KR20110015278A - 자속밀도가 우수한 무방향성 전기강판 및 그 제조방법 - Google Patents

자속밀도가 우수한 무방향성 전기강판 및 그 제조방법 Download PDF

Info

Publication number
KR20110015278A
KR20110015278A KR1020090072916A KR20090072916A KR20110015278A KR 20110015278 A KR20110015278 A KR 20110015278A KR 1020090072916 A KR1020090072916 A KR 1020090072916A KR 20090072916 A KR20090072916 A KR 20090072916A KR 20110015278 A KR20110015278 A KR 20110015278A
Authority
KR
South Korea
Prior art keywords
weight
less
magnetic flux
flux density
steel sheet
Prior art date
Application number
KR1020090072916A
Other languages
English (en)
Other versions
KR101110257B1 (ko
Inventor
배병근
봉원석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020090072916A priority Critical patent/KR101110257B1/ko
Publication of KR20110015278A publication Critical patent/KR20110015278A/ko
Application granted granted Critical
Publication of KR101110257B1 publication Critical patent/KR101110257B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명은 자속밀도가 우수한 무방향성 전기강판 및 그 제조방법에 관한 것으로, 중량%로 C:0.005% 이하, Si:0.1~4.5%, Mn:0.1~0.7%, P:0.1% 이하, sol.Al:0.003% 이하, S:0.0009~0.005%, N:0.004% 이하, Ti:0.005% 이하, V:0.005~0.05%, 잔부 Fe 및 기타 불가피한 불순물로 이루어지는 것을 특징으로 하는 자속밀도가 높은 무방향성 전기강판 및 그 제조방법을 그 기술적 요지로 한다. 본 발명은 Al은 강의 탈산을 위해서 필요한 sol.Al의 형태로 최소한의 필요량만을 첨가하는 동시에, 성분 중 V를 첨가하여 VN 석출물을 형성하여 AlN의 형성을 억제시키며, 최적의 공정 조건을 도출하여 적정수준으로 조정함으로써, 첨가원소의 양을 크게 증가시키지 않고도 자기특성 특히 자속밀도가 우수한 무방향성 전기강판을 제공한다.
무방향성, 전기강판, 자기특성, 자속밀도, AlN

Description

자속밀도가 우수한 무방향성 전기강판 및 그 제조방법{NON-ORIENTED ELECTRICAL STEEL SHEET WITH HIGH MAGNETIC FLUX DENSITY AND MANUFACTURING METHOD THEREOF}
본 발명은 모터, 변압기 등과 같은 전기기기의 철심으로 사용되는 무방향성 전기강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 강 성분 및 그 공정조건을 적절히 제어함에 의해 제조된 자속밀도가 우수한 무방향성 전기강판 및 그 제조방법에 관한 것이다.
무방향성 전기강판은 각종 모터, 변압기 등의 전기기기의 철심으로 널리 사용되고 있으며, 회전기기에서 전기에너지를 기계적 에너지로 바꾸어 주는데 필요한 중요한 부품으로서 최근 에너지 절감을 위해 그 우수한 자기특성, 즉, 저철손과 고자속밀도가 요구되고 있다.
이 중 철손은 에너지 변환 과정에서 열로 사라지는 에너지이므로 낮을 수록 회전기의 효율을 높일 수 있고, 자속밀도는 동력을 발생시키는 힘으로서 높을 수록 회전기의 효율을 높일 수 있으며, 이러한 무방향성 전기강판은 철심의 형태로 절단되어 타발, 적층 연결된 후에 동선이 감기어 전력기기에 이용되는데, 특히, 최근의 에너지 절감 추세에 따라서 자화가 용이하고, 크기가 소형화된 모터, 변압기 등이 요구되고 있는 바, 자속밀도가 높으면 동선을 적게 감을 수 있고 철심의 양을 적게 할 수 있어서 에너지 손실을 크게 줄일 수 있다. 특히, 전기자동차에 있어서 소형화된 모터를 적재하게 되면 전체 중량 경감으로 인해 에너지 손실을 최소화 할 수 있을 뿐만 아니라 그것을 포함한 장치 전체에 미치는 파급 효과는 매우 큰 것으로 알려져 있다.
종래에는 저철손의 실현을 위해 와류손실(eddy current loss)을 감소시키는 관점에서 Al 등의 첨가량을 높이는 대신 저하된 자속밀도를 개선하는 다양한 방법을 별도로 실시해 왔다.
예를들면 일본 특허공개공보 소40-016653호에서는 As, Ni, Co, Cu, Mo, Cr 등을 첨가한 기술이 개시되어 있지만, 이러한 특수 원소는 코스트(cost)가 상승되는 문제가 있고, 일본 특허공개공보 평1-142050호에서는 Cr, Ni, B와 Cu의 복합 함유된 기술이 기재되어 있으나, Al량이 많기 때문에 상기 기술만으로는 자속밀도의 개선은 여전히 만족스럽지 못하였으며, 일본 특허공개공보 소61-136626호에서는 냉간압연판을 최종소둔시 소둔속도를 5℃/sec 이상으로 실시하는 방법이 개시되어 있으나, Al의 첨가량이 높고 열간압연후 권취온도를 600℃ 이하로 하기 때문에, 급냉에 의해 판형상이 나빠질 수 있다는 문제가 있다.
따라서, 이러한 높은 Al 첨가량으로 인한 문제점을 해결하기 위해, 일본 특허공개공보 제2000-160306호는 Al의 첨가량을 낮추는 대신 불순물원소인 S 함량을 증가시켜 가공성을 향상시켰으나, 미세 석출물의 증가로 자성이 저하되는 문제가 있다.
본 발명자는 상기와 같은 문제점을 해결하기 위하여 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, Al은 강의 탈산을 위해서 필요한 sol.Al의 형태로 최소한의 필요량만을 첨가하는 동시에, 성분 중 V를 첨가하여 VN 석출물을 형성하여 AlN의 형성을 억제시키며, 최적의 공정 조건을 도출하여 자기특성, 특히 자속밀도가 우수한 무방향성 전기강판 및 그 제조방법을 제공하는데 그 목적이 있다.
본 발명은 중량%로 C:0.005% 이하, Si:0.1~4.5%, Mn:0.1~0.7%, P:0.1% 이하, sol.Al:0.003% 이하, S:0.0009~0.005%, N:0.004% 이하, Ti:0.005% 이하, V:0.005~0.05%, 잔부 Fe 및 기타 불가피한 불순물로 조성됨을 특징으로 하는 자속밀도가 우수한 무방향성 전기강판을 제공한다.
이때, 중량%로 Sn, Sb의 1종 또는 2종의 합계가 0.005~0.2%로 더 포함되어 조성됨에도 그 특징이 있다.
게다가, 중량%로 sol.Al:0.001% 이하로 포함되고, sol.Al/V의 값이 0.002~0.2인 것에도 그 특징이 있다.
뿐만 아니라, 입경 0.07~0.5㎛인 강중 AlN 개재물이 1200개/㎠ 이하인 것에도 그 특징이 있다.
또한, 중량%로 C:0.005% 이하, Si:0.1~4.5%, Mn:0.1~0.7%, P:0.1% 이하, sol.Al:0.003% 이하, S:0.0009~0.005%, N:0.004% 이하, Ti:0.005% 이하, V:0.005~0.05%, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 재가열후 열간압연하여 열연판을 만들고, 냉간압연한 후 최종소둔하는 것을 특징으로 하는 자속밀도가 우수한 무방향성 전기강판의 제조방법을 제공한다.
이때, 상기 강 슬라브는 중량%로 Sn,Sb의 1종 또는 2종의 합계가 0.005~0.2%로 더 포함되어 조성되는 것에도 그 특징이 있다.
게다가, 중량%로 상기 Si가 1.0~4.5% 인 경우에는 상기 열간압연후 850~1,100℃에서 열연판소둔을 실시하는 것에도 그 특징이 있다.
나아가, 상기 최종소둔은 750~1,100℃에서 실시하는 것에도 그 특징이 있다.
상술한 바와 같은 본 발명에 의하면, Al은 강의 탈산을 위해서 sol.Al의 형태로 최소한의 필요량만을 첨가하는 동시에, 성분 중 V를 첨가하여 VN 석출물을 형성하여 AlN의 형성을 억제시키며, 최적의 공정 조건을 도출하여 적정수준으로 조정함으로써, 첨가원소의 양을 과도하게 증가시키지 않고도 자기특성, 특히 자속밀도가 우수한 무방향성 전기강판을 제공하는 효과가 있다.
일반적으로 강중에서 N은 AlN으로 석출되며, AlN은 0.1㎛ 이하로 미세한 동시에 형상이 길어서 결정립의 성장을 크게 억제시키기 때문에, 본 발명은 Si와 Mn을 첨가한 성분계에서 Al은 강의 탈산을 위해서 필요한 sol.Al의 형태로 최소한의 필요량만을 첨가하는 동시에, 성분 중 V를 첨가하여 VN 석출물을 형성시키고 AlN의 형성을 억제시키며, S를 적정량 첨가하여 N이 강판내부로 침입해 결정립 성장을 억제하는 것을 방지함으로써 자속밀도가 향상된 무방향성 전기강판을 제공하고자 한 것이다.
이하 본 발명의 강 성분의 수치한정이유에 대하여 상세히 설명한다.
C는 최종 제품에서 자기시효를 일으켜 사용중 자기특성을 저하시킬뿐만 아니라, 탄화물을 형성하여 철손을 열화시키므로, 슬라브에서는 0.005 중량%를 초과하지 않도록 제어하는 것이 바람직하다.
Si는 비저항을 증가시켜 철손을 낮추는 원소이기 때문에 첨가하며, 재료의 강도확보와 비저항 증가를 위해 0.1 중량% 이상 첨가하는 것이 바람직하지만, 4.5 중량%를 초과하게 되면 강판의 경도를 상승시켜 타발성이 저하된다. 따라서 Si의 함량은 0.1~4.5 중량%로 제한한다.
Mn은 비저항을 증가시키고 집합조직을 발달시키며 미세 석출물의 형성을 억제하기 때문에 첨가하며, 0.1 중량% 미만으로 첨가하면 집합조직이 나빠지고, 0.7중량% 초과하여 첨가하면 냉간압연성이 나빠지고 철손의 감소량에 비해 비용이 증가하기 때문에, Mn의 함량은 0.1~0.7 중량%로 제한한다.
P는 자성에 유리한 집합조직을 형성하는 원소이고, 면내 이방성을 개선하고 강도를 향상시키는 역할을 한다. 다만, 냉간압연성을 고려하여 그 함량은 0.1 중량% 이하로 한정한다.
sol.Al은 미세하고 긴 AlN 석출물을 형성하여 결정립의 성장을 억제하기 때문에 별도의 첨가는 하지 않고, 제강 단계에서 탈산용으로 sol.Al의 형태로 첨가한 다. 다만, 너무 많이 첨가하게 되면 비저항이 증가되어 자속밀도가 낮아지기 때문에 0.003 중량%이하로 첨가한다. 이때, 보다 바람직하게는 sol.Al은 0.001 중량%이하로 첨가하여 자속밀도의 저하를 보다 감소시킬 수 있다.
S는 미세한 석출물인 MnS를 형성하여 자기특성을 열화시키므로 가능한 낮게 관리하는 것이 유리하기 때문에 0.005 중량%를 초과하지 않도록 제어한다. 다만, S함량이 너무 적은 경우에는 N이 강판 내부로 침입하여 결정립 성장을 억제하기 때문에 적어도 0.0009 중량% 이상은 첨가한다. 따라서 S의 함량은 0.0009~0.005 중량% (9~50 ppm)로 한정한다.
N은 미세하고 긴 AlN 석출물을 형성하므로 가능한한 억제해야 하는 원소이므로 본 발명에서는 그 함량을 0.004 중량% 이하로 제한한다.
Ti는 TiC의 미세한 탄화물이나 TiN의 질화물을 형성하여 결정립 성장을 억제시키는 원소이므로 본 발명에서는 그 함량을 0.005 중량% 이하로 한정한다.
V는 상기 C나 N과 결합하여 탄화물이나 질화물을 형성하지만, 본 발명에서는 0.005 중량% 이상 함유시 V와 N이 결합하여 VN 석출물을 형성함으로써 AlN과 같은 미세하고 긴 석출물의 양이 크게 감소하여 자기특성이 향상되기 때문에 적어도 0.005 중량% 이상 함유하도록 제어한다. 다만, 그 함량이 과도하게 많아지면 가공성이 감소하기 때문에 0.05 중량% 이하로 제한한다. 따라서 V의 함량은 0.005~0.05 중량%로 한정한다.
이때, 이와 같이 V가 첨가된 강에 sol.Al이 0.001 중량%이하 함유되고, sol.Al/V의 값이 0.002~0.2이며, 입경 0.07~0.5 ㎛인 강중 AlN 개재물이 1200개/㎠ 이하가 되도록 제어한 결과, 자속밀도가 상당히 개선되어 무방향성 전기강판의 자기특성이 우수하게 된 것으로 밝혀졌다. 이는 상기 조건에서 V와 N이 보다 용이하게 결합하여 VN으로 석출됨으로써 AlN이 감소되었기 때문이다.
Sn과 Sb는 결정립계에 편석하여 자기특성에 불리한 집합조직을 억제시켜 집합조직을 개선하기 때문에 1종류 또는 2종류의 합계가 0.005~0.2 중량%가 되도록 첨가한다. 이는 Sn과 Sb중 1종류 또는 2종류의 합계가 0.005 중량% 미만이면 집합조직 개선효과가 미미하며, 0.2 중량%를 초과하면 냉간압연성 및 펀칭성이 나빠지게 되기 때문이다.
그리고, 상기 조성 이외에도 본 발명은 나머지 Fe 및 기타 불가피한 불순물로 조성된다.
이하, 상기 성분의 강슬라브를 이용한 전기강판의 제조방법에 대하여 상세히 설명한다.
상기와 같이 조성되는 강 슬라브는 제강에서 용강으로 제조된 후 연속주조공정에서 슬라브로 응고시킨 것이고, 본 발명에서는 상기 슬라브를 열간압연전 가열로에 장입하여 통상의 조건인 1250℃이하의 온도에서 가열한다. 이때, 1250℃를 초과하여 가열하게 되면 AlN 등 자성에 해로운 석출물이 재용해되어 열간압연후 미세하게 석출될 수 있기 때문에 1250℃이하의 온도에서 슬라브를 가열한 후 열간압연한다.
상기 열간압연은 조압연후 사상압연을 실시하며, 상기 사상압연의 마무리 압연은 페라이트상에서 종료하고, 판형상의 교정을 위하여 최종 압하율은 20%이하로 실시한다. 상기 열간압연을 페라이트상에서 실시하게 되면 오스테나이트상에서 압연종료하는 것보다 잔류응력이 많이 존재하게 되며, 이어서 권취하여 소둔시 결정립 성장이 용이하기 때문에 최종제품에서도 결정립이 크게 성장될 수 있는 이점이 있다.
그리고, 상기와 같이 제조된 열연판은 700℃이하에서 권취하고 공기중에서 냉각하는데, 권취온도가 700℃를 초과하게 되면 용해도가 낮은 AlN이 재용해되므로 권취후 공냉중에 미세 석출물이 형성되게 되는 문제가 있다. 따라서, 본 발명에서는 열연판을 700℃ 이하에서 권취하여 AlN의 석출물을 가능한한 조대화할 수 있다.
상기 권취냉각된 열연판은 필요시 열연판소둔을 하고 냉간압연 실시후 최종적으로 냉연판 소둔(최종소둔)을 실시한다.
이때, 상기 열연판소둔은 Si의 함량이 1.0~4.5 중량% 이상인 경우에 필요하면 실시한다. 이는 Si 함량이 높은 경우에는 열연판소둔을 실시하는 것이 결정 조직을 조대화하여 자속밀도를 상승시키기 때문이다. 다만, 상기 열연판소둔의 온도가 850℃ 미만이면 조직이 성장하지 않거나 미세하게 성장하여 자속밀도의 상승 효과가 적으며, 소둔온도가 1100 ℃를 초과하면 자기특성이 오히려 열화될 수 있고, 판형상의 변형으로 인해 압연작업성이 나빠지는 문제가 있기 때문에 그 온도범위는 850~1,100℃로 제한하다.
또한, 상기 냉간압연에서는 0.1~0.7 mm의 두께로 최종압연하며, 필요시 1차 냉간압연후 중간소둔후 2차 냉간압연을 실시할 수 있으며, 최종 압하율은 50~95 %의 범위로 한다.
이와같이 냉간압연된 냉연판은 최종소둔을 실시하는데, 최종소둔 온도가 750 ℃ 미만이면 재결정이 충분히 발생하지 못하고, 최종소둔 온도가 1,100℃을 초과하게 되면 표층부 산화층이 깊게 형성되어 자성이 저하되기 때문에, 본 발명의 최종소둔의 온도는 750~1,100℃로 제한한다.
상기 최종소둔된 소둔판은 통상의 방법으로 절연피막처리후 고객사로 출하된다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.
[실시예1]
하기 표 1과 같이 조성되는 강슬라브를 1,180℃에서 가열하고, 열간압연시 마무리 압연을 850℃에서 하였다. 상기 열간압연의 사상압연시 마지막 스탠드에서의 압하율은 17%였고, 2.0 mm의 두께로 압연한 다음 권취후 공냉하였다. 상기 열연판을 표 2에 기재된 온도에서 열연판소둔을 실시하고, 산세한 다음 0.35 mm의 두께로 냉간압연하고, 최종소둔은 1050℃에서 실시한 후 철손, 자속밀도 등 자기특성을 조사한 결과를 표 2에 기재하였다.
[표 1]
Figure 112009048426287-PAT00001
[표 2]
Figure 112009048426287-PAT00002
상기 표 2에 나타난 바와 같이, 본 발명의 성분 범위를 만족하는 발명강A 내지 발명강E을 이용하여 본 발명의 제조방법으로 제조한 발명재1 내지 발명재6은 자속밀도가 비교재보다 높게 나타났으며, 철손도 낮음을 알 수 있었다. 비교재1은 sol.Al이 높고 V의 함량이 낮아서 sol.Al/V의 값이 1.75로 높아서 자속밀도가 상대적은 낮았고, 비교재2는 sol.Al/V의 값이 0.5로 높고 S가 과도하게 낮아 철손은 다소 개선되었으나, 자속밀도는 발명재보다 낮았으며, 비교재3은 발명강이지만 열연판소둔 온도가 높아서 AlN 함유 개재물의 증가로 자속밀도가 낮음을 알 수 있었다. 또한, 비교재4는 sol.Al이 높고 S와 V의 함량이 낮아서 자속밀도가 낮음을 알 수 있었다.
[실시예2]
중량%로 C:0.0028%, Si:0.6%, Mn:0.25%, P:0.045%, S:0.0021%, sol.Al:0.0006%, N:0.0014%, Ti:0.0015%, V:0.008%, Sb:0.03%, sol.Al/V의 값이 0.075이며, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강슬라브를 1,200℃로 재가열한 다음 열간압연시 사상압연의 마무리 압연온도를 880℃로 하고, 압하율은 15%로 하여 2.5 mm 두께의 열연판을 제조하였다. 상기 열연판을 680℃에서 권취한 다음 공냉하고, 산세한 후 0.50 mm의 두께로 냉간압연하였다. 상기 냉연판을 최종소둔한 결과 AlN 함유 개재물 개수는 1,080개였고, 자속밀도(B50)는 1.78T(Tesla), 철손(W15/50)은 4.0W/kg이었다. 따라서, Si가 1.0 중량% 미만 함유하였을 때에는 열연판소둔을 실시하지 않은 상태에서도 sol.Al이 0.001 중량%이하로 포함되고, sol.Al/V의 값이 본 발명의 0.002~0.2 범위 내인 경우에는 입경 0.07~0.5㎛인 강중 AlN 개재물이 1,080개로 양호한 수치를 나타내어 자속밀도가 매우 우수함을 확인할 수 있었다.
[실시예3]
중량%로 C:0.0027%, Si:3.1%, Mn:0.185%, P:0.008%, S:0.0011%, sol.Al:0.0008%, N:0.0015%, Ti:0.0016%, V:0.007%, Sn:0.015%, sol.Al/V의 값이 0.085이며 나머지 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1,160℃로 재가열한 다음 열간압연시 사상압연의 마무리 압연온도는 900℃로 하고, 2.0 mm 두께 의 열연강판을 제조하였다. 상기 열연강판을 660℃에서 권취한 다음 공냉하고, 열연판을 980℃에서 2분간 소둔한 후 산세하여 0.20 mm이 두께로 냉간압연하였다. 그리고 최종 소둔된 강판의 AlN 함유 개재물의 개수는 880개였고, 자속밀도(B50)은 1.68T, 철손(W10/400)은 9.8W/kg이었다. 따라서, Si가 1.0 중량% 이상인 고Si를 함유하였을 때에는 850~1,100℃의 범위에서 열연판소둔을 실시하면 자속밀도가 더욱 향상됨을 알 수 있고, 더불어 sol.Al이 0.001 중량%이하로 포함되고, sol.Al/V의 값이 본 발명의 0.002~0.2 범위 내인 0.085인 경우에는 입경 0.07~0.5㎛인 강중 AlN 개재물이 800개로써 상당히 낮은 수치를 나타내었으며, 따라서, 자속밀도도 우수하였음을 알 수 있었다.

Claims (8)

  1. 중량%로 C:0.005% 이하, Si:0.1~4.5%, Mn:0.1~0.7%, P:0.1% 이하, sol.Al:0.003% 이하, S:0.0009~0.005%, N:0.004% 이하, Ti:0.005% 이하, V:0.005~0.05%, 잔부 Fe 및 기타 불가피한 불순물로 조성됨을 특징으로 하는 자속밀도가 우수한 무방향성 전기강판.
  2. 제1항에 있어서,
    중량%로 Sn, Sb의 1종 또는 2종의 합계가 0.005~0.2%로 더 포함되어 조성됨을 특징으로 하는 자속밀도가 우수한 무방향성 전기강판.
  3. 제1항 또는 제2항에 있어서,
    중량%로 sol.Al:0.001% 이하로 포함되고, sol.Al/V의 값이 0.002~0.2인 것을 특징으로 하는 자속밀도가 우수한 무방향성 전기강판.
  4. 제3항에 있어서,
    입경 0.07~0.5㎛인 강중 AlN 개재물이 1200개/㎠ 이하인 것을 특징으로 하는 자속밀도가 우수한 무방향성 전기강판.
  5. 중량%로 C:0.005% 이하, Si:0.1~4.5%, Mn:0.1~0.7%, P:0.1% 이하, sol.Al:0.003% 이하, S:0.0009~0.005%, N:0.004% 이하, Ti:0.005% 이하, V:0.005~0.05%, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 재가열후 열간압연하여 열연판을 만들고, 냉간압연한 후 최종소둔하는 것을 특징으로 하는 자속밀도가 우수한 무방향성 전기강판의 제조방법.
  6. 제5항에 있어서,
    상기 강 슬라브는 중량%로 Sn,Sb의 1종 또는 2종의 합계가 0.005~0.2%로 더 포함되어 조성되는 것을 특징으로 하는 자속밀도가 우수한 무방향성 전기강판.
  7. 제5항 또는 제6항에 있어서,
    중량%로 상기 Si가 1.0~4.5% 인 경우에는 상기 열간압연후 850~1,100℃에서 열연판소둔을 실시하는 것을 특징으로 하는 무방향성 전기강판의 제조방법.
  8. 제5항 또는 제6항에 있어서,
    상기 최종소둔은 750~1,100℃에서 실시하는 것을 특징으로 하는 무방향성 전기강판의 제조방법.
KR1020090072916A 2009-08-07 2009-08-07 자속밀도가 우수한 무방향성 전기강판 및 그 제조방법 KR101110257B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090072916A KR101110257B1 (ko) 2009-08-07 2009-08-07 자속밀도가 우수한 무방향성 전기강판 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090072916A KR101110257B1 (ko) 2009-08-07 2009-08-07 자속밀도가 우수한 무방향성 전기강판 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20110015278A true KR20110015278A (ko) 2011-02-15
KR101110257B1 KR101110257B1 (ko) 2012-02-16

Family

ID=43774129

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090072916A KR101110257B1 (ko) 2009-08-07 2009-08-07 자속밀도가 우수한 무방향성 전기강판 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR101110257B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509245A (ja) * 2016-12-19 2020-03-26 ポスコPosco 無方向性電磁鋼板およびその製造方法
CN115066512A (zh) * 2019-12-18 2022-09-16 Posco公司 无取向电工钢板及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140647A (ja) * 1991-07-25 1993-06-08 Nippon Steel Corp 磁気特性が優れた無方向性電磁鋼板の製造方法
JP4718749B2 (ja) * 2002-08-06 2011-07-06 Jfeスチール株式会社 回転機用高磁束密度無方向性電磁鋼板及び回転機用部材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509245A (ja) * 2016-12-19 2020-03-26 ポスコPosco 無方向性電磁鋼板およびその製造方法
US11254997B2 (en) 2016-12-19 2022-02-22 Posco Non-oriented electrical steel sheet and manufacturing method therefor
CN115066512A (zh) * 2019-12-18 2022-09-16 Posco公司 无取向电工钢板及其制造方法

Also Published As

Publication number Publication date
KR101110257B1 (ko) 2012-02-16

Similar Documents

Publication Publication Date Title
KR102175064B1 (ko) 무방향성 전기강판 및 그 제조방법
JP4126479B2 (ja) 無方向性電磁鋼板の製造方法
JP6432173B2 (ja) 全周の磁気特性が良好な無方向性電磁鋼板
KR101507942B1 (ko) 무방향성 전기강판 및 그 제조방법
KR101493059B1 (ko) 무방향성 전기강판 및 그 제조방법
CN115003843A (zh) 无取向电工钢板及其制造方法
KR101633249B1 (ko) 무방향성 전기강판 및 그 제조방법
KR102264103B1 (ko) 리사이클성이 우수한 무방향성 전기 강판
KR20150016434A (ko) 무방향성 전기강판 및 그 제조방법
JP7253054B2 (ja) 磁性に優れる無方向性電磁鋼板およびその製造方法
KR100779579B1 (ko) 철손이 낮고 자속밀도가 높은 무방향성 전기강판의제조방법
KR20120074394A (ko) 투자율이 우수한 세미프로세스 무방향성 전기강판 및 그 제조방법
KR101410476B1 (ko) 무방향성 전기강판 및 그 제조방법
KR20210080658A (ko) 무방향성 전기강판 및 그 제조방법
KR101110257B1 (ko) 자속밀도가 우수한 무방향성 전기강판 및 그 제조방법
JP4288801B2 (ja) 無方向性電磁鋼板およびその製造方法
KR20160021164A (ko) 무방향성 전기강판 및 그 제조방법
JPH0443981B2 (ko)
KR101630425B1 (ko) 무방향성 전기강판 및 그 제조방법
KR20150074930A (ko) 무방향성 전기강판 및 그 제조방법
KR20150016435A (ko) 무방향성 전기강판 및 그 제조방법
KR20140058934A (ko) 무방향성 전기강판 및 그의 제조방법
KR20150015308A (ko) 무방향성 전기강판 및 그 제조방법
KR20150062246A (ko) 무방향성 전기강판 및 그 제조방법
KR20150062245A (ko) 무방향성 전기강판 및 그 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150115

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170119

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180117

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181127

Year of fee payment: 8