를 통해 상기 회전자(34)로 적절한 명령을 전달하도록 설계된다.
상기 발전기(32)에 의해 생산된 전력은, 예를 들면, 상기 회전 요소(22)의 외주면에 제공된 회전성 회전자 접촉자(rotary rotor contact)(43)들에 의해 수집된다. 이 전기 에너지는, 예를 들면, 정류기(44)에 이르러 축전기(46)를 충전하거나 및/또는 하나 또는 둘 이상의 전력 사용 기기용 단자(47)에 전원을 공급하게 된다.
하기의 실시 예에서는, 상기 전기 제어 수단이나 상기 발전기(32)에 의해 생산된 에너지 수집 수단은 도시되지 않으며, 그 상세한 설명이 생략될 것이다. 이는, 적어도 이론적으로, 상기에서 설명됨과 아울러 도 1을 참조하여 개시된 바와 유사하다는 것을 의미한다.
도 4에 도시된 실시 예는 도 1 내지 도 3에 도시된 실시 예와 비교하여 다른 부분에 대해서만 설명될 것이다.
상기 출력 축(12)과 고정된 속도비 관계인 대신에, 상기 제2 회전 요소(23)는 이제 제3의 회전 요소 또는 제2의 차동 메카니즘(49)의 케이지(48)와 고정된 변속비 관계에 있다. 상기 제2 차동 메카니즘(49)의 두 개의 제1 회전 부재들은 동일한 치형 세트를 구비하면서 서로 마주보게 배치된 두 개의 베벨 태양 기어(bevel sun gear)(51, 52)들이다. 이들 두 태양 기어들 중 하나는 상기 입력 축(11)과, 다른 하나는 상기 출력 축(12)과 고정된 변속비 관계에 있다. 이들 세 개의 회전 부재들(48, 51, 52)은, 상기 고정 구조물에 대하여 장착되며 상기 회전 요소들(22, 23)의 회전축(29)과 상기 입력/출력 축(11, 12)의 회전축(31)에서 이격되면서 평행한 공통의 회전축(axis of rotation)(53)을 가지고 있다.
상기 케이지(48) 내에는 상기 축(53)에 수직하는 축을 중심으로 자유롭게 회전하는 베벨 유성 피니언(bevel planet pinion)(54)들이 장착된다. 각각의 베벨 유성 피니언(54)은 상기 두 개의 태양 기어들(51, 52)과 치합한다. 이러한 차동 메카니즘에서, 상기 케이지(48)는 상기 두 태양 기어들의 회전 속도의 대수적 평균값(algebraic mean)과 같은 속도로 상기 공통의 축(53)을 중심으로 회전한다. 이 경우, 상기 두 태양 기어들은 동일한 방향으로 회전하게 설정된다. 따라서 상기 케이지(48)는 상기 입력/출력 축(11, 12) 속도의 산술적 평균값(arithmetic mean)으로 나타내지는 속도로 회전하게 된다.
이러한 실시 예에서, 제3의 경로를 통해 연결된 상기 두 개의 회전 부재들(16, 48)은, 그들 중 하나(16)는 그의 속도가 증가될 때 그 차동 메카니즘의 변속비를 줄이려는 성향이, 다른 하나(48)는 그의 속도가 증가될 때 그 차동 메카니즘의 변속비를 증가시키려는 성향이 있다.
이러한 실시 예의 근본이 되는 원리는 다음과 같다: 상기 입력 축(11)의 속도 Ve가 분당 50회전에서 1500회전까지 변화할 때, 상기 링 기어(16)의 속도는 대략 분당 750회전에서 1500회전까지 변화할 필요가 있으며, 이는 상기 입력 축의 속도와 출력 축의 속도의 평균에서의 변화도 마찬가지이다. 이러한 발상은 이 평균값으로 나타나는 속도를 생성하고 이를 상기 링 기어(16)에 직접 또는 간접적으로 적용하기 위함이다. 상기 조절 장치(32)가 상기 케이지(48)와 링 기어(16) 사이에 배치되고, 회전 방향의 반대 방향으로 작용하는 토크가 상기 링 기어(16)에 가해지는 도시된 실시 예에서, 상기 입력 및 출력 속도들로부터 생성되는 속도는, 이 속도가 상기 링 기어에 바람직한 속도와 유사한 방식으로 변화하지만 이 속도보다 여전히 더 낮게 유지되는 상태로, 상기 제2 회전 요소(23), 다시 말해서, 상기 발전기(32)의 고정자에 적용된다. 따라서, 상기 발전기(32)의 고정자와 회전자 사이에는 상기 요소들(22, 23)의 속도의 작은 부분을 나타내는, 아주 작은 속도의 차가 항상 존재하여, 상기 변속 장치의 전체 작동 속도에서 상기 발전기(32)에 의해 흡수되는 동력이 낮아진다.
전기 발전기와 같은 일반적인 조절 장치는 적합하게 작동하기 위해서 고정자 속도와 비교할 때 적어도 일정한 수준, 예를 들면, 적어도 분당 1000회전 차이의 회전자 속도를 가질 필요가 있다. 상기 회전 요소들(22, 23) 속도의 작은 부분을 나타내는 이러한 속도 차를 위해, 상기 입력 축(11)과 출력 축(12)의 속도에 대한 상기 회전 요소들(22, 23)의 속도를 점차 상승시키는 수단을 제공함이 바람직하다.
도시된 실시 예에서, 예를 들면, 상기 회전 요소(22)에 결속된 상기 피니언(24)은 상기 링 기어(16)의 외측 치형 세트 직경의 1/20과 같은 직경을 가진다. 따라서 상기 요소(22)는 상기 링 기어(16)보다 20배 빠르게 회전한다. 또한, 한편으로는 상기 입력 축(11)과 상기 태양 기어(51) 사이에, 다른 한편으로는 상기 출력 축(12)과 상기 태양 기어(52) 사이에 상승 기어세트(56, 57)가 제공된다. 따라서 상기 케이지(48)의 회전 속도는 속도 Ve와 Vs의 산술적 평균값에 대하여 증폭된 값을 가지게 된다. 이러한 증폭된 평균값은 1:1의 비율로 상기 회전 요소(23)로 전달된다.
이는 또한, 가중 평균에 상응하도록 상기 케이지(48)에 의해 공급되는 평균 속도에 적합하다. 따라서, 한편으로는 상기 케이지(48)의 회전 속도와 다른 한편으로 Ve/Vs의 비율 사이의 관계가 미세하게 조정될 수 있다.
이는 상기에서 언급된 값들에 기초한 수치적인 예를 고려할 때 더 쉽게 이해된다. 상기 링 기어(16)가 분당 750회전에서 1500회전의 속도에서 회전한다. 상기 요소(22)는 20배 빠른 속도, 말하자면, 분당 15,000회전에서 30,000회전의 속도로 회전한다. 상기 요소들(22, 23) 사이의 속도 차이가 분당 1,000회전에서 2,000회전임이 바람직하다면, 상기 요소(22), 나아가서는 상기 케이지(48)는 분당 14,000회전에서 28,000회전의 속도로 회전해야만 한다. 이는, 상기 기어세트(56)의 상승율이 19:1이고, 상기 기어세트(57)의 상승율이 18:1일 때 (대체로) 달성된다. 이러한 설정에서, 상기 발전기(32)에 의해 흡수되는 에너지는 상기 변속 경로(T3)를 따라 흐르는 에너지의 6~7% 정도이다.
도 4에 도시된 실시 예에서, 세 개의 기하학적 축(29, 31, 53)들은 동일 평면 상에 도시되어 있다. 이것이 절대적인 핵심요소는 아니며; 바람직한 비율은 유지하면서 동시에, 상기 기어세트(56, 57)들이 직경을 적절하게 변경함으로써, 상기한 선(55) 위쪽의 요소들은 도면 상의 평면으로부터 방향을 바꿀 수도 있다.
본 발명의 현재 버전 및 하기에서 설명될 버전들의 근본이 되는 원리는 다른 방식으로 구현될 수 있다: 두 개의 차동 메카니즘(13, 48)들은 상기 입력 축(11)과 출력 축(12) 사이에 평행하게 장착된다. 각각의 차동 메카니즘은 상기 입력 축(11)에 연결되는 입력 부재(17, 51), 상기 출력 축(12)에 연결되는 출력 부재(14, 52) 및 반작용 부재(16, 48)를 구비한다. 상기한 두 개의 반작용 부재(16, 48)들은 변속 경로(T3)를 통해 서로 연결되지만 상기 입력 축(11) 또는 출력 축(12)과 고정된 비율 관계에 있지는 않다. 상기한 두 메카니즘들의 회전 요소들 사이를 연결하는 구간에는 동역학적 결합(발전기(32))에 의해 연결되는 운동역학적 장애가 있다.
상기 변속 장치로부터 이 동역학적 결합을 통해 에너지가 접속될 수 있다. 또한, 상기 기계(3)에 의해 전원을 공급받는 모터로 상기 발전기를 대체하는 것도 가능하며, 상기 모터는 변동 가능한 양의 에너지를 상기 변속 장치로 투입(inject)하게 될 것이다. 상기 동역학적 결합의 에너지 활성화(energetic activation)는 상기 변속 장치에서 모든 잇수비(tooth ratio)의 합리적인 선정의 결과이다. 이러한 선정은 각 차동 메카니즘들이 다른 차동 메카니즘으로부터 동역학적 결합에 의해 직접 또는 간접적으로 설정된 수준의 응력(stress)을 받게 된다는 것을 의미한다.
도 4에 도시된 실시 예에서, 상기한 두 차동 메카니즘들은, 그들의 반작용 부재들(16, 48)의 속도가 서로 결속되어 있는 상기 요소들(22, 23)에 해당하는 하나가 아닌 관계로 되어 있을 때에만, 상기 입력 축(11)과 출력 축(12) 사이의 변속비를 동일하게 설정할 수 있다. 상기 입력 축(11)과 출력 축(12) 사이의 변속비가 동일하게 설정되어야만 하기 때문에, 상기 요소들(22, 23) 사이에는 Vs/Ve 비율의 함수에 따른 속도 차가 존재한다. 따라서 상기 변속비 Vs/Ve는 상기 요소들(22, 23) 사이의 속도 차이를 조절함으로써 설정될 수 있다. 속도에서의 이러한 차이는 상기 동역학적 결합(32)의 활성화를 제어함으로써 조절된다.
도 4에 도시된 실시 예를 설명할 수 있는 세 번째 방식이 있는데, 이는 하기에서 설명될 것이다. 두 개의 차동 메카니즘(13, 49)들은 세 개의 변속 경로들을 통해 연결된다. 제1의 경로(T1) 또는 입력 경로는, 설정된 잇수비(tooth ratio)로, 상기 입력 축(11)을 상기 제1 메카니즘(13)의 입력 부재(17) 및 상기 제2 메카니즘(49)의 입력 부재(51)로 연결한다. 제2 경로(T2) 또는 출력 경로는, 설정된 잇수비(tooth ratio)로, 상기 출력 축(12)을 상기 제1 메카니즘(13)의 출력 부재(14) 및 상기 제2 메카니즘(49)의 출력 부재(52)로 연결한다. 제3의 경로(T3) 또는 반작용 경로는, 설정된 잇수비(tooth ratio)로, 상기 제1 메카니즘(13)의 반작용 부재(16)를 상기 제2 메카니즘(49)의 반작용 부재(48)로 연결한다. 상기한 세 경로들 중 하나에는 동역학적 결합에 의해 연결되는 운동역학적 장애가 존재한다. 더욱이, 상기한 차동 메카니즘들 및/또는 상기한 세 경로들의 잇수비(tooth ratio) 및/또는 상기 회전 요소들(22, 23)의 상기 조절 장치로의 연결에서, 상기 조절 장치는 전체 변속비 Ve/Vs에 따라 및/또는 입력 속도 Ve에 따라 및/또는 전달되는 토크에 따라 다르게 활성화된다는 특징이 있다. 상기 조절 장치의 특성 곡선 및/또는 상기 조절 장치의 제어는 상기한 전체 변속비 Ve/Vs가 제어되는 것을 가능하게 한다.
도 5에 도시된 실시 예는 도 4에 도시된 실시 예와 비교하여 다른 점들에 관해서만 설명될 것이다.
본 실시 예에서, 상기 조절 장치(32)에 의한 동역학적 결합은 상기 링 기어(16)와 케이지(48) 사이의 제3 변속 경로(T3)에 배치되지 않고, 상기 제2 변속 경로 또는 출력 경로(T2)에 배치된다. 더 구체적으로, 상기 동역학적 결합(32)에 의해 연결되는 운동역학적 장애는 한편으로는 상기 제2 차동 메카니즘(49)의 출력 부재(52)와, 상기 출력 축(12)과 연결된 상승 기어부(step up gearing)(57) 사이에 위치된다. 상기 링 기어(16)의 외주면과 상기 케이지(48) 사이에 직접 치합하게 구성되기 때문에 상기 제3 변속 경로(T3)는 매우 단순화된다. 여기서, 이제는 단지 두 개의 기하학적 축들, 상기 전체 축(31)과, 상기 차동 메카니즘(49) 및 발전기(32)에 공통되는 축(53)만 존재하게 된다. 상기 상승 기어세트(56, 57)들에서 중간 피니언이 하나 적어지게 된다.
도 6에 도시된 실시 예는 도 5에 도시된 실시 예와 관련하여 다른 점들에 관해서만 설명될 것이다.
본 실시 예에서, 상기 차동 메카니즘(13)은 캐스케이드 내에 유성 피니언들의 쌍을 구비하기 보다는 단순한 유성 피니언들(58)을 구비하는 형태이다. 각 유성 피니언(58)은 상기 태양 기어(14) 및 상기 링 기어(16)의 내측 치형 세트와 치합한다.
이러한 차동 메카니즘은, 상기 링 기어(16)가 상기 유성 캐리어(17) 및 태양 기어(14)와는 반대방향으로 회전할 때, 상기 유성 캐리어(17)에 대한 상기 태양 기어(14)의 높은 상승율을 제공한다. 선택에 따라서, 예를 들어, 상기 링 기어(16)의 내측 기어세트 직경이 상기 태양 기어(14) 직경의 3배인 경우, 상기 링 기어가 정지 상태로 유지할 때에는 상기 상승율이 3:1에 이르고, 상기 링 기어가 상기 입력 축(11)보다 43.5배 빠르게 회전할 때에는 상기 상승율이 90:1에 이른다.
이러한 경우에서, 상승 기어부(4)는 단지 대략 17:1의 상승율을 발생시키는데, 이는 상기 입력 축(11)의 회전 속도가 이제는 분당 17회전에서 500회전까지 변화한다는 것을 의미한다. 상기 입력 축(11)의 속도가 분당 17회전일 때, 상기 변속 장치는 그의 최대 상승율을 제공해야만 한다. 이는 상기 링 기어(16)로 하여금 최대 속도, 분당 17×43.5 = 740회전을 하게 하며, 이는 매우 합당한 것이다.
따라서, 중요한 것은, 상기 링 기어(16)의 회전 속도를 분당 -740회전에서 0회전까지 변하게 한다는 것이다. 이는 상기 케이지(48)로 하여금 ⅰ) 상기 입력/출력 축(11, 12) 중 하나의 속도와 ⅱ) 이 축(11, 12)들 중 다른 하나의 역속도(inverse speed)의 평균을 생성하게 함으로써 달성될 수 있다. 따라서, 상기 기어세트(57)에는 반전 아이들 피니언(reverse idler pinion)(59)이 있고, 반면에, 상기 기어세트(56)는 반전 아이들 피니언을 구비하지 않는다.
아울러, 상기 기어세트(56)의 상승율은 상기 기어세트(57)의 상승율보다 대략 3배 정도 높다. 상기 입력 속도가 매우 낮을 때, 상기 케이지(48)의 속도는 상기 출력 축(12) 속도의 절반에 거의 근접한다. 반대로, 상기 입력 속도가 그 최대치(분당 500회전)일 때, 상기 출력 축 속도보다 3배로 상승된 값이 상기 차동 메카니즘(49)을 향해 상기 케이지(48)에 의해 공급되는 평균값이 영(zero)인 효과를 갖도록 반대 방향으로 도입된다. 따라서 상기 입력 축(11)의 속도에 대하여 상기 케이지(48)의 속도는 원하는 방식으로 변화하게 된다. 이는 적절한 방향으로 상기 링 기어(16)에 전달되어 후자가 상기 입력 축(11) 및 출력 축(12)과는 반대 방향으로 회전하게 된다.
본 실시 예에서, 상기 링 기어(16)에 가해지는 토크는 그 회전 방향과 동일해야 할 필요가 있다. 이러한 이유로, 상기 발전기(32)는 단지 기계적으로 저항하기보다는 상기 링 기어(16)와 연관되어 구동되어야 한다. 따라서 상기 발전기의 장착은 앞서 예시된 실시 예들과 비교할 때 역방향이어야만 하며, 이로써, 그 회전성 고정자(34)는 상기 링 기어(16)와 동일한 측에 있게 되고, 회전자(33)는 기준 속도, 말하자면 입력/출력 축의 하나에 대한 고정된 비율이며, 본 실시 예에서는 상기 출력 축(12)과 동일한 측에 있게 된다.
물론, 선행 실시 예에서와 같이, 상기 기어세트(56, 57)들, 그리고 상기 링 기어(16)와 케이지(48) 사이에서의 상승율은 상기 조절 장치(32)에서 상기 고정자와 회전자 사이의 상대 속도에 따라 최적화할 수 있도록 신중하게 선택된다.
도 7에 도시된 실시 예는, 도 6에 도시된 실시 예와 마찬가지로, 도 5에 도시된 실시 예의 또 다른 변형으로서, 도 5에 도시된 실시 예와 관련하여 다른 점들에 관해서만 설명될 것이다.
상기 조절 장치(32)에 의한 동역학적 결합이 구비된 운동역학적 장애는 이번에 다시 상기 제2 변속 경로 또는 출력 경로(T2)에 위치되면서, 상기 제1 차동 메카니즘(13)의 상기 태양 기어(14)와 기어 휠(28) 사이에 위치된다. 다시 말해서, 상기 중간 축(21)이 끊어져 있다(interrupted). 한편에서는 상기 회전자(33)가, 다른 한편에서는 상기 고정자(34)가 상승 기어세트(61, 63, 62, 28)를 통해 상기 태양 기어(14)와 상기 기어 휠(28)에 각각 결합된다. 상기의 잇수비(tooth ratio)들은, 예를 들면, 상기 태양 기어(14)에 결합된 상기 회전 요소들(22, 23) 중 하나가 다른 하나보다 더 빠르게 회전하도록 선정된다.
도 8에 도시된 실시 예는 도 7에 도시된 실시 예와 관련하여 다른 점들에 관해서만 설명될 것이다.
본 실시 예에서는, 두 개의 상기 차동 메카니즘이 상기 전체 축(31)을 따라 동축으로 정렬된다. 상기 입력 변속 경로(T1)는 상기 입력 축(11)과 상기 유성 캐리어(17) 및 상기 메카니즘(49)의 입력 태양 기어(51) 사이의 단단한 결합(rigid coupling)이다. 상기 제3의 변속 경로(T3)는 상기 링 기어(13)와 상기 케이지(48)를 단단하게 연결하는 종 하우징(bell housing)(64)이다. 튜브형 조립체를 형성하는 상기 태양 기어(14), 중간 축(21) 및 기어 휠(63)은 상기 입력 축(11)을 중심으로 자유롭게 회전한다. 상기 기어 휠(63)은 상기 풍력 터빈 회전자(1) 상에서 상기 태양 기어(14) 측에 있다. 상기 두 개의 차동 메카니즘(13, 49)들은 상기 기어 휠(63, 28)들 사이에서 간격을 두고 위치해 있다.
본 실시 예는 선행 실시 예들 중 하나와 유사하게 작동한다. 이는 더 적은 수의 기어세트들을 필요로 한다. 그러나 선행 실시 예들의 경우에서와 같은 상승 기어부(step up gearing)에 의해 감소된 토크보다는 대체로 상기 제1 차동 메카니즘(13)과 같은 토크가 상기 제2 차동 메카니즘(49)에 가해진다.
도 9에 도시된 실시 예는 도 8에 도시된 실시 예와 관련하여 다른 점들에 관해서만 설명될 것이다.
제1의 차동 메카니즘들은 도 1에 도시된 바와 같은 동일한 설계와 동일한 잇수비(tooth ratio)를 가지는 차동 메카니즘들(13, 113)들에 대한 것이다. 바람직하게는, 제조의 용이성, 비용 절감 및 부품 재고 등을 위해 이들 두 메카니즘들은 동일한 구성요소들을 가진다. 상기 제1 변속 경로(T1)는 상기 입력 축(11)을 상기 두 개의 유성 캐리어들(17, 117)로 단단하게 연결한다. 상기 제2 변속 경로(T2)는 상기 두 개의 태양 기어들(14, 114)을 상기 출력 축(12)으로 단단하게 연결한다. 상기 제3 변속 경로(T3)는 하기에서 설명될 동역학적 결합에 의해 연결되는 운동역학적 장애를 통과하여 상기 두 개의 링 기어들(16, 116)을 연결한다.
상기한 두 차동 메카니즘들이 서로 동일하고, 상기 유성 캐리어들(17, 117)이 그러하듯이 상기 태양 기어들(14, 114)이 한 몸체인 것처럼 회전함으로써, 상기 두 링 기어들(16, 116) 또한 같은 속도에서 같은 방향으로 회전하게 된다. 그러나 약간의 다른 비율을 가지는 상기 기어세트들(66, 166)에 의해 상기 링 기어(16)와 링 기어(116)에 각각 결합되기 때문에, 상기 회전 요소들(22, 23)은 서로 다른 회전 속도를 가지게 된다. 상기 요소들(22, 23)의 속도 차이는 상기 링 기어들(16, 116)의 속도에 비례하며, 상기 링 기어들(16, 116)의 속도 자체는 변속비 Vs/Ve에 종속된다. 상기 조절 장치(32)에 의한 동력학적 작용(dynamic action)은 상기 요소들(22, 23) 사이의 속도 차, 결과적으로는 전체적인 변속비에 영향을 줄 수 있다.
상기한 제1의 차동 메카니즘들과는 독립적인 다른 차동 메카니즘들은 상기 요소들(22, 23) 사이의 동역학적 결합 방식에 관련된 것이다. 상기 회전자(133)와 고정자(134)는 상기 요소들(22, 23)과 더 이상 직접 연결되지 않고, 상기 요소들(22, 23) 사이에 설치되어 상기 요소들(22, 23) 사이의 속도 차이를 나타내는 속도를 생성하는 수단에 연결된다. 통상적인 구성의 차동 메카니즘(141)은 상기 축들(22, 23)이 서로 반대 방향으로 회전하는 것을 전제로 하여 기능을 수행한다. 이는 상기 상승 기어세트(166)가 상기 상승 기어세트(66)에는 제공되지 않은 반전 아이들 피니언(reverse idler pinion)을 구비하기 때문이다. 각각의 상기 요소들(22, 23)은 상기 비교 차동 메카니즘(141)의 두 입력 태양 기어들(143) 각각에 연결된다. 대칭으로 서로 마주보게 배열된 이들 두 베벨 태양 기어들(141)은 상기 회전 케이지(146) 내에서 상기 요소들(22, 23)에 대하여 수직하는 하나 또는 둘 이상의 축 상에서 자유롭게 회전할 수 있게 장착된 베벨 유성 피니언들(144)과 치합한다. 작동에 있어서, 상기 케이지는 상기 요소들(22, 23) 속도의 절대 값 사이의 차이의 절반과 같은 속도로 회전한다. 상기 케이지(146)는, 그 외주면에, 상기 조절 장치(32)의 회전자(133)에 결속된 상승 피니언(148)과 치합하는 링 기어(147)를 구비한다. 상기 장치(apparatus)(32)의 상기 고정자(134)는 지지 구조물에 설치된다.
이러한 방식의 동역학적 결합은 회전자의 속도가 현저하게 감소하고 조절 장치의 고정자가 고정된 상태로 유지되기 때문에 특히 유용하다. 따라서 구성과 배치가 훨씬 수월해지고, 더 이상 고정자에 설치되는 회전 접촉자들이 필요치 않다.
더욱이, 회전성 고정자를 구비하는 선행 실시 예들에서, 상기 조절 장치의 적절한 작동을 위해서는 상기 요소들(22, 23) 사이에 최소한의 속도차가 필요했다. 특수하고 값비싼 부품들에 의존하지 않기 위해 초과하지 말아야할 분당 30,000회전에 이르는 정도의 최대 속도에서, 상기 조절 장치에 포함되는 에너지 비율(percentage energy)은 적어도 상기 동역학적 결합에 의해 전달되는 에너지의 5%이다. 도 9에 도시된 구조를 통해, 상기 요소들(22, 23) 사이의 속도 차이를 더 낮출 수 있다. 속도 차이가 낮아짐에 따라, 상기 회전자(133)에 적합한 속도의 범위를 얻고자하는 모든 경우에서 상기 케이지(146)에 대한 상기 피니언(148)의 상승율이 더 증가될 수 있다.
도 10에 도시된 실시 예는 도 9에 도시된 실시 예와 관련하여 다른 점들에 관해서만 설명될 것이다. 본 실시 예에서 상기 두 개의 링 기어들(16, 116)은 서로 단단하게 연결되어 있다. 반면에, 상기 두 개의 태양 기어들(14, 114)을 연결하는 상기 출력 변속 경로(T2)는 도 9를 통해 개시된 것과 같은 종류의 동역학적 결합으로 연결된 운동역학적 장애를 가지고 있다.
도 9에서와 같이 상기 두 차동 메카니즘들이 서로 동일하다면, 상기 회전 요소들(22, 23) 간의 속도 차는 상기 출력 축(12)의 회전 속도에 비례하기 때문에 일정하게 될 것이다. 그럼에도 불구하고, 상기 발전기(32)의 토크는 상기 변속비를 조절하기 위해 설정될 수 있을 것이다. 다시 말해서, 상기 출력 축(12)의 회전 속도를 조절하는 것은 동시에 상기 발전기(32)의 회전자의 회전 속도를 조절하게 되는 것이다.
도시된 예에서, 앞선 단락에서 언급된 바와 같이, 일정하지 않고 상기 입력 축(11) 속도의 함수에 따라 변화하기 위한 상기 요소들(22, 23) 사이의 속도의 차이가 제공된다. 이를 위해, 동일한 설계이면서, 잇수비(tooth ratio)는 다소 다른 두 개의 차동 메카니즘이 사용된다. 그럼에도 불구하고, 상기 상승 기어세트들(66, 166) 사이의 상승율의 차이는 유지된다. 따라서 상기 변속 장치가 직접 구동으로 작동하여 상기 두 개의 태양 기어들(14, 114)이 동일한 속도로 회전할 때, 상기 요소들(22, 23) 사이에는 속도의 차이가 발생된다.
도시되지 않은 실시 예로는, 본 실시 예는 도 6에 도시된 하나(13)와 같은 형태의 두 차동 메카니즘들, 말하자면, 서로 반대 방향으로 회전하는 단순 유성 피니언과 링 기어를 통해 구현될 수도 있다. 링 기어를 일방향 또는 다른 방향으로 회전시키는 작동 또한 고려해 볼 수 있다. 30:1의 변속비(반대방향으로 대략 상기 출력 속도의 13.5배의 속도로 상기 링 기어가 회전하는 경우)와 1:1의 변속비(상기 입력 축과 동일 방향, 동일 속도로 상기 링 기어가 회전하는 경우) 사이에서 도 6에 도시된 단순 유성 피니언들 구비하는 차동 메카니즘을 작동시키는 것으로도 가능하다.
도 11과 도 12에 도시된 실시 예들은 비교 차동 메카니즘의 관점에서 차이가 있다.
도 11에 도시된 실시 예에서, 상기 두 개의 태양 기어들(143)은 서로 다른 직경을 가지며, 상기 유성 피니언들(144)은 경사진 축들을 가지고 있다. 상기 요소들(22, 23)이 동일한 속도를 가질 때, 상기 케이지(41)는 상기 요소들(22, 23)의 속도에 비례하는 속도로 회전한다. 도 9를 참조하면, 더 이상 상기 상승 메카니즘(step up mechanism)들(66, 166)을 위한 다른 비율을 제공할 필요가 없다. 이들 중 하나가 반대의 설비(reversing facility)를 가지며 다른 하나는 그렇지 않은 것으로 충분하다.
도 12에 도시된 실시 예에서, 더 이상 상기 상승 장치(step-up device)들 중 하나가 반대 설비를 가질 필요가 없다. 반전 동작은 차동 메카니즘을 통해 이루어진다. 각 유성 피니언(144)은 상기 태양 기어들(143)의 치형과 맞물리는 동축의 치형 세트(tooth set)들을 구비한다. 상기 두 개의 태양 기어들(143)은 상기 유성 피니언들 축들의 한 쪽에 함께 위치된다. 상기 유성 피니언 치형 세트들과 함께 각 태양 기어(143)의 잇수비(tooth ratio)를 다르게 선정함으로써, 또한, 상기 요소들(22, 23)이 동일한 속도로 회전할 때, 상기 케이지(141)의 회전을 상기 요소들(22, 23)의 속도에 비례하게 할 수도 있다. 본 실시 예는 상기 두 차동 메카니즘들 또한 서로 동일하다 할지라도, 상기한 두 상승 장치들(66, 166)을 정확히 동일하게(strictly identically) 제작할 수 있게 한다.
물론, 상술하거나 도시한 바 있는 실시 예들에 따라 본 발명이 한정되지는 않는다. 비교 차동 메카니즘을 구비하는 동역학적 결합 시스템은 다른 실시 예들, 특히 도 4 내지 도 8에 도시된 실시 예들을 통해서도 구현될 수 있다. 상기 비교 차동 메카니즘은 케이지 형태가 아닐 수도 있다. 예를 들어, 다른 하나의 회전 요소가 주전원 기어세트(epicyclic gearset)의 태양 기어에 연결된 상태에서 상기 회전 요소들 중 하나는 통상의 주전원 기어세트의 링 기어에 연결될 수 있고, 상기 두 회전 요소들은 서로 반대 방향으로 회전하며, 예를 들면, 링 기어를 대략 태양 기어 속도의 절반으로 회전하게 함으로써 상기 유성 캐리어의 속도를 낮추는 변속비를 가지는 상승 장치들에 의해 구동된다.
도 1에 도시된 실시 예에서는, 상기 운동역학적 경로(TC)와 동역학적 경로(TD)는 상기 입력 축(11)과 상기 차동 메카니즘(13) 사이에 설치될 수 있다.
도 4 내지 도 12를 통해 도시된 바와 같은 실시 예들에서는, 상기 동역학적 결합에 의해 연결되는 운동역학적 장애는 상기 입력 축(11)과 상기 두 차동 메카니즘들 중 하나의 회전 입력 부재 사이의 상기 입력 변속 경로 내에 위치될 수 있다.
대부분의 실시 예에서, 상기 입력 축의 속도가 증가되고 상기 변속비가 감소할 때, 상기 두 회전 요소들(22, 23) 사이의 속도 차이가 증가하는 값으로서 설명되었다. 상기 조절 장치(32) 또한 일반적으로 속도의 함수에 따라 그 토크가 증가되는 특성이 있기 때문에, 입력 속도의 증가가 전달 토크의 증가와 동반되는 풍력 터빈의 예에서 상기 두 회전 요소들 사이의 속도 차이 변화의 방향은 상기 변속 장치의 조절에 기여한다. 그러나, 속도의 차이를 변하지 않게 하거나 상술한 바와는 반대 방향으로 변하게 하는 것도 고려해 볼 수 있다.

Claims (31)

  1. 회전 속도가 가변되는 동력원(1), 특히, 풍력 터빈 회전자로부터 전력을 생산하는 기계(3)를 위한 변속 장치로서, 지지 구조물(supporting structure)(8), 동력원에 연결된 입력 축(input shaft)(11), 상기 기계의 회전자(2)에 연결되는 출력 축(output shaft)(12) 및 적어도 두 개의 변속 경로(TC, TD; T1, T2, T3)들을 구비하되, 적어도 하나의 변속 경로가 적어도 세 개의 회전 부재(rotary member)(14, 16, 17; 48, 51, 52; 114, 116, 117)들을 구비하는 적어도 하나의 차동 메카니즘(differential mechanism)(13, 49, 113)을 통과하는 변속 장치에 있어서, 상기 변속 경로들 중 하나는 동역학적 결합(dynamic coupling) 관계이면서 운동역학적 비결합(kinematic uncoupling) 관계이고, 각각이 상기 변속 장치의 다른 부분들에 연결됨으로 인하여 서로에 대하여 상대 속도를 가지는 두 개의 회전 요소(rotary element)(22, 23)들을 구비하고, 상기한 상대 속도는 두 개의 회전 요소들(22, 23) 사이에서 상기 기계의 회전자(2)를 설정된 속도, 특히, 실질적으로 일정한 속도로 유지하는 방향으로 변화하는 토크를 발생시키는 조절 장치(regulating apparatus)(32) 내에서 상대 회전을 일으키도록 구성함을 특징으로 하는 변속 장치.
  2. 제1 항에 있어서, 토크의 변화는 그 토크와 상기 장치(apparatus) 내에서의 회전 속도 사이에서 상기 장치(apparatus)(32)의 특성 관계에 의해 설정됨을 특징으로 하는 변속 장치.
  3. 제1 항에 있어서, 토크의 변화는 상기 기계(3)의 회전자(2)의 속도를 조절하는 제어, 특히, 제어 루프(36, 37, 38, 39)에 의해 설정됨을 특징으로 하는 변속 장치.
  4. 제1 항 내지 제3 항 중 어느 한 항에 있어서, 상기 장치(apparatus)(32)는 전기 발전기(electric generator)임을 특징으로 하는 변속 장치.
  5. 제4 항에 있어서, 상기 전기 발전기(32)는 전극의 수를 변화시킬 수 있는 형태의 전기 발전기임을 특징으로 하는 변속 장치.
  6. 제1 항 내지 제5 항 중 어느 한 항에 있어서, 상기 두 개의 요소들(22, 23)은 두 요소들의 회전 속도들의 절대 값 사이의 차이, 가능하게는 가중치가 주어진 차이(possibly the weighted difference)를 나타내는 회전 출력부(rotary output)(146)를 가지는 비교 차동 기어세트(comparative differential gearset)(141)의 두 입력부(input)들로 연결되며, 상기 장치(apparatus)의 회전부(133)는 상기 회전 출력부(146)에 연결됨을 특징으로 하는 변속 장치.
  7. 제6 항에 있어서, 상기 장치(apparatus)(32)는 상기 회전 출력부(141)와 상기 지지 구조물(8) 사이에 기능적으로 장착됨을 특징으로 하는 변속 장치.
  8. 제6 항 또는 제7 항에 있어서, 상기 비교 차동 기어세트(141)의 회전 출력부(146)의 회전 속도에 대하여 상기 장치(apparatus)(32)의 회전부(133)의 회전 속도를 증가시키는 수단(147, 148)들을 구비함을 특징으로 하는 변속 장치.
  9. 제6 항 내지 제8 항 중 어느 한 항에 있어서, 상기 두 회전 요소들(22, 23)을 서로에 대하여 반대 방향으로 회전하게 하는 수단(116)을 구비함을 특징으로 하는 변속 장치.
  10. 제1 항 내지 제9 항 중 어느 한 항에 있어서, 상기 두 요소들(22, 23)을 구비하는 상기 변속 경로는 각 요소의 회전 속도를 증가시키는 수단들(24, 27; 56, 57; 61, 62; 66, 166)을 구비함을 특징으로 하는 변속 장치.
  11. 제1 항 내지 제10 항 중 어느 한 항에 있어서, 상기한 요소들 중 하나(23)는 상기 입력, 출력 축들 중 하나(12)와 고정된 비율로 치합하는 관계이며, 다른 하나(22)는 상기 차동 메카니즘(13)의 회전 부재(16)와 고정된 비율로 치합하는 관계에 있으며, 회전 부재(16) 자체는 상기 입력, 출력 축(11,12)들 각각과 가변 비율로 치합하는 관계임을 특징으로 하는 변속 장치.
  12. 제1 항 내지 제11 항 중 어느 한 항에 있어서, 상기한 적어도 하나의 차동 메카니즘은 세 개의 회전 부재들을 구비하는 두 개의 차동 메카니즘(13, 49; 113)을 구비하고, 상기한 적어도 두 개의 변속 경로들은 상기 차동 메카니즘들 중 하나의 회전 부재를 다른 메카니즘의 대응하는 회전 부재로 각각 연결하는 세 개의 변속 경로(T1 ,T2, T3)를 구비함을 특징으로 하는 변속 장치.
  13. 제12 항에 있어서, 상기 두 개의 요소들(22, 23)은 상기 세 개의 경로들 중 하나의 일부를 형성함을 특징으로 하는 변속 장치.
  14. 제12 항 또는 제13 항에 있어서, 상기한 세 개의 변속 경로들 중 하나는 상기 입력 축(11)에 결속된 변속 부재(17)를 구비하는 입력 경로(T1)이고, 상기 세 개의 변속 경로들 중 다른 하나는 상기 출력 축(12)에 결속된 변속 부재(21, 28)를 구비하는 출력 경로(T2)임을 특징으로 하는 변속 장치.
  15. 제14 항에 있어서, 상기 제3의 경로(T3)를 통해 연결된 상기 두 개의 회전 부재들은, 그들 중 하나(16)는 그의 속도가 증가될 때 그 차동 메카니즘의 변속비를 줄이려는 성향이, 다른 하나(48)는 그의 속도가 증가될 때 그 차동 메카니즘의 변속비를 증가시키려는 성향이 있음을 특징으로 하는 변속 장치.
  16. 제12 항 또는 제13 항에 있어서, 상기 입력 축(11)의 속도가 증가될 때, 상기 두 개의 요소들(22, 23)에 의해 상기 장치(apparatus)(32)에 적용되는 회전 속도는 상기 입력 축(11)의 속도의 함수에 따라 변화함을 특징으로 하는 변속 장치.
  17. 제16 항에 있어서, 상기 입력 축(11)의 속도가 증가될 때 상기 장치(apparatus)(32)로 가해지는 회전 속도를 증가함을 특징으로 하는 변속 장치.
  18. 제12 항 내지 제17 항 중 어느 한 항에 있어서, 상기 입력/출력 축(11, 12) 중 하나의 속도와 상기 입력/출력 축(11, 12) 중 다른 하나의 속도의 반대의 대략적인 평균, 말하자면 가중된 및/또는 증폭된 평균을 그 제3의 회전 부재(48)로 제공하기 위해, 상기 차동 메카니즘들 중 하나(49)의 두 회전 부재들(51, 52)은 상기 입력 축(11)과 상기 출력 축(12) 각각에 연결되고, 상기 제3의 변속 경로(T3)는 상기한 가중된 평균의 함수로서의 속도이면서 상기 입력 축(11)과 출력 축(12) 회전 속도의 반대 방향인 속도를 다른 상기 차동 메카니즘(13)의 제3 부재(16)에 적용함을 특징으로 하는 변속 장치.
  19. 제12 항 내지 제17 항 중 어느 한 항에 있어서, 상기 입력 축(11)의 속도와 상기 출력 축(12) 속도의 대략적인 평균, 말하자면 가중된 및/또는 증폭된 평균을 그 제3의 회전 부재(48)로 제공하기 위해, 상기 차동 메카니즘들 중 하나(49)의 두 회전 부재들(51, 52)은 상기 입력 축(11)과 상기 출력 축(12) 각각에 연결되고, 상기 제3의 변속 경로(T3)는 상기한 가중된 평균의 함수로서의 속도를 다른 상기 차동 메카니즘(13)의 제3 부재(16)에 적용함을 특징으로 하는 변속 장치.
  20. 제12 항 내지 제17 항 중 어느 한 항에 있어서, 상기 두 차동 메카니즘(13, 113)들은 서로 동일하며, 상기한 세 개의 변속 경로들 중 적어도 하나는 그 하나의 변속 경로가 연결하는 상기한 두 개의 회전 부재들 사이에서, 상기한 세 개 변속 경로들 중 다른 하나에 의해 그 다른 하나의 변속 경로가 연결하는 상기한 두 개의 회전 부재들 사이에서 설정된 변속비와 다른 변속비를 설정함을 특징으로 하는 변속 장치.
  21. 제12 항 내지 제17 항 중 어느 한 항에 있어서, 상기 두 차동 메카니즘(13, 113)들은 서로 동일하며, 상기한 세 개의 변속 경로들 중 둘은 서로 동일한 변속비를 설정함을 특징으로 하는 변속 장치.
  22. 제21 항에 있어서, 상기한 세 개의 변속 경로들은 서로 동일한 변속비를 설정하며, 상기한 두 개의 요소들(22, 23)은 다르게 상기 장치(apparatus)(32)로 연결됨을 특징으로 하는 변속 장치.
  23. 제12 항 내지 제17 항 중 어느 한 항에 있어서, 상기한 두 차동 메카니즘들은 동일한 설계이면서 서로 다른 잇수비(tooth ratio)를 가짐을 특징으로 하는 변속 장치.
  24. 제23 항에 있어서, 상기 세 개의 변속 경로들은 서로 동일한 변속비를 설정함을 특징으로 하는 변속 장치.
  25. 제16 항 내지 제24 항 중 어느 한 항에 있어서, 상기한 두 메카니즘(12, 113)들은 동축으로 정렬되고, 상기 변속 경로들 중 적어도 하나, 바람직하게는 두 개의 상기 변속 경로들은 상기 메카니즘들 중 하나에 각각 속하는 두 회전 부재들이 공동으로 회전하는 것을 보장하는 연결들임을 특징으로 하는 변속 장치.
  26. 제1 항 내지 제25 항 중 어느 한 항에 있어서, 상기 차동 메카니즘은 상기 출력 축(12)에 연결된 태양 기어(14), 회전 반작용 부재(rotary reaction member)로 이루어지는 링 기어(16) 및 상기 입력 축(11)에 연결되며 캐스케이드 내에 장착된 두 유성 피니언(planet pinion)(18, 19)들의 적어도 한 세트(set)를 지지하는 유성 캐리어(planet carrier)(17)를 구비하는 주전원 기어세트(epicyclic gearset)의 형태로 제작되며, 상기한 두 유성 피니언(planet pinion)들 중 하나(18)는 상기한 태양 기어(14)에 치합하고, 다른 하나는 상기 링 기어(16)와 치합함을 특징으로 하는 변속 장치.
  27. 제1 항 내지 제26 항 중 어느 한 항에 따른 변속 장치(6) 및 동기식 전력 생산 기계(3)를 구비함을 특징으로 하는 전력을 생산하는 유닛.
  28. 제27 항에 있어서, 상기 전력 생산 기계(3)의 회전자(2)의 회전 속도를 감지하는 센서(36) 및 회전자의 회전 속도와 설정값(setpoint) 간 차이의 함수에 따라 상기 장치(apparatus)(32)를 제어하여 이 회전 속도를 조절하는 제어 루프를 구비함을 특징으로 하는 전력을 생산하는 유닛.
  29. 제1 항 내지 제26 항 중 어느 한 항 따른 변속 장치(6) 및/또는 제27 항 또는 제28 항에 따른 전력 생산 유닛을 구비함을 특징으로 하는 풍력 터빈.
  30. 동력원(1)과 부하(load)(3) 사이의 변속비를 설정하는 방법에 있어서, 상기 동력원과 부하 사이에 두 개의 차동 메카니즘(13, 48; 113)이 위치되고, 이들 차동 메카니즘들은 각각 적어도 세 개의 회전 부재들을 구비하며, 상기 메카니즘들 중 하나의 각 회전 부재는 개별 변속 경로(T1, T2, T3)에 의해 다른 메카니즘의 개별 회전 부재에 연결되고, 상기 경로들 중 하나는 동력학적 결합 장치(apparatus)의 작용에 의해 연결되지만 운동역학적으로는 연결되지 않은 두 개의 회전 요소들(22, 23)을 구비하고, 상기한 결합 장치(apparatus)는 조절됨을 특징으로 하는 방법.
  31. 제30 항에 있어서, 상기 동역학적 결합 장치(apparatus)(32)는 각각 상기 요소들(22, 23) 중 하나로 이루어진 두 입력부(input)들을 구비하는 비교 차동 기어세트(141)의 출력부(146)와 함께 구동하는 관계인 축(shaft)을 구비함을 특징으로 하는 방법.
KR1020107019903A 2008-02-11 2009-02-11 변속 가능한 동력원으로부터 전력을 생산하는 기계를 위한 변속 장치, 그러한 장치를 구비한 전력 생산용 유닛과 풍력 터빈 및 변속비 조절 방법 KR20110021713A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0850849 2008-02-11
FR0850849A FR2927394B1 (fr) 2008-02-11 2008-02-11 Dispositif de transmission pour machine de production d'electricite a partir d'une source motrice a vitesse variable, unite de production electrique et eolienne ainsi equipees, et procede de reglage d'un rapport de transmission

Publications (1)

Publication Number Publication Date
KR20110021713A true KR20110021713A (ko) 2011-03-04

Family

ID=39708003

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107019903A KR20110021713A (ko) 2008-02-11 2009-02-11 변속 가능한 동력원으로부터 전력을 생산하는 기계를 위한 변속 장치, 그러한 장치를 구비한 전력 생산용 유닛과 풍력 터빈 및 변속비 조절 방법

Country Status (10)

Country Link
US (1) US20110206517A1 (ko)
EP (1) EP2250403A1 (ko)
KR (1) KR20110021713A (ko)
AU (1) AU2009213924A1 (ko)
BR (1) BRPI0905904A2 (ko)
CA (1) CA2714440A1 (ko)
FR (1) FR2927394B1 (ko)
IL (1) IL207457A0 (ko)
RU (1) RU2010137799A (ko)
WO (1) WO2009101360A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101380961B1 (ko) * 2011-05-23 2014-04-04 주식회사 디엠에스 발전기 및 이를 이용한 풍력발전 시스템
KR101383425B1 (ko) * 2013-01-30 2014-04-10 현대중공업 주식회사 풍력 발전용 가변속 동력 전달 장치
KR101723108B1 (ko) * 2015-10-01 2017-04-05 연세대학교 원주산학협력단 간극조절장치를 갖는 사보니우스 풍력터빈

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT507394B1 (de) * 2008-10-09 2012-06-15 Gerald Dipl Ing Hehenberger Windkraftanlage
AT507395A3 (de) * 2008-10-09 2012-09-15 Hehenberger Gerald Differentialgetriebe für windkraftanlage
AT508411B1 (de) * 2009-07-02 2011-06-15 Hehenberger Gerald Dipl Ing Differenzialgetriebe für energiegewinnungsanlage und verfahren zum betreiben
US8246191B2 (en) * 2010-04-08 2012-08-21 Sun-Yuan Hu Wind-driven light-emitting device
US20110144814A1 (en) * 2010-06-29 2011-06-16 Detlef Menke Wind turbine and method for operating a wind turbine
CN102466011A (zh) * 2010-11-15 2012-05-23 高则行 联结器组件和动力传递系统以及风力机和风力发电机
US9192076B2 (en) * 2011-03-05 2015-11-17 Dell Products L.P. Methods for managing fans within information handling systems
US8968133B2 (en) 2011-05-26 2015-03-03 Miva Engineering Ltd. Dynamic ratio speed increaser for windmills and similar applications
US8851839B2 (en) * 2011-08-23 2014-10-07 Charles Franklin ECKART Wide blade multiple generator wind turbine
US8674536B2 (en) * 2011-11-30 2014-03-18 Iqwind Ltd. Wind turbine with variable speed auxiliary generator and load sharing algorithm
GB2512536B (en) 2011-12-20 2018-05-30 Windflow Tech Limited Power generating system and hydraulic control system
US20150155758A1 (en) * 2012-06-12 2015-06-04 Flux Drive, Inc. Apparatus, Method and System For Dual Speed Generation
DE102012221825A1 (de) * 2012-11-29 2014-06-05 Zf Friedrichshafen Ag Getriebeeinheit mit Plusgetriebesatz
DE102012221823A1 (de) * 2012-11-29 2014-06-05 Zf Friedrichshafen Ag Getriebeeinheit mit Plusgetriebesatz
US8845471B2 (en) * 2013-01-23 2014-09-30 General Electric Company Variable input synchronous output drivetrain for wind turbine
AT514589B1 (de) * 2013-05-17 2015-02-15 Gerald Dipl Ing Hehenberger Verfahren zum Betreiben eines Triebstranges und Triebstrang
CN104179643B (zh) * 2014-08-14 2017-01-25 江苏新誉重工科技有限公司 用于增速箱与发电机之间的自动对中调节装置及其对中方法
AT15975U1 (de) 2017-05-23 2018-10-15 Miba Gleitlager Austria Gmbh Windkraftanlagengetriebe
NO345863B1 (no) * 2020-02-19 2021-09-13 Wind Spider As Anordning ved gir til bruk i vindturbiner
CN114151273B (zh) * 2021-12-16 2024-04-12 中国科学院电工研究所 一种基于双输入差速轮系的轮毂双叶轮同向旋转风电机组
CN114670205B (zh) * 2022-04-29 2023-11-21 长沙长泰机器人有限公司 一种多轴机器人机械传动解耦的方法
CN115977888A (zh) * 2022-11-24 2023-04-18 若光若盐(南京)科技有限公司 一种双风轮双增速箱风力发电机组

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0163825B1 (ko) * 1995-03-27 1998-12-01 신찬 변속입력 정속출력 기어장치
DE10314757B3 (de) * 2003-03-31 2004-11-11 Voith Turbo Gmbh & Co. Kg Antriebsstrang zum Übertragen einer variablen Leistung
DE10318696A1 (de) * 2003-04-24 2004-11-25 Voith Turbo Gmbh & Co. Kg Antriebsstrang mit variabler Eingangs- und konstanter Ausgangsdrehzahl

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101380961B1 (ko) * 2011-05-23 2014-04-04 주식회사 디엠에스 발전기 및 이를 이용한 풍력발전 시스템
KR101383425B1 (ko) * 2013-01-30 2014-04-10 현대중공업 주식회사 풍력 발전용 가변속 동력 전달 장치
KR101723108B1 (ko) * 2015-10-01 2017-04-05 연세대학교 원주산학협력단 간극조절장치를 갖는 사보니우스 풍력터빈

Also Published As

Publication number Publication date
WO2009101360A1 (fr) 2009-08-20
RU2010137799A (ru) 2012-03-20
IL207457A0 (en) 2010-12-30
CA2714440A1 (en) 2009-08-20
US20110206517A1 (en) 2011-08-25
AU2009213924A1 (en) 2009-08-20
FR2927394B1 (fr) 2010-06-04
EP2250403A1 (fr) 2010-11-17
BRPI0905904A2 (pt) 2015-06-30
FR2927394A1 (fr) 2009-08-14
AU2009213924A2 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
KR20110021713A (ko) 변속 가능한 동력원으로부터 전력을 생산하는 기계를 위한 변속 장치, 그러한 장치를 구비한 전력 생산용 유닛과 풍력 터빈 및 변속비 조절 방법
RU2471087C2 (ru) Приводной механизм электрогенератора (варианты), способ регулирования частоты вращения приводного механизма электрогенератора, турбина (варианты)
US8008797B2 (en) System for converting wind power to electrcial power with transmission
CA2589083C (en) Mechanical system for power change between the input and output thereof
AU2007324315B2 (en) Differential gear on a wind power plant and method for changing or switching the power range of said differential gear
KR20110087282A (ko) 풍력발전소
EP0635639A1 (en) Improved wind turbine transmission
KR20060006016A (ko) 4 브랜치형 차동 트랜스미션 시스템
EP2162642B1 (en) Variable ratio transmission
AU2010228102A1 (en) Energy production plant, in particular a wind power station
WO2010114771A1 (en) Continuously variable transmission ratio device with optimized primary path power flow
AU2009301621A1 (en) Differential for a wind power station
CN100417008C (zh) 一种风力发电的变速恒频方法
CN103138480B (zh) 风力发电装置
CN103967721A (zh) 一种风力发电机组
WO2007042847A1 (en) Speed stabilizing gear drive system for generating electric power
KR101028960B1 (ko) 풍력터빈설비
JP2021508231A (ja) 電気機械システム及び回転エネルギーを伝達するための位相調整歯車装置
KR101092240B1 (ko) 풍력발전기
CN116335879A (zh) 风电机组调速装置、风电机组及其控制方法
CN116667600A (zh) 一种复合储能变速恒频发电系统
CN116025510A (zh) 用于风力发电机的调速装置及风力发电机组

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid