KR20110013148A - Coating composition for forming film on the surface and film - Google Patents

Coating composition for forming film on the surface and film Download PDF

Info

Publication number
KR20110013148A
KR20110013148A KR1020090109244A KR20090109244A KR20110013148A KR 20110013148 A KR20110013148 A KR 20110013148A KR 1020090109244 A KR1020090109244 A KR 1020090109244A KR 20090109244 A KR20090109244 A KR 20090109244A KR 20110013148 A KR20110013148 A KR 20110013148A
Authority
KR
South Korea
Prior art keywords
film
coating composition
polymerization
forming
silane
Prior art date
Application number
KR1020090109244A
Other languages
Korean (ko)
Inventor
안기환
타다시 나카노
양우형
정소라
Original Assignee
주식회사 에이피엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이피엠 filed Critical 주식회사 에이피엠
Priority to KR1020100041559A priority Critical patent/KR101264904B1/en
Priority to PCT/KR2010/004510 priority patent/WO2011013921A2/en
Priority to JP2012520533A priority patent/JP2012532981A/en
Publication of KR20110013148A publication Critical patent/KR20110013148A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE: A coating composition for forming a film on the surface is provided to significantly increase in coating hardness to ultimately enhance the durability of materials such as substrates on which the coating is applied. CONSTITUTION: A coating composition for forming a film on the surface comprises: an oligomer obtained by simultaneously or sequentially polymerizing a 3-functional silane represented by the general formula R1SiX3, a 3-functional silane represented by the general formula R2SiX'3, and a 4-functional silane represented by the general formula SiX4 (where R1 is either an alkyl group or a phenyl group, R2 is a hydrocarbon group which includes one or more unsaturated bonds, and X, X', and X are mutually identical or different hydrolyzable groups); a radical initiator; and a solvent which dissolves the oligomer and the radical initiator.

Description

피막 형성용 도포 조성물 및 그 조성물이 도포되는 피막{Coating Composition for forming film on the surface and film}Coating composition for film formation and the film to which the composition is applied {Coating Composition for forming film on the surface and film}

본 발명은 피막 형성용 도포 조성물 및 그 조성물이 도포되는 피막에 관한 것으로서, 보다 상세하게는, 일반식 CH3SiX3(X는 가수 분해성기)로 표현되는 메틸기 치환 3관능성 실레인, 일반식 C2H4SiX'3(X'은 가수 분해성기)로 표현되는 비닐기 치환 3관능성 실레인, 일반식 SiX''4(X'은 가수 분해성기)로 표현되는 4관능성 실레인을 중합해서 수득되는 올리고머와; 열 라디칼 개시제; 및 상기 올리고머와 열 라디칼 개시제를 용해하는 용매;를 포함하여 구성되도록 함으로써 피막의 경도가 보다 향상되도록 하며, 특히 출발물질인 실록산 올리고머의 중합과정에서 가열에 의하여 Si-C-Si 결합의 C 결합이 최대 4개까지 생성되도록 함으로써 - Si-(C-)nSi (n은 2 이상 4 이하의 자연수 - 위 구조에 의하여 피막의 경도가 크게 향상되며, 따라서 궁극적으로 기판 등 피도포 재료의 내구성을 증진시킬 수 있는 피막 형성용 도포 조성물 및 그 조성물이 도포되는 피막을 제공한다.The present invention relates to a coating composition for forming a film and a film to which the composition is applied. More specifically, the methyl group-substituted trifunctional silane represented by the general formula CH 3 SiX 3 (X is a hydrolyzable group), and general formula A vinyl-substituted trifunctional silane represented by C 2 H 4 SiX ' 3 (X' is a hydrolyzable group), and a tetrafunctional silane represented by general formula SiX '' 4 (X 'is a hydrolyzable group). An oligomer obtained by polymerization; Thermal radical initiators; And a solvent in which the oligomer and the thermal radical initiator are dissolved. The hardness of the film is further improved, and in particular, the C bond of the Si-C-Si bond is heated by heating in the polymerization process of the starting material siloxane oligomer. By producing up to four-Si- (C-) nSi (n is a natural number of 2 or more and 4 or less)-The hardness of the film is greatly improved by the above structure, thus ultimately improving the durability of the coating material such as the substrate The coating composition for film formation which can be provided, and the film to which the composition is apply | coated are provided.

유리는 반사성능, 투명성 등을 기초로 하는 물성을 지니고 있어, 거울로 제 조되거나, 투광성을 기초로 하여 자동차 유리, 창문 유리 등으로 응용되고 있다. 그러나, 유리는 임팩트에 대한 저항성이 매우 작아 예상보다 적은 압력에도 불구하고 순간적으로 가해지는 충격에 의해서 쉽게 파손되는 단점이 있다. Glass has physical properties based on reflection performance, transparency, and the like, and is manufactured as a mirror or applied to automobile glass, window glass, and the like based on light transmittance. However, the glass has a disadvantage that the resistance to impact is so small that it is easily broken by an instantaneous impact despite less pressure than expected.

최근에는 이러한 유리의 취약한 물성에 대응하여 유리보다 임팩트에 의한 내충격성이 우수한 합성수지 즉, 플라스틱이 제조되어 사용되고 있다. 이러한 플라스틱은 기차, 버스, 택시 및 승용차와 같은 공공운송 수단에 유리를 대신하여 널리 적용되고 있으며, 더 나아가 비이커 등 실험용구, 안경 등 광학기구 등에도 사용되고 있다. In recent years, synthetic resins, that is, plastics having excellent impact resistance due to impact than glass have been manufactured and used in response to the weak physical properties of glass. Such plastics are widely used in place of glass in public transportation means such as trains, buses, taxis, and passenger cars. Furthermore, plastics are also used in laboratory instruments such as beakers and optical instruments such as glasses.

특히, 이러한 플라스틱은 유리에 비하여 저중량의 특성을 가지므로, 이를 자동차 등 운송수단에 적용하는 경우에는 연료, 전기 등의 소모를 경감할 수 있는 중요한 특징을 갖는다. In particular, since the plastic has a lower weight than the glass, it has an important feature that can reduce the consumption of fuel, electricity, etc. when applied to a vehicle, such as a vehicle.

그러나, 플라스틱은 유리에 비하여 경도가 매우 낮으므로, 크고 작은 외부적 충격에 대하여 유리보다 월등히 많은 스크래치가 표면에 발생될 수 있고, 이로 인해 투명성이 저하되고 적용 제품이 사용기간에 비하여 낡아 보이며, 따라서 구조물의 기계적 강도와는 별도로 내용연수가 짧아지는 문제점이 있었다. However, plastics have a very low hardness compared to glass, so that much more scratches can be generated on the surface for large and small external impacts, resulting in poor transparency and the application of the product as it looks. Apart from the mechanical strength of the structure, the service life was shortened.

따라서, 이러한 플라스틱의 표면 강도를 보다 제고해야 하는 기술개발이 필요한 실정이다. Therefore, there is a need for technology development to improve the surface strength of such plastics more.

이를 위하여 강구될 수 있는 방안으로는 플라스틱 자체의 경도와 내구성을 향상시키는 방법, 플라스틱의 표면에 플라스틱 보다 경도가 강한 이형 물질을 도포하는 방법 등이 있다. To this end, methods that can be taken include a method of improving the hardness and durability of the plastic itself, and a method of applying a release material having a hardness greater than that of plastic to the surface of the plastic.

특히 플라스틱 표면에 이형물질을 도포함으로써 플라스틱 제품의 전체적 내구성을 향상시키는 기술과 관련하여 대한민국 공개특허공보 특1997-42864호에서는 비금속 표면 코팅제 조성물에 관한 기술을 개시하고 있다. 보다 상세하게는 폴리실록산 매크로머 무기수지 화합물 5∼40 중량%, 실란계 커플링제 0.5∼8 중량%, 아크릴 공중합체 20∼80 중량%, 가교제 2∼45 중량% 및 용제 10∼50 중량%로 이루어진 비금속 표면코팅제 조성물을 개시하고 있다. In particular, the Republic of Korea Patent Publication No. 1997-42864 discloses a technique for the non-metallic surface coating composition with respect to the technology for improving the overall durability of the plastic product by applying a release material on the plastic surface. More specifically, 5 to 40% by weight of the polysiloxane macromer inorganic resin compound, 0.5 to 8% by weight of the silane coupling agent, 20 to 80% by weight of the acrylic copolymer, 2 to 45% by weight of the crosslinking agent and 10 to 50% by weight of the solvent. A nonmetallic surface coating agent composition is disclosed.

특히, 유리표면에 상기 조성물이 보다 단단하게 결합되도록 하기 위하여 실란계 커플링제와 아크릴 공중합체를 사용하였으며, 공중합반응에 의해 C-C 계열의 결합을 생성하고, 이로부터 열경화 반응을 통하여 Si-O 결합을 생성함으로써 표면강도를 향상시키도록 하고 있다.In particular, in order to bond the composition to the glass surface more firmly, a silane coupling agent and an acrylic copolymer were used, and a CC-based bond was formed by a copolymerization reaction, from which a Si-O bond was formed through a thermosetting reaction. The surface strength is improved by generating.

그러나, 유리표면을 이루고 있는 Si-O 결합은 그 경도면에서 취약하여 여전히 스크래치 등에 대한 저항력이 약한 문제점이 있으며, 보다 더 높은 경도를 갖는 표면 코팅물질을 개발할 필요성이 절실하다 할 수 있다. However, the Si-O bond forming the glass surface is weak in its hardness and still has a weak resistance to scratches and the like, and it is urgent to develop a surface coating material having a higher hardness.

따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 메틸기 치환 3관능성 실레인, 비닐기 치환 3관능성 실레인, 4관능성 실레인의 중합체에 초기부터 열 라디칼 개시제를 첨가하고 이를 물리적으로 결합한 후, 이와 같은 조성물을 열경화하여 내부에 Si-C-Si 결합을 형성하되, 결합되는 C의 갯수가 최대 4개까지 되도록 함으로써 이러한 탄소간 결합체인에 의해 종래의 표면코팅제보다 표면경도가 탁월한 표면코팅제를 제조함으로써 궁극적으로 피도포체의 전체적인 기계적 물성을 향상시키도록 하는 것이다.Accordingly, the present invention has been made to solve the problems of the prior art as described above, the object of the present invention is a polymer of methyl-substituted trifunctional silane, vinyl-substituted trifunctional silane, tetrafunctional silane After adding a thermal radical initiator from the beginning and physically bonding them, the composition is thermally cured to form Si-C-Si bonds therein, such that the number of bonded Cs is up to 4 such carbon-to-carbon bonds. By producing a surface coating agent having a superior surface hardness than the conventional surface coating agent by the chain to ultimately improve the overall mechanical properties of the object to be coated.

본 발명은 상기 목적을 달성하기 위하여, 일반식 CH3SiX3(X는 가수 분해성기)로 표현되는 메틸기 치환 3관능성 실레인, 일반식 C2H4SiX'3(X'은 가수 분해성기)로 표현되는 비닐기 치환 3관능성 실레인, 일반식 SiX''4(X'은 가수 분해성기)로 표현되는 4관능성 실레인을 중합해서 수득되는 올리고머와; 열 라디칼 개시제; 및 상기 올리고머와 열 라디칼 개시제를 용해하는 용매;를 포함하여 구성되는 피막 형성용 도포 조성물을 제공한다.The present invention, in order to achieve the above object, a methyl group substituted trifunctional silane represented by the general formula CH 3 SiX 3 (X is a hydrolyzable group), general formula C 2 H 4 SiX ' 3 (X' is a hydrolyzable group An oligomer obtained by polymerizing a vinyl-substituted trifunctional silane represented by) and a tetrafunctional silane represented by the general formula SiX '' 4 (X 'is a hydrolyzable group); Thermal radical initiators; It provides a coating composition for forming a film comprising a; and a solvent for dissolving the oligomer and the thermal radical initiator.

상기 가수분해성기 (X, X', X'')은 1 ~ 4의 탄소수를 포함하는 물질인 것이 바람직하다.It is preferable that the said hydrolyzable group (X, X ', X ") is a substance containing 1-4 carbon atoms.

상기 1 ~ 4의 탄소수를 포함하는 물질은 알콕시 그룹, 아세톡시, 이소시아네 이트, 클로라이드, 옥심을 포함하는 것이 바람직하다.The material containing 1 to 4 carbon atoms preferably contains an alkoxy group, acetoxy, isocyanate, chloride, oxime.

상기 올리고머를 수득하기 위한 중합반응은 라디칼 중합, 가수 분해 중축합, 라디칼 중합과 가수 분해 중축합의 순차반응, 가수 분해 중축합과 라디칼 중합의 순차반응, 및 라디칼 중합과 가수분해 중축합의 동시반응 중에서 선택되는 어느 하나인 것이 바람직하다.The polymerization reaction for obtaining the oligomer is selected from radical polymerization, hydrolysis polycondensation, sequential reaction of radical polymerization and hydrolysis polycondensation, sequential reaction of hydrolysis polycondensation and radical polymerization, and simultaneous reaction of radical polymerization and hydrolysis polycondensation. It is preferable that it is either.

상기 피막 형성용 도포 조성물은 기판상에 도포되도록 하는 것이 바람직하다. It is preferable to make the said coating composition for film formation apply | coat on a board | substrate.

상기 중합반응에 의해서 -(Si-O-)n(n은 20 이상의 자연수)을 주사슬로 하는 올리고머로부터 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 결합이 형성된다.By the polymerization reaction, a Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bond is formed from an oligomer having-(Si-O-) n (n is a natural number of 20 or more) as the main chain.

또한, 본 발명은 상기 조성물이 도포되는 피막을 제공한다.The present invention also provides a coating to which the composition is applied.

이상으로부터 알 수 있는 바와 같이, 본 발명에 의하면, 다수의 C 결합체인에 의해 피막의 표면 경도와 내마모성이 현저하게 증가되고, 특히 표면 스크래칭이 방지되는 작용효과가 기대된다.As can be seen from the above, according to the present invention, the surface hardness and abrasion resistance of the coating are remarkably increased by a large number of C conjugates, and in particular, the effect of preventing surface scratching is expected.

또한, 피도포체와의 밀착성이 증진되고, 피막의 박리 혹은 균열이 감소되는 작용효과가 기대된다.Moreover, the effect with which the adhesiveness with a to-be-coated object is improved and peeling or a crack of a film is reduced is expected.

또한, 특히 열개시제를 사용하는 경우, 피막의 전체적인 경화가 신속히 이루어질 수 있으므로, 짧은 공정시간 동안에 더 견고한 피막의 형성이 가능한 효과가 기대된다.In addition, especially when the thermal initiator is used, since the overall curing of the coating can be made quickly, an effect that can form a more robust coating in a short process time is expected.

또한, 특히 열개시제를 사용하는 경우에는 열원이 광원에 비해 장비에 소요 되는 비용면에서 저렴하므로 공정에 소요되는 경비를 절감할 수 있는 작용효과가 기대된다.In addition, especially in the case of using a thermal initiator, since the heat source is cheaper in terms of the cost of the equipment than the light source, it is expected that the effect of reducing the cost of the process.

또한, 기판 등에 도포되는 피막이 종래의 방법에 의해 제조되거나 종래의 성분으로 구성되는 피막에 비하여 보다 높은 경도 및 절연내압특성을 가져 기판이 전체적으로 내구성이 강화될 수 있도록 하는 작용효과가 기대된다.In addition, it is expected that the coating applied to the substrate or the like has a higher hardness and dielectric breakdown voltage characteristics than the coating prepared by the conventional method or composed of the conventional components so that the substrate can be strengthened as a whole.

이하, 상기한 바와 같은 구성을 가지는 본 발명에 의한 피막 형성제의 바람직한 실시예를 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the preferable Example of the film forming agent which concerns on this invention which has a structure as mentioned above is demonstrated in detail.

본 발명에 의한 도포용 조성물은 일반식 CH3SiX3(X는 가수 분해성기)로 표현되는 메틸기 치환 3관능성 실레인, 일반식 C2H4SiX'3(X'은 가수 분해성기)로 표현되는 비닐기 치환 3관능성 실레인, 일반식 SiX''4(X''은 가수 분해성기)로 표현되는 4관능성 실레인을 중합해서 수득되는 올리고머와; 열 라디칼 개시제; 및 상기 올리고머와 열 라디칼 개시제를 용해하는 용매;를 포함하여 구성된다.The coating composition according to the present invention is a methyl group-substituted trifunctional silane represented by general formula CH 3 SiX 3 (X is a hydrolyzable group), general formula C 2 H 4 SiX ' 3 (X' is a hydrolyzable group). An oligomer obtained by polymerizing a vinyl-substituted trifunctional silane represented by the general formula, and a tetrafunctional silane represented by the general formula SiX '' 4 (X '' represents a hydrolyzable group); Thermal radical initiators; And a solvent in which the oligomer and the thermal radical initiator are dissolved.

여기서, X, X', X''은 가수분해성기로서 할로겐원소; 시아나이드, 시아네이트, 이소시아네이트, 티오시아네이트 등 의할로겐그룹; 아미노, 메틸아미노, 에틸아미노, 프로필아미노, 부틸아미노, 아닐리노, 페닐메틸아미노, 디메틸아미노, 디에틸아미노, 디프로필아미노, N-페닐-N-메틸아미노 등 아미노그룹; 메톡시, 에톡시, 프로폭시, 이소프로폭시, 부톡시, 이소부톡시, 세크부톡시, t-부톡시, 벤질 등 알콕시그룹; 아세톡시, 프로피옥시, 피발옥시, 옥틸록시, 벤족시 등 아실옥시그룹; 메틸에틸케톡시모, 아세토알독시모, 아세톡시모, 부틸알독시모, 헥사노네옥시모, 4-펜텐-2옥시모, 사이클로펜타옥시모, 사이틀로헥사옥시모, 2-메틸사이클로펜타옥심, 벤잘독심, 아세토페녹심, 벤조페녹심, 벤질에틸케톡시모 등 옥심; 수소 등을 들 수 있는데, 상기 X, X', X''은 서로 같을 수도 있고, 서로 다를 수도 있다.Wherein X, X ', and X' 'represent a halogen element as a hydrolyzable group; Halogen groups such as cyanide, cyanate, isocyanate and thiocyanate; Amino groups such as amino, methylamino, ethylamino, propylamino, butylamino, anilino, phenylmethylamino, dimethylamino, diethylamino, dipropylamino, N-phenyl-N-methylamino and the like; Alkoxy groups such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, secbutoxy, t-butoxy and benzyl; Acyloxy groups such as acetoxy, propioxy, pivaloxy, octyloxy and benzoxoxy; Methylethylketoxymo, acetoaldoximo, acetoxymo, butylaldoximo, hexanononeoxymo, 4-pentene-2oxymo, cyclopentaoxymo, cyclohexaoxymo, 2-methylcyclopentaoxime, benzaldoxime Oximes such as acetophenoxime, benzophenoxime and benzyl ethyl methoxymox; Hydrogen etc. are mentioned, X, X ', X "may mutually be same, and may differ from each other.

여기서 바람직하게는 1 ~ 4 탄소(C1 ~ C4)를 포함하는, 알콕시그룹, 아세톡시, 이소시아네이트, 클로라이드, 옥심 등의 물질을 사용하는 것이 좋다. 이는 위와 같은 범위의 탄소수를 갖는 가수분해성기의 경우에 가수분해 반응속도가 크고 가수분해 완결도가 높기 때문이다.It is preferable here to use substances such as alkoxy groups, acetoxy, isocyanates, chlorides, oximes, preferably containing 1 to 4 carbons (C1 to C4). This is because in the case of the hydrolyzable group having a carbon number in the above range, the hydrolysis reaction rate is high and the degree of hydrolysis completeness is high.

상기 실레인들은 상호 공중합 반응에 의해 공중합체를 형성하고 있다. The silanes form a copolymer by a cross copolymerization reaction.

위 공중합체들은 기본적으로 Si-OH 결합과 Si-CH=CH2 결합이 혼재되어 있다. 상기 각 결합들은 열 라디칼 개시제의 참여에 따른 열경화에 의해 Si-O-Si 결합과 Si-C-C-Si, Si-C-C-C-Si, Si-C-C-C-C-Si 결합을 각각 생성하며, 이들 결합체들이 망상조직을 이루게 된다.The copolymers are basically a mixture of Si-OH bonds and Si-CH = CH 2 bonds. Each of the bonds forms Si-O-Si bonds, Si-CC-Si, Si-CCC-Si, and Si-CCCC-Si bonds by thermal curing with the participation of a thermal radical initiator, and these bonds form a network structure. Will be achieved.

이 중 Si-(C-)nSi(n은 2이상 4 이하의 자연수)로 표현되는 Si-C-C-Si, Si-C-C-C-Si, Si-C-C-C-C-Si 결합구조는 두개의 실록산 사슬을 매우 견고하게 결합하기 때문에 Si-O 결합구조에 비하여 매우 높은 경도를 가지며, 이러한 결합구조가 피막 및 피도포체의 기계적 물성을 향상시키는 결정적인 역할을 하게 된다. 특히 C 결합체인이 포함하는 C의 갯수가 많을수록 경도가 크게 향상되므로, 본 발명은 이러한 다수의 C를 포함하는 C 결합체인의 생성에 그 특징을 두고 있다.Among them, the Si-CC-Si, Si-CCC-Si and Si-CCCC-Si bond structures represented by Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) make the two siloxane chains very firm. Due to the bonding has a very high hardness compared to the Si-O bonding structure, this bonding structure plays a crucial role to improve the mechanical properties of the coating and the coated object. In particular, the greater the number of C included in the C-chain chain, the greater the hardness, and thus the present invention is characterized by the production of a C-chain chain including such a large number of C.

본 발명은 열개시제를 초기 조성물에 도입하여 열경화과정에서 공중합체와 동시에 반응시킴으로써 Si-(C-)nSi 결합(n은 2 이상 4 이하의 자연수)을 이끌어내어 피막의 밀도와 경도를 향상시키는데 그 특징이 있다고 할 것이며, 이러한 점이 종래기술과 중대한 차이를 발생한다는 점에 대하여 주목하여야 할 것이다.The present invention introduces a thermal initiator into the initial composition and reacts with the copolymer at the same time during the thermal curing to draw Si- (C-) nSi bond (n is a natural number of 2 or more and 4 or less) to improve the density and hardness of the film It will be noted that there is a feature, and it should be noted that this makes a significant difference from the prior art.

Si-O-Si 및 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 형태의 결합을 생성하는 반응을 화학식으로 표현하면 다음과 같다. The reaction for generating a bond in the form of Si-O-Si and Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) is expressed as follows.

(1) 2Si-OH → Si-O-Si + H2O (1) 2Si-OH → Si-O-Si + H 2 O

(2) 2Si-CH3 + [O] → Si-CH2-CH2-Si + H2O(2) 2Si-CH 3 + [O] → Si-CH 2 -CH 2 -Si + H 2 O

(3) Si-CH3 + CH2=CH-Si- + [O] → Si-CH2-CH2-CH(OH)-Si(3) Si-CH 3 + CH 2 = CH-Si- + [O] → Si-CH 2 -CH 2 -CH (OH) -Si

(4) n-Si-CH=CH2 → [-CH(-Si)-CH2-CH(Si-)-CH2-]n(4) n-Si-CH = CH 2 → [-CH (-Si) -CH 2 -CH (Si-)-CH 2- ] n

즉, 열경화시 (1)의 반응에 의하여 Si-O-Si 결합체가, (2) ~ (4)의 반응에 의하여 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 형태의 결합을 생성하고, 이들이 중합체로 형성됨으로써 피막의 표면경도는 매우 높아진다고 할 수 있다.That is, the Si-O-Si binder is reacted by the reaction of (1) during thermosetting, and Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) by the reaction of (2) to (4). It can be said that the surface hardness of the coating is very high by forming bonds and forming them into a polymer.

보다 구체적인 중합방법은 다음과 같으며, 전술한 바와 같은 3종의 실레인은, 후술하는 방법으로 중합시킴으로써 올리고머를 형성한다.A more specific polymerization method is as follows, and the three types of silanes mentioned above form an oligomer by superposing | polymerizing by the method mentioned later.

(1) 가수 분해 축 중합법(1) hydrolysis axial polymerization method

원료상태의 각 실란모노머(3종)를 혼합한 후 물과 촉매를 가해서 가수 분해하여 실란올기(SiOH)를 생성시키고, 실란올기가 서로 반응하도록 하여 축 중합시킨다. 이 때, 원료상태의 실란모노머를 상호 혼합하지 않고 각 종별로 독립적으로 가수 분해 하여 실란올기를 각각 생성시킨 후 이들을 혼합하고 반응을 유도하여 축중합시킬 수도 있다.After mixing each of the silane monomers (three types) in the raw state, water and a catalyst are added to hydrolyze to generate silanol groups (SiOH), and the silanol groups are reacted with each other to perform axial polymerization. In this case, the silane monomers in the raw state may be hydrolyzed independently of each other to produce silanol groups, and then mixed and induced to react and condensation polymerization.

가수 분해와 축 중합은 상호 다른 반응이므로 순차적으로 진행하는 것이 일반적이지만 이러한 가수 분해 공정과 축 중합 공정을 동시에 할 수도 있다. 또한, 가수 분해의 촉매와 축 중합의 촉매는 상호 동일하거나 또는 상이할 수도 있다.Since hydrolysis and axial polymerization are mutually different reactions, it is common to proceed sequentially. However, such hydrolysis and axial polymerization may be performed simultaneously. In addition, the catalyst of hydrolysis and the catalyst of axial polymerization may mutually be same or different.

또한, 실란모노머는 미리 알코올, 케톤, 에스테르, 에테르, 탄화수소 등 임의의 유기용매에 용해해서 희석하여 사용할 수도 있다. 이 때, 실란모노머의 희석에 사용되는 용매는 실란모노머 또는 물과 상용성이 있는 것이 반응의 균일한 진행을 위하여 바람직하나, 이러한 상용성이 필수적인 요소는 아니어서 다소 부족하여도 가능하다.In addition, the silane monomer may be dissolved in any organic solvent such as alcohol, ketone, ester, ether, hydrocarbon, and the like before use. At this time, the solvent used for dilution of the silane monomer is preferably compatible with the silane monomer or water for the uniform progress of the reaction, but this compatibility is not essential and may be somewhat insufficient.

가수 분해에 사용되는 물의 양은 실레인에 포함되는 1당량의 가수 분해성기에 대하여 0.5 ~ 10당량을 가한다.The amount of water used for hydrolysis is added in an amount of 0.5 to 10 equivalents to 1 equivalent of the hydrolyzable group contained in the silane.

물의 당량이 0.5당량 미만일 경우 중합체의 분자량이 충분히 커지지 않고, 또 10당량을 넘으면, 실란모노머의 상대적인 반응시스템상의 농도가 저하되거나, 물의 상 분리가 일어나기 때문에 바람직하지 않다. 더 바람직하게는 물의 당량은 1.0 ∼ 5.0당량의 범위로 하는 것이 좋다.If the equivalent of water is less than 0.5 equivalent, the molecular weight of the polymer does not increase sufficiently, and if it exceeds 10 equivalent, the concentration of the silane monomer relative to the relative reaction system decreases, or water phase separation is undesirable. More preferably, the water equivalent is in the range of 1.0 to 5.0 equivalents.

가수 분해의 촉매로서는 염산, 불산, 질산, 황산, 인산, 과염소산, 불화실리식수소산(H2SiF6) 등의 무기산, 포름산, 아세트산, 젖산, 옥살산, 석신산, 구연산, 톨루엔술폰산, 트리플루오로아세트산, 트리플루오로메탄술폰산 등의 유기산, 약산성 이온교환 수지, 강산성 이온교환 수지, 활성 산화알미늄 등의 고체산, 암모니아, 메틸아민, 디메틸아민, 트리메틸아민, 트리에틸아민, 이소프로필아민, 부틸아민, 트리부틸아민, 시클로헥실아민, 벤질아민, 에틸렌디아민, 디에틸렌트리아민, 피페라딘(Pepirazine), 폴리에틸렌 이민 등의 아민류, 수산화테트라메틸아민, 수산화테트라부틸아민, 수산화부틸트리메틸아민, 수산화테트라메틸암모늄, 수산화트리 페닐포스포니움 등의 유기알칼리, 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화스트론튬, 수산화바륨 등의 금속수산화물, 나트륨메톡시드, 나트륨움에톡시드 등의 알카리알콕시드, 염화알루미늄, 트리페닐포스핀, 3불화화붕소산 등의 루이스산, 염화티탄IV),황산티타닐, 질산티타닐, 티탄테트라이소푸로폭시드, 티탄테트라-n-부톡시드, 티타늄테트라스테아레이트, 비스아세틸아세토나이트디이소푸로폭시티타늄, 테트라키스아세칠아세토나토티탄 등의 티탄화합물, 황산 알루미늄, 질산 알루미늄, 이세트산산 알루미늄, 알미늄트리이소푸로폭시드, 알루미늄 제2부톡시드, 아세칠아세토나토디이소푸로폭시알미늄, 트리스아세칠아세토나토알미늄 등의 알루미늄 화합물이 쓰인다.As a catalyst for hydrolysis, hydrochloric acid, hydrofluoric acid, nitric acid, sulfuric acid, phosphoric acid, perchloric acid, inorganic acids such as hydrofluoric acid (H2SiF6), formic acid, acetic acid, lactic acid, oxalic acid, succinic acid, citric acid, toluenesulfonic acid, trifluoroacetic acid, tri Organic acids such as fluoromethanesulfonic acid, weakly acidic ion exchange resins, strongly acidic ion exchange resins, solid acids such as activated aluminum oxide, ammonia, methylamine, dimethylamine, trimethylamine, triethylamine, isopropylamine, butylamine, tributyl Amines such as amines, cyclohexylamines, benzylamines, ethylenediamines, diethylenetriamines, piperadines, polyethylene imines, tetramethylamine hydroxides, tetrabutylamine hydroxides, butyltrimethylamine hydroxides, tetramethylammonium hydroxides, Organic alkalis such as triphenylphosphonium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, strontium hydroxide and barium hydroxide Alkali alkoxides, such as a quick hydroxide, sodium methoxide, and sodium ethoxide, Lewis acids, such as aluminum chloride, a triphenylphosphine, and boron trifluoride, titanium chloride IV), titanyl sulfate, titanium nitrate, and titanium Titanium compounds such as tetraisopuroxide, titanium tetra-n-butoxide, titanium tetrastearate, bisacetylacetonite diisopuropoxytitanium, tetrakisacetacecetonatotitanium, aluminum sulfate, aluminum nitrate, and isotonic acid Aluminum compounds, such as aluminum, aluminum triisopuroxide, an aluminum second butoxide, acecylacetonato diisopuroxy aluminum, and a trisacetylacetonato aluminum, are used.

이 중에서도 반응이 비교적 온화하게 진행되고, 분리가 오래 걸리지 않는, 질산, 염산, 포름산, 아세트산, 트리플루오로아세트산 등의 휘발성 산이 촉매로서 매우 적합하다.Among them, volatile acids such as nitric acid, hydrochloric acid, formic acid, acetic acid, trifluoroacetic acid, etc., in which the reaction proceeds relatively gently and do not take long separation, are very suitable as catalysts.

가수 분해 촉매의 첨가량은, 촉매의 종류에 의해서 다르지만, 실레인에 대해서 0.0001 ~ 1몰 당량을 사용한다.Although the addition amount of a hydrolysis catalyst changes with kinds of catalyst, 0.0001-1 molar equivalent is used with respect to a silane.

촉매로서 산을 사용하는 경우는 비교적 고농도의 0.001 ~ 0.1몰 당량, 염기를 사용하는 경우는 0.0001 ~ 0.01몰 당량이 바람직하다.When an acid is used as a catalyst, a relatively high concentration of 0.001 to 0.1 molar equivalents, and when a base is used, 0.0001 to 0.01 molar equivalents are preferable.

촉매 농도가 0.0001몰 당량 이하면, 반응 속도가 대폭 저하되고, 실제적용하기에 적합하지 않으며, 촉매 농도가 1몰 당량을 넘으면, 반응 속도가 크게 상승되어 제어가 곤란해지며, 촉매의 분리 공정을 별도로 진행해야 하므로 바람직하지 아니하다.If the catalyst concentration is less than 0.0001 molar equivalent, the reaction rate is drastically lowered and is not suitable for practical application. If the catalyst concentration is higher than 1 molar equivalent, the reaction rate is greatly increased, making it difficult to control the catalyst separation process. It is not desirable to proceed separately.

가수 분해 및 축 중합 공정의 온도 범위는, 단량체의 배합 비율이나 촉매, 희석 용매와 그 양에 의해서, 0℃ 정도의 저온 내지 환류(reflux) 온도의 범위로, 또한, 시간범위는 0.1시간 ~ 30일의 범위로 하는 것이 바람직하다. 여기서, 상기 환류온도는 35 ~ 180℃ 사이가 더 바람직하다. The temperature range of the hydrolysis and condensation polymerization step is in the range of low temperature to reflux temperature of about 0 ° C., depending on the blending ratio of the monomer, the catalyst, the dilution solvent and the amount thereof, and the time range is 0.1 hour to 30 hours. It is preferable to set it as the range of work. Where The reflux temperature is more preferably between 35 and 180 ° C.

상기 환류온도는 사용하는 용매의 종류에 의해 결정되며, 0℃ 이하의 경우에는 촉매로 사용하는 물이 응고되므로 바람직하지 않다. The reflux temperature is determined by the type of solvent used, and in the case of 0 ° C. or lower, water used as a catalyst solidifies, which is not preferable.

예를 들면, 촉매로서 0.01몰 당량의 유기산을 쓰고, 단량체를 에탄올과 1 : 1의 비율로 하여 희석한 경우, 환류 온도로 2 ~ 8시간 반응시킨다.For example, when 0.01 mol equivalent of an organic acid is used as a catalyst and the monomer is diluted with ethanol in a ratio of 1: 1, it is made to react at reflux for 2 to 8 hours.

이와 같은 공중합 반응을 수행함에 있어서, 상기 3종의 실레인에서 다른 임의의 관능성을 가지는 것, 실란올과 공중합 가능한 OH그룹, 이소시아네이트, 에폭시 화합물 등을 실란모노머와 공중합시켜도 좋다.In carrying out such a copolymerization reaction, an OH group, an isocyanate, an epoxy compound, or the like copolymerizable with silanol may be copolymerized with the silane monomer.

실레인의 예를 들면, 메틸기 치환 3관능성 실레인으로는 메틸트리메톡시실레인, 메틸트리클로로실레인, 메틸클로로디에톡시실레인, 메틸트리아세톡시실레인,메틸메톡시디아세톡시실레인, 메틸트리이소시아네도실레인, 메틸트리스(메틸에틸케톡시모)실레인 등이 있고, 비닐기 치환 3관능성 실레인으로는 비닐트리에톡시실레인, 비닐트리클로로실레인, 비닐트리아세톡시실레인, 비닐에톡시디아세톡시실레인, 비닐트리스(메닐에틸케톡시모)실레인 등이 있으며, 4관능성 실레인으로는 테트라메톡시실레인, 테트라클로로실레인, 디메톡시디클로로실레인, 테트라에톡시실레인, 테트라아세톡시실레인, 테트라이소시아네토실레인, 테트라키스(메틸에틸케톡시모)실레인 등이 있다. 이와 같은 실레인은 각각 단독으로 가수분해 중합될 수도 있고, 혼합하여 가수분해 중합될 수도 있다.Examples of the silanes include the methyl group-substituted trifunctional silanes such as methyltrimethoxysilane, methyltrichlorosilane, methylchlorodiethoxysilane, methyltriacetoxysilane, and methylmethoxydiacetoxysilane. Phosphorus, methyltriisocyanedosilane, methyltris (methylethylketoxymo) silane, and the like. Examples of the vinyl-substituted trifunctional silane include vinyltriethoxysilane, vinyltrichlorosilane, and vinyltriacene. Methoxy silane, vinyl ethoxy diacetoxy silane, vinyl tris (menylethyl methoxymo) silane, etc., tetrafunctional silane, tetramethoxy silane, tetrachloro silane, dimethoxy dichloro silane , Tetraethoxysilane, tetraacetoxysilane, tetraisocyanatosilane, tetrakis (methylethylketoxymo) silane, and the like. Each of these silanes may be hydrolyzed and polymerized alone, or may be mixed and hydrolyzed.

다른 실레인도 사용될 수 있는데, 그 예로는 3-메르캡토프로필트리에톡시실레인, 3-아미노프로필트리에톡시실레인, 3-글리시독시프로필트리알콕시실레인, 3-아크릴록시프로필트리에톡시실레인, 3-메타크릴록시트리에톡시실레인 등이 있다.Other silanes may also be used, such as 3-mercaptopropyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrialkoxysilane, 3-acryloxypropyltriethoxy Silane, 3-methacryloxytriethoxysilane, and the like.

또한, 붕소, 인, 알루미늄, 티탄, 지르코늄 등의 규소 이외의 원소를 포함하는 가수 분해성 화합물을 공중합시키는 것도 가능하다.It is also possible to copolymerize hydrolyzable compounds containing elements other than silicon, such as boron, phosphorus, aluminum, titanium, zirconium, and the like.

(2) 라디칼 중합법(2) radical polymerization method

원료상태의 각 실란모노머(3종)를 혼합한 후, 라디칼 개시제를 가해서 모노머를 중합시킨다. After mixing each of the silane monomers (three types) in the raw state, a radical initiator is added to polymerize the monomers.

이는 가수분해 후 열개시제를 사용해 경화시키는 방식과 다르며, 미리 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 결합을 형성하여 보다 높은 반응효율을 얻 고, 피막의 경도를 크게 향상하고자 하는 것이다.This is different from the method of curing using a thermal initiator after hydrolysis, and forms Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bond in advance to obtain higher reaction efficiency and greatly improve the hardness of the film. I would like to.

전술한 바와 같이, 라디칼 중합에 기여하는 것은 비닐 실레인과 메틸 실레인이며, 각각 이하 같은 반응으로 중합한다. 이 라디칼 반응에 의해서 실레인이 없는 올리고머가 형성된다.As mentioned above, it is vinyl silane and methyl silane which contribute to radical polymerization, respectively, and superpose | polymerize by the same reaction below. This radical reaction forms silane-free oligomers.

(1) Si-CH3 + CH3-Si → SiCH2-CH2Si (탈수반응)(1) Si-CH 3 + CH 3 -Si → SiCH 2 -CH 2 Si (dehydration reaction)

(2) Si-CH3 + CH2=CH-Si → Si-CH(OH)-CH2CH2-Si(2) Si-CH 3 + CH 2 = CH-Si → Si-CH (OH) -CH 2 CH 2 -Si

(3) Si-CH=CH2 + CH2=CH-Si → Si-CH=CH-CH2CH2-Si (3) Si-CH = CH 2 + CH 2 = CH-Si → Si-CH = CH-CH 2 CH 2 -Si

다만, 상기 (3)의 반응은 일반의 라디칼 개시제에 의해도 진행하지만 (1), (2)의 반응은 유기 과산화물(퍼옥사이드)과 급진적으로 반응함으로써 진행될 수 있다.However, although the reaction of (3) proceeds with a general radical initiator, the reaction of (1) and (2) may proceed by radically reacting with an organic peroxide (peroxide).

구체적으로는, 실레인에 대해서 0.001 ~ 1중량 %의 라디칼 개시제를 가하고, 가열중에 교반하여 중합을 한다.Specifically, 0.001 to 1% by weight of a radical initiator is added to the silane, followed by stirring while heating to polymerize.

이와 같은 라디칼 개시제가 1중량% 이상인 경우 분자량이 매우 작아지는 경향이 있으며, 0.001 중량% 이하인 경우에는 중합반응이 일어나지 않으므로, 위 라디칼 개시제는 위와 같은 범위에서 임계적 의의를 갖는다.If the radical initiator is 1% by weight or more, the molecular weight tends to be very small, and if it is 0.001% by weight or less, the polymerization reaction does not occur, the radical initiator has a critical significance in the above range.

라디칼 개시제로서는, 가열에 의하여 자유라디칼을 발생시키는 어떤 물질도 가능하나, 바람직하게는 아조화합물, 아조-아미드화합물, 퍼옥사이드, 디페닐알케인, 벤조페논 유도체 등을 사용할 수 있으며, 다양한 용매에 대한 용해성, 높은 안정성으로 특징되며, 저온에서 고효율의 중합반응이 가능한 유기 퍼옥사이드가 바람 직하다. 고온에서보다 저온에서 반응이 일어나야 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 결합이 잘 일어난다.As the radical initiator, any substance which generates free radicals by heating may be used, but preferably, azo compounds, azo-amide compounds, peroxides, diphenyl alkanes, benzophenone derivatives, and the like may be used. It is characterized by solubility and high stability, and organic peroxides capable of high-efficiency polymerization at low temperatures are preferred. Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bonds occur only when the reaction occurs at a lower temperature than at a high temperature.

상기 유기 퍼옥사이드의 예로는, 메틸에틸케톤퍼옥사이드, 사이클로헥사논퍼옥사이드, 아세틸아세톤퍼옥사이드 등 케톤퍼옥사이드류; 1,1-bis(t-헥실퍼옥사이드-3, 3,5-트리메틸사이클로헥산, 1,1-bis(t-헥실퍼옥시)사이클로헥산, 1,1-bis(t-부틸퍼옥시)-2-메틸사이클로헥산, 1,1-bis(t-부틱퍼옥시)사이클로헥산, 2,2-bis(t-부틱퍼옥시)부탄, 3,3-bis(t-부틱퍼옥시)부틸펜타노에이트, 2,2-bis(4,4-bis(t-부틱퍼옥시)사이클로헥실)프로판 등 퍼옥시케탈류; p-멘탄하이드로퍼옥사이드, 디이소프록실벤젠하이드로퍼옥사이드, 1,1,3,3-테트라메틸부틸하이드로퍼옥사이드, 큐멘하이드로퍼옥사이드, t-부틸하이드로퍼옥사이드 등 하이드로퍼옥사이드류; bis(2-t-부틸퍼옥시이소프로필)벤젠, 디큐밀퍼옥사이드, 2,3-이메틸-2,5-bis(t-부틸퍼옥시)헥산, t-부틸큐밀퍼옥사이드, 디-t-헥실퍼옥사이드, 디-t-부틸퍼옥사이드, 2,5-디메틸-2,5-bis(t-부틸퍼옥시)헥산-3 등 디알칼퍼옥사이드류; 디-아이소부틸퍼옥사이드, bis(3,5,5-트리메틸헥사노일)퍼옥사이드, 디라우록실퍼옥사이드, 디석시닉산퍼옥사이드, bis(3-메틸벤조일)퍼옥사이드, 디벤조일퍼옥사이드, bis(4-메틸벤조일)퍼옥사이드 등 디아크릴퍼옥사이드류; 디-n-프로필퍼옥시디카보네이트, 디-이소프로필퍼옥시디카보네이트, bis(4-t-부틸사이클로헥실)퍼옥시디카보네이트, bis(2-에틸헥실)퍼옥시디카보네이트, 디-sec-부틸퍼옥시디카보네이트 등 퍼옥시카보네이트류; 큐밀퍼옥시네오디카노에이트, 1,1,3,3-테트라메틸부틸퍼옥시네오디가노에이트, t-헥실퍼옥시피발레이트, t-부틸퍼옥시파발레이트, 1,1,3,3-테트라메일 부틸퍼옥시-2-에틸헥사노에이트, 2,5-디메틸-2,5-bis(2-에틸헥사노일퍼옥시)헬산, t-헥실퍼옥시-2-에틸헥사노에이트, t-부틸퍼옥시-2-에틸헥사노에이트, t-헥실퍼옥시이소프로필모노카보네이트, t-부틸퍼옥시말릭산, t-부틸퍼옥시-3,5,5-트리메틸헥사노에이트, t-부틸퍼옥시라우레이트, t-부틸퍼옥시이소프로필모노카보네이트, t-부틸퍼옭시-2-에틸헥실모노카보네이트, t-헥실퍼옥시벤조에이트, 2,5-디메틸-2,5-bis(벤조일퍼옥시)헥산, t-부틸퍼옥시아세테이트, t-부틸퍼옥시-3-메틸벤조에이트, t-부틸퍼옥시벤조에이트 등 퍼옥시산에스테르류; t-부틸퍼옥시알릴모노카보네이트, 3,3'4,4'-테트라키스(t-부틸퍼옥시카보닐)벤조페논 등 퍼옥시알킬화합물류 등이 있다.Examples of the organic peroxide include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide and acetylacetone peroxide; 1,1-bis (t-hexyl peroxide-3, 3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butylperoxy)- 2-methylcyclohexane, 1,1-bis (t-butyperoxy) cyclohexane, 2,2-bis (t-butyperoxy) butane, 3,3-bis (t-butyperoxy) butylpentano Peroxy ketals such as 8, 2,2-bis (4,4-bis (t-butyperoxy) cyclohexyl) propane; p-mentane hydroperoxide, diisopropyl benzenehydroperoxide, 1,1, Hydroperoxides such as 3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, bis (2-t-butylperoxyisopropyl) benzene, dicumylperoxide, 2,3- Imethyl-2,5-bis (t-butylperoxy) hexane, t-butyl cumyl peroxide, di-t-hexyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5- dialkalperoxides such as bis (t-butylperoxy) hexane-3, di-isobutyl peroxide, bis (3,5,5-trimethylhex Diacryl peroxides such as noyl) peroxide, dilauroxyl peroxide, disuccinic acid peroxide, bis (3-methylbenzoyl) peroxide, dibenzoyl peroxide, bis (4-methylbenzoyl) peroxide; n-propyl peroxydicarbonate, di-isopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, bis (2-ethylhexyl) peroxydicarbonate, di-sec-butylperoxydicarbonate Oxycarbonates: cumyl peroxy neodicanoate, 1,1,3,3-tetramethylbutyl peroxy neodiganoate, t-hexyl peroxy pivalate, t-butyl peroxy pavalate, 1,1, 3,3-tetramail butylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) helic acid, t-hexylperoxy-2-ethylhexano T-butylperoxy-2-ethylhexanoate, t-hexyl peroxy isopropyl monocarbonate, t-butyl peroxy malic acid, t-butyl perox -3,5,5-trimethylhexanoate, t-butylperoxylaurate, t-butylperoxyisopropyl monocarbonate, t-butylperoxy 2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate Peroxy acid esters such as 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, t-butylperoxy acetate, t-butylperoxy-3-methylbenzoate and t-butylperoxybenzoate Ryu; peroxyalkyl compounds such as t-butylperoxyallyl monocarbonate and 3,3'4,4'-tetrakis (t-butylperoxycarbonyl) benzophenone.

또한, 분자량을 제어하기 위해서, 멜캅토푸로피온산에스테르, 디부톡시하이드록시톨루엔, 멜캅토벤조티아졸등의 임의의 연쇄반응첨가제를 넣어도 좋다.Moreover, in order to control molecular weight, you may add arbitrary chain reaction additives, such as a mercapto propionic acid ester, dibutoxy hydroxytoluene, and a melcapto benzothiazole.

상기 열개시제와 실레인의 용해 및 희석의 목적으로 임의의 유기용매를 가한다. 용매는 코팅시 건조속도나 코팅성능에 맞추어 혼합하여 사용한다. 선택할 수 있는 용매의 종류는 아래와 같다.Any organic solvent is added for the purpose of dissolving and diluting the thermal initiator and silane. Solvent is used by mixing according to drying speed or coating performance. The kind of solvent which can be selected is as follows.

메탄올, 에탄올, 2-프로판올, 1-프로판올, 1-부탄올, 2-부탄올, sec-부탄, 1-펜타놀, 3-메틸부탄올, 2-메틸부탄올, 2-펜타놀, 4-메틸-2-펜타놀, 사이클로헥사놀, 메틸사이클로헥사놀, n-헥사놀, 퍼퓨릴알코올, 퍼퓨릴메탄올, 테트라하이드로퍼퓨릴알콜, 벤질알콜 등 알코올류; 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 메틸n-부틸케톤, 메틸t-부틸케톤, 메틸n-펜틸케톤, 메틸n-헥실케톤, 디에틸케톤, 디이소프로필케톤, 디이소부틸케톤, 시클로펜타논, 시클로헥사논, 메틸시클로헥사논, 시클로헵타논, 시클로옥타논, 2,4-펜타네디온, 2,5-헥사디온, 아세토페논 등 케톤류; n-펜탄, 이소펜탄, n-헥산, 이소헥산, n-헵탄, 이소헵탄, 옥탄, 이소옥탄, 2,2,4-트리에틸펜탄, 시클로헥산, 메틸시클로헥산, 벤젠, 톨루엔, 자일렌,트리에틸벤젠, 에틸벤젠, 메틸에틸벤젠, n-프로필벤젠, 이소프로필벤젠, 펜틸벤젠, 디에틸벤젠, 이소부틸벤젠, 트리에틸벤젠, 디이소프로필벤젠 등 하이드로카본류; 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 디에틸에테르, 디-n-프로필에테르, 디-이소프로필에테르, 디-n-부틸에테르, 디이소부틸에테르, 디-n-헥실에테르,아니솔, 페네톨, 디페닐에테르, 에틸벤질에테르, bis(2-에틸헥실)에테르, 에필렌옥사이드, 1,2-프로필렌옥사이드, 1,4-디옥산, 4-메틸디옥솔레인, 디메틸디옥솔레인, 그레실메틸에테르, 디벤질에테르, 부틱페닐에테르 등 에테르류; 메틸아세테이트, 에틸아세테이트, n-프로필아세테이트, 이소프로필아세테이트, n-부틸아세테이트, 이소부틸아세테이트, sec-부틸아세테이트, n-펜틸아세테이트, sec-펜틸아세테이트,메틸펜틸아세테이트, 2-에틸부틸아세테이트, 2-에틸헥실아세테이트, 벤질아세테이트, 시클로헥실아세테이트, 메틸시클로헥실아세테이트, n-노닐아세테이트,메틸아세토아세테이트, 에틸아세토아세테이트, 에틸프로피오네이트, n-부틸프로피오네이트, 이소아밀프로피오네이트, 메틸피루베이트, 에틸피루베이트, 디에틸옥살레이트, 디-n-부틸옥살레이트, 메틸락테이트, 에틸락테이트, 부틸락테이트, n-펜틸락테이트, 메틸메톡시프로피오네이트, 에틸에톡시프로피오네이트, 디에틸말로네이트, 디메틸프탈레이트, 디에틸프탈레이트, 디에틸카보네이트, 프로필렌카보네이트 등 에스테르류; 감마-부티롤락톤, 감마-발레롤락톤, 델타-발레롤락톤 등 락톤류; 아세토니트릴, 프 로피오노니트릴, 아크릴로니트릴 등 니트릴류, 에틸렌글리콜, 프로필렌글리콜, 1,2-부타네디올, 1,3-부타네디올, 1,2-펜탄세디올, 2,4-펜탄디올, 2-메틸펜탄-2,4-디올, 2,5-헥사네디올, 2,4-헵타네디올, 2-에틸헥산-1,3-디올, 디에틸렌글리콜, 디프로필렌글리콜, 트리에틸렌글리콜, 트리프로필렌글리콜 등 글리콜류; 하이드록시아세톤(아세톨), 3-하이드록시-3-메틸-2-부타논, 4-하이드록시-3-메틸-2-부타논, 5-하이드록시-2-펜타논, 4-하이드록시-4-메틸-2-펜타논 등 하이드록시케톤류; 글리콜에테르류로서, 에틸렌글로콜모노메틸에테르, 에틸렌글리콜모노에틸에테르,에틸렌글리콜모노프로필에테르, 에틸렌글리콜모노n-부틱에테르, 에틸렌글리콜모노n-펜틸에테르, 에틸렌글리콜모노n-헥실에테르,에틸렌글리콜모노2-에틸부틸에테르, 에틸렌글리콜모노2-에틸헥실에테르, 에틸렌글리콜모노페닐에테르 등 에틸렌글리콜모노에테르류; 에틸렌글리콜디메틸에테르, 에틸렌글리콜디에틸에테르, 에틸렌글리콜메틸에틸에테르, 에틸렌글리콜디부틸에테르 등 에틸렌글리콜디에테르류; 에틸렌글리콜모노메틸에테르아세테이트, 에틸렌글리콜모노에틸에테르아세테이트, 에틸렌글리콜모노프로필에테르아세테이트, 에틸렌글리콜모토n-부틸에테르아세테이트, 에틸렌글리콜디아세테이트 등 에틸렌글리콜아세테이트류; 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 프로필렌글리콜모노n-프로필에테르, 프로필렌글리콜모노n-부틸에테르, 프로필렌글리콜모노t-부틸에테르 등 프로필렌글리콜모노에테르류, 프로필렌글리콜디메틸에테르, 프로필렌글리콜디에틸에테르, 프로필렌글리콜메틸에틸에테르 등 프로필렌글리콜디에테르류; 프로필렌글리콜모노메틸에테르아세테이트, 프로필렌글리콜모노에틸에테르아세테이트, 프로필렌글리콜모노n-프로필에 테르아세테이트, 프로필렌글리콜모노n-부틸에테르아세테이트, 프로필렌글리콜디아세테이트 등 프로필렌글리콜아세테이트류; 3-메톡시-1-부탄올, 3-메톡시부틸아세테이트, 3-메틸-3-메톡시-1-부탄올, 3-메톡시-1-부틸아세테이트, 3-메틸-3-메톡시-1-부틸아세테이트 등 부틸렌글리콜유도체, 디에틸글리콜모노메틸에테르, 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노프로필에테르, 디에틸렌글리콜모노n-부틸에테르, 디에틸렌글리콜모노n-헥실에테르 등 디에틸글리콜모노에테르류; 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜메틸에틸에테르류, 디에틸렌글리콜디에틸에테르 등 디에틸렌글리콜디에테르류; 디에틸렌글리콜모노메틸에테르아세테이트, 디에틸렌글리콜모노에틸에테르아세테이트, 디에틸렌글리콜모노프로필에테르아세테이트, 디에틸렌글리콜모노n-부틸에테르아세테이트 등 디에틸렌글리콜아세테이트류; 디프로필렌글리콜모노메틸에테르, 디프로필렌글리콜모노에틸에테르, 디프로필렌글리콜모노프로필에테르 등 디프로필렌글리콜모노에테르류; 디프로필렌글리콜디메틸에테르 등 디프로필렌글리콜디에테르류; 디프로필렌글리콜모노메틸에테르, 트리에틸렌글리콜모노에틸에테르, 트리실렌글리콜모노메틸에테르아세테이트, 트리프로필렌글리콜모노메틸에테르, 트리프로필렌글리콜모노메틸에테르아세테이트, 테트라에틸렌글리콜디-n-부틸에테르 등 디프로필렌글리콜아세테이트류; 불균질화합물로서, N-메틸피롤리디논, N,N-디메틸이마이드아졸리디논, 포름이마이드, N-메틸포름아미드, N-에틸포름아미드, N,N-디메틸포름아미드, N,N-디에틸포름아미드, N-메틸아세타마이드, N,N-디메틸아세트아미드, N,N-디에틸아세트아미드, N-메틸프로피온아미드, N,N-디메틸술프옥사이드, 술포레인, 1,3-프로페인술톤 등이 있다.Methanol, ethanol, 2-propanol, 1-propanol, 1-butanol, 2-butanol, sec-butan, 1-pentanol, 3-methylbutanol, 2-methylbutanol, 2-pentanol, 4-methyl-2- Alcohols such as pentanol, cyclohexanol, methylcyclohexanol, n-hexanol, perfuryl alcohol, perfuryl methanol, tetrahydrofurfuryl alcohol, benzyl alcohol; Acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl n-butyl ketone, methyl t-butyl ketone, methyl n-pentyl ketone, methyl n-hexyl ketone, diethyl ketone, diisopropyl ketone, diisobutyl ketone, cyclo Ketones such as pentanone, cyclohexanone, methylcyclohexanone, cycloheptanone, cyclooctanone, 2,4-pentanedione, 2,5-hexadione and acetophenone; n-pentane, isopentane, n-hexane, isohexane, n-heptane, isoheptane, octane, isooctane, 2,2,4-triethylpentane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, tri Hydrocarbons such as ethylbenzene, ethylbenzene, methylethylbenzene, n-propylbenzene, isopropylbenzene, pentylbenzene, diethylbenzene, isobutylbenzene, triethylbenzene and diisopropylbenzene; Tetrahydrofuran, 2-methyltetrahydrofuran, diethyl ether, di-n-propyl ether, di-isopropyl ether, di-n-butyl ether, diisobutyl ether, di-n-hexyl ether, anisole, Phentol, diphenyl ether, ethyl benzyl ether, bis (2-ethylhexyl) ether, propylene oxide, 1,2-propylene oxide, 1,4-dioxane, 4-methyldioxoleine, dimethyldioxoleine, Ethers such as gresyl methyl ether, dibenzyl ether, buty phenyl ether; Methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2 Ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-nonyl acetate, methyl acetoacetate, ethyl acetoacetate, ethyl propionate, n-butyl propionate, isoamyl propionate, methylpyru Bate, ethylpyruvate, diethyl oxalate, di-n-butyloxalate, methyl lactate, ethyl lactate, butyl lactate, n-pentyl lactate, methyl methoxy propionate, ethyl ethoxy propionate , Diethyl malonate, dimethyl phthalate, diethyl phthalate, diethyl carbonate, propylene carbonate, etc. Esters; Lactones such as gamma-butyrolactone, gamma-valerolactone and delta-valerolactone; Nitriles such as acetonitrile, propiononitrile, acrylonitrile, ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-pentanecediol, 2,4-pentane Diol, 2-methylpentane-2,4-diol, 2,5-hexanediol, 2,4-heptanediol, 2-ethylhexane-1,3-diol, diethylene glycol, dipropylene glycol, triethylene Glycols such as glycol and tripropylene glycol; Hydroxyacetone (acetol), 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2-butanone, 5-hydroxy-2-pentanone, 4-hydroxy Hydroxy ketones such as -4-methyl-2-pentanone; As glycol ethers, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol mono n-butyric ether, ethylene glycol mono n-pentyl ether, ethylene glycol mono n-hexyl ether, ethylene Ethylene glycol monoethers such as glycol mono2-ethylbutyl ether, ethylene glycol mono2-ethylhexyl ether, and ethylene glycol monophenyl ether; Ethylene glycol diethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, and ethylene glycol dibutyl ether; Ethylene glycol acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, ethylene glycol moto n-butyl ether acetate, and ethylene glycol diacetate; Propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n-butyl ether, propylene glycol mono t-butyl ether, such as propylene glycol monoether, propylene glycol dimethyl ether, propylene glycol di Propylene glycol diethers such as ethyl ether and propylene glycol methyl ethyl ether; Propylene glycol acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol mono n-propyl ether acetate, propylene glycol mono n-butyl ether acetate, and propylene glycol diacetate; 3-methoxy-1-butanol, 3-methoxybutylacetate, 3-methyl-3-methoxy-1-butanol, 3-methoxy-1-butylacetate, 3-methyl-3-methoxy-1- Diethyl glycol, such as butylene glycol derivatives, such as butyl acetate, diethyl glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol mono n-butyl ether, and diethylene glycol mono n-hexyl ether Monoethers; Diethylene glycol diethers such as diethylene glycol dimethyl ether, diethylene glycol methylethyl ether and diethylene glycol diethyl ether; Diethylene glycol acetates such as diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monopropyl ether acetate, diethylene glycol mono n-butyl ether acetate; Dipropylene glycol monoethers such as dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether and dipropylene glycol monopropyl ether; Dipropylene glycol diethers such as dipropylene glycol dimethyl ether; Dipropylene glycol such as dipropylene glycol monomethyl ether, triethylene glycol monoethyl ether, triylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether, tripropylene glycol monomethyl ether acetate, tetraethylene glycol di-n-butyl ether Acetates; As a heterogeneous compound, N-methylpyrrolidinone, N, N-dimethylimide azolidinone, formimide, N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N, N -Diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methylpropionamide, N, N-dimethylsulfoxide, sulfolane, 1, 3-propanesultone and the like.

바람직하게는 100℃ 이하의 끓는점을 갖는 용매를 120 ~ 160℃의 끓는점을 갖는 용매와 혼합하여 사용하는 것이 좋은데, 그 예로서, 에탄올, 2-프로판올, 세크부틸알콜로 이루어진 그룹과 프로필렌 글리콜 모노메틸에테르, 프로필렌 글리콜 모노메틸에테르 아세테이트, 메틸이소부틸 케톤, n-프로필 아세테이트로 이루어지는 그룹을 상호 혼합하는 것이다.Preferably, a solvent having a boiling point of 100 ° C. or lower is preferably mixed with a solvent having a boiling point of 120 ° C. to 160 ° C., for example, a group consisting of ethanol, 2-propanol, cetbutyl alcohol and propylene glycol monomethyl A group consisting of ether, propylene glycol monomethyl ether acetate, methyl isobutyl ketone and n-propyl acetate is mixed with each other.

전체적인 반응시간은, 1 ∼ 12시간 정도 소요된다.The overall reaction time takes about 1 to 12 hours.

또한 상기 가수분해 축 중합과 라디칼 중합은, 물, 촉매 및 열라디칼 개시제를 동시에 첨가함으로써 동시에 진행시킬 수도 있다.Moreover, the said hydrolysis axial polymerization and radical polymerization can also advance simultaneously by adding water, a catalyst, and a thermal radical initiator simultaneously.

또한, 가수분해 축 중합을 한 다음 라디칼 중합을 하거나, 또는 라디칼 중합 후에 가수분해 축 중합을 하는 방향으로 순서를 정하여도 좋다.In addition, the hydrolysis axial polymerization may be followed by radical polymerization, or after the radical polymerization, the order may be determined in the direction of hydrolysis axial polymerization.

상기 도포 조성물에는, 상기 필수 성분외에, 물, 임의의 유기용매, 유기 아미노 화합물이나 유기 암모늄 화합물, 티탄이나 주석 화합물 등의 반응 촉진 촉매, 임의의 계면 활성제, 거품제거제, 실레인 커플링제 등의 밀착 촉진제 등을 소정의 목적으로 가할 수도 있다.In addition to the said essential component, the said coating composition adhere | attaches water, arbitrary organic solvents, organic amino compound, organic ammonium compound, reaction promotion catalysts, such as a titanium and a tin compound, arbitrary surfactant, a defoaming agent, a silane coupling agent, etc. An accelerator or the like may also be added for a predetermined purpose.

또한 알콕시 실레인을 기지로 한 밀착 촉진제나 계면 활성제는, 실레인 화합물과 미리 공중합시켜 놓을 수도 있다.Moreover, the adhesion promoter and surfactant based on the alkoxy silane can also be copolymerized previously with a silane compound.

<실시예><Examples>

본 발명에 의한 도포 조성물을 제조하기 위한 제조예는 다음과 같다.The manufacture example for manufacturing the coating composition by this invention is as follows.

(1) 실록산의 제조(1) Preparation of the siloxane

비닐트리에톡시실란 190.3g, 메틸트리에톡시실란 178.3g, 테트라에톡시실란 208.3g, 부틸아세테이트 1리터를 약 2리터의 용량의 3구 플라스크에 넣고, 플라스크의 내용물을 격렬하게 교반하면서, 1몰/리터의 농도의 질산 2ml와 순수 180ml를 혼합한 용액을 플라스크에 설치한 적하 깔때기를 이용하여 30분 동안 적하했다.190.3 g of vinyltriethoxysilane, 178.3 g of methyltriethoxysilane, 208.3 g of tetraethoxysilane, and 1 liter of butyl acetate were placed in a three-necked flask having a capacity of about 2 liters, and the contents of the flask were vigorously stirred. The solution which mixed 2 ml of nitric acid of molar / liter concentration and 180 ml of pure waters was dripped for 30 minutes using the dropping funnel installed in the flask.

그 결과, 플라스크 내용물에서는 발열반응이 일어났고, 초기에는 백색의 탁한 용액이었지만 교반을 지속한 결과 무색 투명한 용액이 되었다.As a result, an exothermic reaction occurred in the flask contents, and initially a white cloudy solution, but stirring continued to give a colorless transparent solution.

(2) 도포 조성물의 제조(2) Preparation of Coating Composition

이후, 내용물의 온도가 50℃ 이하가 된 뒤, 환류냉각기를 설치하고, 상압하에 가열하여 3시간 환류시켰다.Thereafter, after the temperature of the contents became 50 ° C. or less, a reflux condenser was installed, and the mixture was heated under normal pressure to reflux for 3 hours.

이와 같이 얻어진 실록산에 대하여, 표 1의 비율로 첨가제를 혼합하고, 0℃에서 12시간 동안 숙성한 후, 0.1㎛의 PTFE 필터로 여과하여, 도포 조성물을 제조하였다. The siloxane thus obtained was mixed with additives in the ratio shown in Table 1, aged at 0 ° C. for 12 hours, and then filtered through a 0.1 μm PTFE filter to prepare a coating composition.

실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6 올리고머기준량Oligomer threshold 100100 100100 100100 100100 100100 100100 열라디칼개시제Thermal radical initiator #1#One #2#2 #3# 3 #1#One #2#2 -- 용매menstruum PGMEAPGMEA PGMEAPGMEA IPAIPA IPAIPA PGMEPGME PGMEAPGMEA 광선투과율Light transmittance >98%> 98% >98%> 98% >98%> 98% >98%> 98% >98%> 98% >98%> 98% 연필경도Pencil hardness 9H9H 9H9H 9H9H 9H9H 9H9H 2H2H 절연내압Insulation >3.0MV/cm> 3.0MV / cm >3.0MV/cm> 3.0MV / cm >3.0MV/cm> 3.0MV / cm >3.0MV/cm> 3.0MV / cm >3.0MV/cm> 3.0MV / cm 1.0MV/cm1.0 MV / cm

#1 : Bis(3-methylbenzoyl) peroxide# 1: Bis (3-methylbenzoyl) peroxide

#2 : Bis(2-t-butylperoxyisopropyl)benzene# 2: Bis (2-t-butylperoxyisopropyl) benzene

#3 : Bis(2-ethylhexyl) peroxydicarbonate# 3: Bis (2-ethylhexyl) peroxydicarbonate

위와 같이 제조된 도포액을 무알칼리유리에 회전수 1000rpm에서 도포한 결과, 500 nm의 투명한 박막이 형성되었다.The coating solution prepared as described above was applied to alkali-free glass at a rotational speed of 1000 rpm to form a 500 nm transparent thin film.

(3) 물성평가(3) Property evaluation

이와 같이 형성된 박막을 100℃의 온도로 15분간 프리베이킹하고, 뒤이어 250℃의 온도로 15분간 경화한 후, 가시광 투과율, 연필 경도 시험 및 절연 내압 시험을 실시하여 상기 표 1에 나타내었다. The thin film thus formed was prebaked at a temperature of 100 ° C. for 15 minutes, and then cured at a temperature of 250 ° C. for 15 minutes, followed by visible light transmittance, pencil hardness test, and dielectric breakdown voltage test.

이와 같이 제조된 조성물은 종래의 열라디칼 개시제를 사용하지 아니한 도포 조성물과는 달리 Si-O 결합 이외에도 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 결합이 생성되어 결합강도가 상대적으로 높게 되었으며, 이는 전술한 화학반응식으로부터도 알 수 있었다.Unlike the coating composition which does not use the conventional thermal radical initiator, the composition prepared as described above generates Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bonds in addition to Si-O bonds, so that the bond strength is relatively high. It was found to be high, which can be seen from the above chemical equation.

따라서, 표 1로부터 알 수 있는 바와 같이, 본 발명에 의하여 제조된 도포조성물은 종래의 열라디칼 개시제를 배제하여 제조된 도포 조성물에 비하여 4배 이상 높게 측정되었음을 알 수 있으며, 절연내압의 경우에도 3배 이상 높음을 알 수 있었다. 다만, 광선 투과율을 열라디칼 개시제에 의해 좌우되는 요소가 아닌 만큼 두 조성물간에 차이는 관찰되지 아니하였다.Therefore, as can be seen from Table 1, it can be seen that the coating composition prepared by the present invention was measured at least four times higher than the coating composition prepared by excluding the conventional thermal radical initiator, and even in the case of dielectric breakdown voltage 3 It was found to be twice as high. However, no difference was observed between the two compositions as the light transmittance was not an element that depends on the thermal radical initiator.

Claims (9)

일반식 CH3SiX3(X는 가수 분해성기)로 표현되는 메틸기 치환 3관능성 실레인, 일반식 C2H4SiX'3(X'은 가수 분해성기)로 표현되는 비닐기 치환 3관능성 실레인, 일반식 SiX''4(X''은 가수 분해성기)로 표현되는 4관능성 실레인을 촉매를 이용하여 중합해서 수득되는 올리고머와;Methyl group substituted trifunctional silane represented by general formula CH 3 SiX 3 (X is a hydrolyzable group), vinyl group substituted trifunctional represented by general formula C 2 H 4 SiX ' 3 (X' is a hydrolyzable group) An oligomer obtained by polymerization of a silane, a tetrafunctional silane represented by the general formula SiX '' 4 (X '' is a hydrolyzable group) with a catalyst; 열 라디칼 개시제; 및Thermal radical initiators; And 상기 올리고머와 열 라디칼 개시제를 용해하는 용매;A solvent for dissolving the oligomer and thermal radical initiator; 를 포함하여 구성되며, 이들 성분들이 중합하여 형성되는 것을 특징으로 하는 피막 형성용 도포 조성물.It is configured to include, these coating components for forming a coating, characterized in that the components are formed by polymerization. 제 1 항에 있어서,The method of claim 1, 상기 가수분해성기 (X, X', X'')은 1 ~ 4의 탄소수를 포함하는 물질임을 특징으로 하는 피막 형성용 도포 조성물.The hydrolyzable group (X, X ', X' ') is a coating composition for forming a film, characterized in that the material containing 1 to 4 carbon atoms. 제 2 항에 있어서,The method of claim 2, 상기 1 ~ 4의 탄소수를 포함하는 물질은 알콕시 그룹, 아세톡시, 이소시아네이트, 클로라이드, 옥심을 포함하는 것을 특징으로 하는 피막 형성용 조성물. The material containing the carbon number of 1 to 4 is a composition for forming a film, characterized in that it contains an alkoxy group, acetoxy, isocyanate, chloride, oxime. 제 1 항에 있어서,The method of claim 1, 상기 열라디칼 개시제는 실레인 총 중량대비 0.001 ~ 1중량 % 인 것을 특징으로 하는 피막 형성용 조성물. The thermal radical initiator is a film forming composition, characterized in that 0.001 ~ 1% by weight relative to the total weight of the silane. 제 1 항에 있어서, The method of claim 1, 상기 올리고머를 수득하기 위한 중합반응은 The polymerization reaction to obtain the oligomer 라디칼 중합, 가수 분해 중축합, 라디칼 중합과 가수 분해 중축합의 순차반응, 가수 분해 중축합과 라디칼 중합의 순차반응, 및 라디칼 중합과 가수분해 중축합의 동시반응 중에서 선택되는 어느 하나인 것을 특징으로 하는 피막 형성용 도포 조성물.The film is any one selected from radical polymerization, hydrolysis polycondensation, sequential reaction of radical polymerization and hydrolysis polycondensation, sequential reaction of hydrolysis polycondensation and radical polymerization, and simultaneous reaction of radical polymerization and hydrolysis polycondensation. Coating composition for formation. 제 1 항에 있어서, The method of claim 1, 상기 열 라디칼 개시제는 케톤퍼옥사이드류, 퍼옥시케탈류, 하이드로퍼옥사이드류, 디알칼퍼옥사이드류, 디아크릴퍼옥사이드류, 퍼옥시카보네이트류, 퍼옥시산에스테르류, 퍼옥시알킬화합물류를 포함하는 유기 퍼옥사이드인 것을 특징으로 하는 피막 형성용 도포 조성물. The thermal radical initiator includes ketone peroxides, peroxy ketals, hydroperoxides, dialkal peroxides, diacryl peroxides, peroxycarbonates, peroxyacid esters, and peroxyalkyl compounds. It is an organic peroxide, The coating composition for film formation characterized by the above-mentioned. 제 1 항에 있어서,The method of claim 1, 상기 피막 형성용 도포 조성물은 기판상에 도포되는 것을 특징으로 하는 피막형성용 도포 조성물.The coating composition for forming a film is a coating composition for forming a film, characterized in that the coating on the substrate. 제 1 항에 있어서,The method of claim 1, 상기 중합반응에 의해서 -(Si-O-)n(n은 20 이상의 자연수)을 주사슬로 하는 올리고머로부터 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 결합이 형성되는 것을 특징으로 하는 피막 형성용 도포 조성물.Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bonds are formed from the oligomer having-(Si-O-) n (n is a natural number of 20 or more) as a main chain by the polymerization reaction. Coating composition for film formation to say. 제 1 항의 조성물이 도포되는 것을 특징으로 하는 피막.The film of Claim 1 is apply | coated.
KR1020090109244A 2009-07-31 2009-11-12 Coating composition for forming film on the surface and film KR20110013148A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020100041559A KR101264904B1 (en) 2009-07-31 2010-05-03 Coating composition for forming film on the surface and film formed from the composition
PCT/KR2010/004510 WO2011013921A2 (en) 2009-07-31 2010-07-12 Composition for forming a coating and coating applied with the composition
JP2012520533A JP2012532981A (en) 2009-07-31 2010-07-12 Film-forming composition and film to which the composition is applied

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090070859 2009-07-31
KR20090070859 2009-07-31

Publications (1)

Publication Number Publication Date
KR20110013148A true KR20110013148A (en) 2011-02-09

Family

ID=43772965

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020090109244A KR20110013148A (en) 2009-07-31 2009-11-12 Coating composition for forming film on the surface and film
KR1020100041559A KR101264904B1 (en) 2009-07-31 2010-05-03 Coating composition for forming film on the surface and film formed from the composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020100041559A KR101264904B1 (en) 2009-07-31 2010-05-03 Coating composition for forming film on the surface and film formed from the composition

Country Status (2)

Country Link
JP (1) JP2012532981A (en)
KR (2) KR20110013148A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062391A2 (en) * 2009-11-20 2011-05-26 주식회사 에이피엠 Composition for an anti-reflection film having improved mechanical properties
KR101406680B1 (en) * 2013-12-19 2014-06-12 (주)에이알앤씨 Asphalt tack-coating binder composition with adhesion promotor and preparation & spray method thereof
KR20190081901A (en) * 2017-12-29 2019-07-09 에이케이켐텍 주식회사 Organic-inorganic hybrid coating material and process for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130069052A (en) * 2011-12-16 2013-06-26 삼성정밀화학 주식회사 Siloxane-based crosslinkable composition for forming an insulating layer through low temperature curing
US9153357B1 (en) * 2014-03-27 2015-10-06 Rohm And Haas Electronic Materials Llc Adhesion promoter
KR101597551B1 (en) * 2014-09-30 2016-02-25 한국과학기술연구원 PREPARATION METHOD OF MATERIAL FOR FORMATION OF SiO2 THIN FILM AND FORMING METHOD OF SiO2 THIN FILM USING THE SAME
JP2020084105A (en) * 2018-11-29 2020-06-04 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Acrylic polymerized polysiloxane, composition comprising the same, and cured film produced using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423651B1 (en) 1993-12-27 2002-07-23 Kawasaki Steel Corporation Insulating film of semiconductor device and coating solution for forming insulating film and method of manufacturing insulating film
US6140445A (en) * 1998-04-17 2000-10-31 Crompton Corporation Silane functional oligomer
JP2005133040A (en) * 2003-10-31 2005-05-26 Jsr Corp Film-forming composition, silica-based film, method for forming the same and laminated film
JP4434922B2 (en) * 2003-12-19 2010-03-17 Jsr株式会社 Laminated body and method for forming the same, insulating film, and semiconductor device
DE102004044392A1 (en) * 2004-09-14 2006-03-30 Wacker Chemie Ag Silicone topcoat with improved dirt repellence and improved adhesiveness
JP5764863B2 (en) * 2005-10-28 2015-08-19 東レ株式会社 Solid-state image sensor
JP2010112966A (en) * 2007-03-08 2010-05-20 Nissan Chem Ind Ltd Coating solution for film formation, method for production of the coating solution, and method for production of semiconductor device
JP2009160826A (en) * 2008-01-08 2009-07-23 Jsr Corp Laminate, its manufacturing method and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062391A2 (en) * 2009-11-20 2011-05-26 주식회사 에이피엠 Composition for an anti-reflection film having improved mechanical properties
WO2011062391A3 (en) * 2009-11-20 2011-11-03 주식회사 에이피엠 Composition for an anti-reflection film having improved mechanical properties
KR101406680B1 (en) * 2013-12-19 2014-06-12 (주)에이알앤씨 Asphalt tack-coating binder composition with adhesion promotor and preparation & spray method thereof
KR20190081901A (en) * 2017-12-29 2019-07-09 에이케이켐텍 주식회사 Organic-inorganic hybrid coating material and process for manufacturing the same

Also Published As

Publication number Publication date
KR101264904B1 (en) 2013-05-15
JP2012532981A (en) 2012-12-20
KR20110013202A (en) 2011-02-09

Similar Documents

Publication Publication Date Title
KR101264904B1 (en) Coating composition for forming film on the surface and film formed from the composition
JP5263171B2 (en) Polysiloxane, method for producing the same, and method for producing a cured product
JP5570622B2 (en) Curable composition for transfer material and method for forming fine pattern using the composition
KR102088630B1 (en) Composite of silicon oxide nanoparticles and silsesquioxane polymer, method for producing same, and composite material produced using composite thereof
JP2018534168A (en) Laminated body and method for producing the same
JP2010535915A (en) Process for controlled hydrolysis and condensation of epoxy functional organosilanes and cocondensation of the epoxy functional organosilanes with other organofunctional alkoxysilanes
JP7207845B2 (en) Silsesquioxane composite polymer and method for producing the same
CN108463508B (en) Condensation-reactive polysiloxane composition and cured product
CN1246362C (en) Process for preparing organic silicate polymer
JP6021605B2 (en) Cage type silsesquioxane compound, curable resin composition and resin cured product using the same
TW200932791A (en) Siloxane-based resin composition
KR20150097783A (en) Composite of metal oxide nanoparticles and silsesquioxane polymer, method for producing same, and composite material produced using composite thereof
TWI709595B (en) Manufacturing method of polysiloxane polymer
US9018275B2 (en) Photo-curable transparent resin composition
TW201546125A (en) Silsesquioxane composite polymer and method for manufacturing thereof
WO2019126105A1 (en) Crack-resistant silicon-based planarizing compositions, methods and films
JP2016060816A (en) Coating film forming composition and method for producing the same, and coating film
EP3674374A1 (en) Coating resin composition and coating film comprising cured article thereof as coating layer
TWI498381B (en) Silicone resin composition and optical material
KR20170040470A (en) Curing composition for siloxane polymer and composition for transparent film comprising same
CN112996849A (en) Polysiloxane composition
KR101133695B1 (en) Coating Composition for antireflection with advanced mechanical property
WO2011013921A2 (en) Composition for forming a coating and coating applied with the composition
TW201726814A (en) Silicone resin composition and sealing material for semiconductor light emitting element
TWI468444B (en) An organopolysiloxane compound containing a? -keto ester group

Legal Events

Date Code Title Description
A201 Request for examination