KR20110011276A - Steam reforming catalyst and hydrogen production apparatus using the same - Google Patents
Steam reforming catalyst and hydrogen production apparatus using the same Download PDFInfo
- Publication number
- KR20110011276A KR20110011276A KR1020090068840A KR20090068840A KR20110011276A KR 20110011276 A KR20110011276 A KR 20110011276A KR 1020090068840 A KR1020090068840 A KR 1020090068840A KR 20090068840 A KR20090068840 A KR 20090068840A KR 20110011276 A KR20110011276 A KR 20110011276A
- Authority
- KR
- South Korea
- Prior art keywords
- catalyst
- steam reforming
- weight
- parts
- earth element
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 64
- 238000000629 steam reforming Methods 0.000 title claims abstract description 32
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 20
- 239000001257 hydrogen Substances 0.000 title claims abstract description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000011148 porous material Substances 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims abstract description 12
- 238000002407 reforming Methods 0.000 claims abstract description 12
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 25
- 150000002430 hydrocarbons Chemical class 0.000 claims description 19
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052706 scandium Inorganic materials 0.000 claims description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 239000002994 raw material Substances 0.000 abstract description 15
- 239000000446 fuel Substances 0.000 abstract description 14
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 8
- 230000006872 improvement Effects 0.000 abstract description 3
- 230000007774 longterm Effects 0.000 abstract description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000006477 desulfuration reaction Methods 0.000 description 8
- 230000023556 desulfurization Effects 0.000 description 8
- 230000000670 limiting effect Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 6
- -1 or the like Substances 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 150000004729 acetoacetic acid derivatives Chemical class 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 150000003841 chloride salts Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- NDJKXXJCMXVBJW-UHFFFAOYSA-N heptadecane Chemical compound CCCCCCCCCCCCCCCCC NDJKXXJCMXVBJW-UHFFFAOYSA-N 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- CBFCDTFDPHXCNY-UHFFFAOYSA-N icosane Chemical compound CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- LQERIDTXQFOHKA-UHFFFAOYSA-N nonadecane Chemical compound CCCCCCCCCCCCCCCCCCC LQERIDTXQFOHKA-UHFFFAOYSA-N 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- YCOZIPAWZNQLMR-UHFFFAOYSA-N pentadecane Chemical compound CCCCCCCCCCCCCCC YCOZIPAWZNQLMR-UHFFFAOYSA-N 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical group O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- 229940038384 octadecane Drugs 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/612—Surface area less than 10 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/633—Pore volume less than 0.5 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/651—50-500 nm
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/40—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
본 발명은 공경(pore diameter) 50nm 이상의 세공 용적이 0.3 내지 0.6ml/g이고, BET 비표면적이 3 내지 30 m2/g이며, 크러쉬 강도(Crush strength)가 20 내지 25kgf인 α알루미나에, α 알루미나당 2 내지 25중량부의 희토류 원소 산화물과 0.1 내지 15중량부의 알칼리 토류 원소 산화물을 담지시켜 수득되는 담체에, 활성금속으로서 루테늄을 담체에 대해 0.3 내지 5중량부 담지시킨 것을 포함하는 수증기 개질용 촉매에 관한 것이다.The present invention relates to α-alumina having a pore volume of 50 nm or more of pore diameter of 0.3 to 0.6 ml / g, a BET specific surface area of 3 to 30 m 2 / g, and a crush strength of 20 to 25 kgf. A catalyst for steam reforming comprising carrying 0.3 to 5 parts by weight of ruthenium as an active metal on a carrier obtained by supporting 2 to 25 parts by weight of rare earth element oxides and 0.1 to 15 parts by weight of alkaline earth element oxides per alumina. It is about.
본 발명의 수증기 개질용 촉매를 이용하여 수증기 개질을 수행함으로써, 장기간의 개질성능 및 기계적 강도 향상을 달성할 수 있고, 이를 통해 수소 및 일산화탄소를 포함하는 혼합 가스를 장기간 안정하게 제조할 수 있을 뿐만 아니라 이를 연료 전지용 연료 또는 그 원료로서 사용할 수 있다.By performing steam reforming using the steam reforming catalyst of the present invention, it is possible to achieve long-term reforming performance and mechanical strength improvement, and thereby to stably produce a mixed gas containing hydrogen and carbon monoxide for a long time. This can be used as fuel for fuel cells or raw materials thereof.
Description
본 발명은 수증기 개질용 촉매 및 이를 이용한 수소 제조장치에 관한 것이다.The present invention relates to a catalyst for steam reforming and a hydrogen production apparatus using the same.
수소 제조 과정에서 가장 중요한 위치를 차지하는 것이 탄화수소 화합물류와 수증기를 반응시켜, 수소, 일산화탄소, 이산화탄소, 메탄 등을 수득하는, 이른바 탄화수소 화합물류의 수증기 개질 기술이다. 수증기 개질법이 광범하게 이용되고 있는 이유는 부분 산화법 등에 비해 설비가 저가이기 때문이다.Occupying the most important position in the hydrogen production process is a so-called steam reforming technique of hydrocarbon compounds, in which hydrocarbon compounds and steam are reacted to obtain hydrogen, carbon monoxide, carbon dioxide, methane and the like. The reason why steam reforming is widely used is that equipment is inexpensive compared to partial oxidation.
종래의 수증기 개질용 촉매는 일본특개 평4-363140호에 개시된 바와 같이 니켈계가 대부분이다. 그러나 이들 촉매는 탄소 석출을 일으키기 쉽고, 활성이 단시간에 저하한다는 결점을 갖고 있다. 이 때문에 비교적 고압(2MPa 이상) 및 고 수증기/탄소비(3.0 이상)에서 운전되는 일이 많지만, 연료 전지 시스템의 경우, 장치의 취급 용이성 면에서 반응 압력은 낮은 편이 바람직하고, 발전 효율 면에서 수증기/ 탄소 비는 낮은 편이 바람직하다.Conventional steam reforming catalysts are mostly nickel-based, as disclosed in Japanese Patent Laid-Open No. Hei 4-363140. However, these catalysts are prone to carbon precipitation, and have the disadvantage that activity decreases in a short time. For this reason, it is often operated at relatively high pressure (2 MPa or more) and high water vapor / carbon ratio (3.0 or more). However, in the case of fuel cell systems, the reaction pressure is preferably lower in terms of ease of handling of the device, and in terms of power generation efficiency, steam is preferable. It is preferable that the / carbon ratio is low.
또한, 연료 전지의 원료 탄화수소로는 에너지 밀도, 경제성, 취급 용이성의 측면에서 등유가 바람직하지만, 상기 니켈계 촉매에서 탄소 석출이 일어나기 용이하기 때문에 원료 탄화수소는 천연 가스 유래의 나프타 정도로 제한되고 있다.In addition, kerosene is preferable as a raw material hydrocarbon of a fuel cell from the viewpoint of energy density, economical efficiency, and ease of handling. However, since the precipitation of carbon easily occurs in the nickel-based catalyst, the raw material hydrocarbon is limited to naphtha derived from natural gas.
또한, 촉매 담체로서, 일반적으로 γ알루미나가 이용되고 있지만, 기계적 강도가 그다지 강하지 않기 때문에 열부하가 큰 연료 전지의 DSS(Daily Start and Shutdown) 운전 시에 촉매가 분화(粉化)하고, 장치의 차압이 상승하는 등의 문제가 생기고 있다.In addition, γ-alumina is generally used as a catalyst carrier. However, since the mechanical strength is not so strong, the catalyst is differentiated during DSS (Daily Start and Shutdown) operation of a fuel cell having a large heat load, and the pressure difference of the apparatus is increased. There is a problem such as rising.
한편, 기계적 강도가 큰 대표적인 촉매 담체로는 일본특개 평4-59048호에 개시된 바와 같이 α 알루미나가 있지만, 종래의 α 알루미나를 이용한 수증기 개질용 촉매에서는 원료 탄화수소는 나프타 정도이고, 탄소 석출 억제 효과는 불충분했다.On the other hand, representative catalyst carriers having high mechanical strength include α-alumina as disclosed in Japanese Patent Application Laid-Open No. 4-59048. However, in the conventional steam reforming catalyst using α-alumina, the raw material hydrocarbon is about naphtha, and the effect of inhibiting carbon precipitation is Insufficient
본 발명은 저압, 저 수증기/탄소 비에서 탄소 석출이 적고, 유효 수명이 길며 기계적 강도가 강한 수증기 개질용 촉매를 제공하기 위하여 크러쉬 강도(Crush strength)를 증가시킨 알루니마를 담체로 이용한 개질촉매를 제조하는 것에 해결하고자 하는 과제가 있다.The present invention provides a reforming catalyst using alumina having increased crush strength as a carrier to provide a catalyst for reforming carbon at low pressure, low steam / carbon ratio, and having a long service life and strong mechanical strength. There is a problem to be solved in manufacturing.
본 발명은 전술한 문제점을 해결하기 위해 도출된 것으로서, The present invention is derived to solve the above problems,
공경(pore diameter) 50nm 이상의 세공 용적이 0.3 내지 0.6ml/g이고, BET 비표면적(surface area)이 3 내지 30 m2/g이며, 크러쉬 강도(Crush strength)가 20 내지 25kgf인 α알루미나에, α 알루미나당 2 내지 25중량부의 희토류 원소 산화물과 0.1 내지 15중량부의 알칼리 토류 원소 산화물을 담지시켜 수득되는 담체에, 활성금속으로서 루테늄을 담체에 대해 0.3 내지 5중량부 담지시킨 것을 포함하는 수증기 개질용 촉매를 제공하는 것에 과제 해결 수단이 있다.To α-alumina having a pore volume of at least 50 nm of pore diameter of 0.3 to 0.6 ml / g, BET surface area of 3 to 30 m 2 / g, and crush strength of 20 to 25 kgf, For reforming steam containing 0.3 to 5 parts by weight of ruthenium as an active metal on a carrier obtained by supporting 2 to 25 parts by weight of rare earth element oxides and 0.1 to 15 parts by weight of alkaline earth element oxides per α alumina There is a problem solving means in providing a catalyst.
특히, 본 발명의 발명자들은 탄화수소의 수증기 개질 반응에서 탄소질 석출 억제 및 기계적 강도 향상을 달성할 수 있는 방법에 대해서 예의 연구한 결과, 특정 강도를 지닌 알루미나를 담체로 이용한 수증기 개질용 촉매를 제조하여 사용함으로써, 양자가 달성되는 것을 발견하여 본 발명을 완성하게 된 것이다.In particular, the inventors of the present invention intensively studied how to achieve carbonaceous precipitation suppression and mechanical strength improvement in the steam reforming reaction of hydrocarbons, to prepare a catalyst for steam reforming using alumina having a specific strength as a carrier By using it, the inventors have found that both are achieved, thus completing the present invention.
또한, 본 발명은 상기 기재한 수증기 개질용 촉매를 이용하여, 수증기 개질 반응에 의해 탄화수소 화합물류로부터 수소를 주성분으로 포함하는 개질 가스를 수득하는 것을 특징으로 하는 수소 제조 장치를 제공하는 것에 과제 해결 수단이 있다. In addition, the present invention provides a hydrogen producing apparatus comprising using a catalyst for steam reforming described above to obtain a reforming gas containing hydrogen as a main component from hydrocarbon compounds by steam reforming reaction. There is this.
본 발명의 수증기 개질용 촉매를 이용하여 수증기 개질을 수행함으로써, 장기간의 개질성능 및 기계적 강도 향상을 달성할 수 있고, 이를 통해 수소 및 일산화탄소를 포함하는 혼합 가스를 장기간 안정하게 제조할 수 있을 뿐만 아니라 이를 연료 전지용 연료 또는 그 원료로서 사용할 수 있다. By performing steam reforming using the steam reforming catalyst of the present invention, it is possible to achieve long-term reforming performance and mechanical strength improvement, and thereby to stably produce a mixed gas containing hydrogen and carbon monoxide for a long time. This can be used as fuel for fuel cells or raw materials thereof.
한 가지 관점에서, 본 발명은 공경(pore diameter) 50nm 이상의 세공 용적이 0.3 내지 0.6ml/g이고, BET 비표면적(surface area)이 3 내지 30 m2/g이며, 크러쉬 강도(Crush strength)가 20 내지 25kgf인 α알루미나에, α 알루미나당 2 내지 25중량부의 희토류 원소 산화물과 0.1 내지 15중량부의 알칼리 토류 원소 산화물을 담지시켜 수득되는 담체에, 활성금속으로서 루테늄을 담체에 대해 0.3 내지 5중량부 담지시킨 것을 포함하는 수증기 개질용 촉매를 제공한다.In one aspect, the present invention has a pore volume of 0.3 nm to 0.6 ml / g with a pore diameter of 50 nm or more, a BET surface area of 3 to 30 m 2 / g, and a crush strength. 0.3 to 5 parts by weight of ruthenium as an active metal on a carrier obtained by supporting 2 to 25 parts by weight of rare earth element oxides and 0.1 to 15 parts by weight of alkaline earth element oxides in α alumina of 20 to 25 kgf. Provided is a catalyst for steam reforming comprising supported.
다른 관점에서, 본 발명은 수증기 개질용 촉매를 이용하여 수증기 개질 반응 에 의해 탄화수소화합물류로부터 수소를 주성분으로 포함하는 개질 가스를 수득하는 것을 특징으로 하는 수소 제조 장치를 제공한다.In another aspect, the present invention provides a hydrogen production apparatus characterized by obtaining a reforming gas containing hydrogen as a main component from hydrocarbon compounds by a steam reforming reaction using a steam reforming catalyst.
본 발명에 따른 촉매 담체 성분으로는 공경(pore diameter) 50nm 이상의 세공을 가진 α 알루미나가 이용된다. 공경 50nm 이상의 세공 용적은 0.3 내지 0.6ml/g이다. 세공 용적이 0.3ml/g보다 적은 경우에는 촉매 활성이 불충분해져 바람직하지 않다. 한편, 세공 용적이 0.6ml/g보다 큰 경우에는 촉매 강도가 불충분해져 바람직하지 않다.As the catalyst carrier component according to the present invention, α alumina having a pore diameter of 50 nm or more is used. The pore volume of 50 nm or more in pore size is 0.3-0.6 ml / g. If the pore volume is less than 0.3 ml / g, the catalytic activity is insufficient, which is not preferable. On the other hand, when the pore volume is larger than 0.6 ml / g, the catalyst strength is insufficient, which is not preferable.
또한, 상기 α 알루미나의 BET 비표면적은 3 내지 30㎡/g인 것이 바람직하다. BET 비표면적이 3㎡/g보다 작은 경우에는 촉매 활성이 불충분해져 바람직하지 않다. BET 비표면적이 30㎡/g보다 큰 경우에는 촉매 강도가 불충분해져 바람직하지 않다.Moreover, it is preferable that the BET specific surface area of the said alumina is 3-30 m <2> / g. If the BET specific surface area is smaller than 3 m 2 / g, the catalytic activity is insufficient, which is not preferable. If the BET specific surface area is larger than 30 m 2 / g, the catalyst strength is insufficient, which is not preferable.
본 발명에 따른 희토류 원소로는 스칸듐, 이트륨, 란탄 및 세륨 중에서 선택되는 1종 또는 2종 이상의 희토류 원소를 이용하는 것이 바람직하고, 란탄 및 세륨이 더욱 바람직하다.As the rare earth element according to the present invention, it is preferable to use one or two or more rare earth elements selected from scandium, yttrium, lanthanum and cerium, and more preferably lanthanum and cerium.
상기 촉매 담체 중에서 희토류 원소의 함유량은 희토류 원소 산화물로서, α 알루미나에 대해 외율(外率)(α 알루미나 중량 기준)로, 2 내지 25중량부, 바람직하게는 5 내지 20중량부, 더욱 바람직하게는 10 내지 15중량부인 것이 좋다. 희토류 원소 산화물의 함유량이 25중량부 이상인 경우, 응집이 많아져 표면으로 나오는 금속의 비율이 극도로 감소하기 때문에 바람직하지 않고, 2중량부 보다 적은 경우에는 희토류 원소의 탄소석출 억제 효과가 불충분해져 바람직하지 않다.The rare earth element content in the catalyst carrier is a rare earth element oxide, and is 2 to 25 parts by weight, preferably 5 to 20 parts by weight, more preferably, based on the external alumina (α alumina weight) relative to α alumina. It is good that it is 10-15 weight part. When the content of the rare earth element oxide is 25 parts by weight or more, it is not preferable because the aggregation increases and the ratio of the metal to the surface is extremely reduced, and when it is less than 2 parts by weight, the effect of inhibiting carbon precipitation of the rare earth elements is insufficient. Not.
본 발명에 따른 알칼리 토류 원소로서는 마그네슘, 칼슘, 스트론튬 및 바륨 중에서 선택되는 1종 또는 2종 이상의 알칼리 토류금속을 이용하는 것이 바람직하고, 마그네슘 및 스트론튬이 더욱 바람직하다.As the alkaline earth element according to the present invention, it is preferable to use one or two or more alkaline earth metals selected from magnesium, calcium, strontium and barium, and magnesium and strontium are more preferable.
본 발명에 따른 촉매 담체 중에 알칼리 토류 원소의 함유량은 알칼리 토류 원소 산화물로서, α알루미나에 대해 외율(α 알루미나 중량 기준)로, 0.1 내지 15중량부, 바람직하게는 0.5 내지 12중량부, 더욱 바람직하게는 1 내지 10중량부이다. 알칼리 토류 원소 산화물의 함유량이 15중량부 이상인 경우에는 응집이 많아져 표면으로 나온 활성 금속의 비율이 극도로 감소하기 때문에 바람직하지 않고, 0.1중량부 보다 적은 경우에는 알칼리 토류 원소의 탄소 석출 억제 효과 및 활성 향상 효과가 불충분해져 바람직하지 않다.The content of the alkaline earth element in the catalyst carrier according to the present invention is an alkaline earth element oxide, and is 0.1 to 15 parts by weight, preferably 0.5 to 12 parts by weight, more preferably, based on the external alumina (α alumina weight) relative to the alumina. Is 1 to 10 parts by weight. If the content of the alkaline earth element oxide is 15 parts by weight or more, it is not preferable because the aggregation increases and the proportion of the active metal on the surface is extremely reduced. If the content is less than 0.1 part by weight, the effect of inhibiting carbon precipitation of the alkaline earth element and The activity improving effect is insufficient, which is undesirable.
본 발명의 촉매 중에서 루테늄 함유량은 α 알루미나에 희토류 원소 산화물과 알칼리 토류 원소 산화물을 담지시켜 수득되는 담체에 대해 외율(담체 중량 기준)로, 루테늄 원자로서 0.3 내지 5중량부, 바람직하게는 1 내지 4중량부, 더욱 바람직하게는 2 내지 3중량부이다. 상기 루테늄의 함유량이 5중량부 이상인 경우에는, 활성 금속의 응집이 많아져 표면으로 나온 활성 금속의 비율이 극도로 감소하기 때문에 바람직하지 않고, 한편 0.3중량부 보다 적은 경우에는 충분한 활성을 나타낼 수 없기 때문에 다량의 담지 촉매가 필요해져, 반응기를 필요 이상으로 크게 할 필요가 있는 등의 문제가 생긴다.The ruthenium content in the catalyst of the present invention is 0.3 to 5 parts by weight, preferably 1 to 4, as ruthenium atoms, in terms of the outer ratio (carrier weight) relative to the carrier obtained by supporting rare earth element oxide and alkaline earth element oxide on α alumina. Parts by weight, more preferably 2 to 3 parts by weight. When the content of ruthenium is 5 parts by weight or more, it is not preferable because the aggregation of the active metal increases and the proportion of the active metal that has emerged to the surface is extremely reduced, while when it is less than 0.3 parts by weight, sufficient activity cannot be exhibited. As a result, a large amount of supported catalyst is required, resulting in a problem that the reactor needs to be made larger than necessary.
본 발명의 수증기 개질용 촉매의 촉매 강도는 목실(木室)식 측정법에 의한 촉매 크러쉬 강도(Crush strength)가 촉매 입자당 20 내지 25kgf인 것이 바람직하 다. 촉매 압괴강도가 25kgf 보다 적은 경우에는 연료 전지의 운전 중에 촉매의 파열, 분화가 생기기 때문에 바람직하지 않다.The catalyst strength of the steam reforming catalyst of the present invention preferably has a catalyst crush strength of 20 to 25 kgf per catalyst particle by a wooden measurement method. If the catalyst crush strength is less than 25 kgf, it is not preferable because the catalyst ruptures and differentiates during operation of the fuel cell.
또한, 상기 희토류 원소 및 알칼리 토류 원소를 α 알루미나에 담지하는 방법에 관해서는 특별히 제한은 없고, 통상의 함침법, 기공 충진법(pore fill)과 같은 공지의 방법을 채용할 수 있다. 통상, 금속염 또는 착체로서 물, 에탄올 또는 아세톤 등의 용매에 용해시켜, 담체에 함침시킨다. 담지되는 금속염 또는 금속 착체는 염화물, 질산염, 황산염, 아세트산염, 아세토아세트산염 등이 바람직하게 이용된다.In addition, there is no restriction | limiting in particular about the method of supporting the said rare earth element and alkaline earth element in alpha-alumina, A well-known method, such as a normal impregnation method and a pore fill method, can be employ | adopted. Usually, it is dissolved in a solvent such as water, ethanol or acetone as a metal salt or a complex and impregnated into a carrier. The supported metal salts or metal complexes are preferably chlorides, nitrates, sulfates, acetates, acetoacetates and the like.
담지 공정에 관해서도 특별한 제한은 없고, 동시 또는 순차적으로 함침시킬 수 있다.There is no restriction | limiting in particular also about a supporting process, It can be impregnated simultaneously or sequentially.
담지 후 건조에 의해 수분을 거의 제거하지만, 이 건조 공정에도 특별한 제한은 없고, 공기 하에 불활성 가스하에서 온도 100 내지 150℃ 등이 바람직하게 이용된다. 건조 공정 후, 희토류 원소 및 알칼리 토류 원소를 담지시킨 담체는 350 내지 1000℃의 온도에서 소성하는 것이 바람직하다. 350℃보다 낮은 경우에는 담체에 담지원소의 고정화가 불충분해져 바람직하지 않다. 또한, 1000℃보다 높은 경우에는 담지 원소의 응집이 발생하기 때문에 바람직하지 않다. 소성 분위기는 공기 중인 것이 바람직하고, 가스 유량에 대해서는 특별한 제한은 없다. 소성 시간은 2시간 이상이 바람직하다. 2시간보다 짧은 경우에는 담체에 담지 원소의 고정화가 불충분해져 바람직하지 않다.Although water is almost removed by drying after supporting, there is no particular limitation in this drying step, and a temperature of 100 to 150 ° C or the like is preferably used under inert gas under air. After the drying step, the carrier supporting the rare earth element and the alkaline earth element is preferably baked at a temperature of 350 to 1000 ° C. If it is lower than 350 DEG C, immobilization of the bile support in the carrier is insufficient, which is not preferable. Moreover, when it is higher than 1000 degreeC, since aggregation of a supporting element arises, it is not preferable. The firing atmosphere is preferably in air, and there is no particular limitation on the gas flow rate. The firing time is preferably 2 hours or more. If it is shorter than 2 hours, immobilization of the supported element on the carrier is insufficient, which is not preferable.
소성된 담체를 냉각한 후, 이어서 루테늄의 담지를 수행한다. 담지 방법에 관해서 특별히 제한은 없고, 통상의 함침법, 기공 충진법 등의 공지의 방법을 채용할 수 있다. 통상, 금속염 또는 착체로서, 물, 에탄올, 또는 아세톤 등의 용매에 용해시켜, 담체에 함침시킨다. 담지되는 금속염 또는 금속 착체는 염화물, 질산염, 황산염, 아세트산염, 아세토아세트산염 등이 바람직하게 이용된다. 담지 횟수에 관해서도 특별한 제한은 없고, 일회 또는 수회에 걸쳐 함침시킬 수 있다. 담지 후에, 건조에 의해 수분을 거의 제거하지만, 이 건조 공정에 대해서도 특별한 제한은 없고, 공기 하에 불활성 가스 하에서 온도 100 내지 150℃ 등이 바람직하게 이용된다.After cooling the calcined carrier, carrying out of ruthenium is then carried out. There is no restriction | limiting in particular about a supporting method, Well-known methods, such as a normal impregnation method and a pore filling method, can be employ | adopted. Usually, as a metal salt or a complex, it melt | dissolves in solvents, such as water, ethanol, or acetone, and impregnates a carrier. The supported metal salts or metal complexes are preferably chlorides, nitrates, sulfates, acetates, acetoacetates and the like. There is no restriction | limiting in particular also about the number of loading, and can be impregnated once or several times. After supporting, almost no moisture is removed by drying, but there is no particular limitation on this drying step, and a temperature of 100 to 150 ° C or the like is preferably used under inert gas under air.
이와 같이 수득된 담지 촉매는 필요에 따라 환원 처리 또는 금속 고정화 처리를 수행함으로써 활성화시킨다. 처리 방법에는 특별한 제한은 없고, 수소 유통 하에서 기상 환원 또는 액상 환원이 바람직하게 이용된다.The supported catalyst thus obtained is activated by performing a reduction treatment or a metal immobilization treatment as necessary. There is no particular limitation on the treatment method, and gas phase reduction or liquid phase reduction is preferably used under hydrogen flow.
본 발명의 수증기 개질용 촉매의 형태에 대해서는 특별히 제한은 없다.There is no restriction | limiting in particular about the form of the steam reforming catalyst of this invention.
예를 들어, 타정 성형하고 분쇄 후 적당한 범위의 입도로 정립한 촉매, 적당한 바인더(binder)를 첨가하여 압출 성형한 촉매, 분말상 촉매 등을 이용할 수 있다. For example, it is possible to use a catalyst formed by tableting, pulverizing and sintered to an appropriate range particle size, a catalyst extruded by adding a suitable binder, a powdered catalyst and the like.
또한, 타정 성형하고 분쇄 후 적당한 범위의 입도로 정립한 담체, 압출 성형한 담체, 분말 또는 구형, 고리상, 타블릿 상, 원통상, 박편 상과 같은 적당한 형으로 성형한 담체 등에 금속을 담지시킨 촉매 등을 이용할 수 있지만, 기계적 강도의 관점에서 구형 촉매가 바람직하다. In addition, the catalyst is supported by a metal, such as a carrier formed by tableting, crushing, and granulated in an appropriate range, an extruded carrier, a powder or a carrier molded into a suitable form such as spherical, ring, tablet, cylindrical or flake. Although etc. can be used, spherical catalyst is preferable from a viewpoint of mechanical strength.
또한, 촉매 자체를 모노리스식, 벌집상 등으로 성형한 촉매, 또는 적당한 소 재를 이용한 모노리스 또는 벌집상 등에 촉매를 코팅한 것 등을 이용할 수 있다.In addition, a catalyst obtained by molding the catalyst itself into a monolith type, a honeycomb phase, or the like, or a catalyst coated with a monolith or honeycomb phase using a suitable material, or the like can be used.
본 발명에 따른 수증기 개질 반응에 이용되는 반응기의 형태로는 유통식 고정상 반응기가 바람직하게 이용된다. 반응기의 형상에 대해서는 특별히 제한은 없고, 원통상, 평판상 등, 각각의 프로세스 목적에 따라 공지의 어떠한 형상을 취할 수 있다. 또한, 유동상 반응기를 이용하는 것도 가능하다.In the form of a reactor used for the steam reforming reaction according to the present invention, a flow-through fixed bed reactor is preferably used. There is no restriction | limiting in particular about the shape of a reactor, A well-known shape can be taken according to the objective of each process, such as cylindrical shape and flat plate shape. It is also possible to use fluidized bed reactors.
본 발명에서 수증기 개질 반응이란 탄화수소 화합물류를 촉매의 존재 하에 수증기와 반응시키고, 일산화탄소 및 수소를 포함하는 개질 가스로 변환하는 반응을 말한다. 수증기와 반응시킬 때, 산소 함유 가스를 동반하는 경우(자동 가열 개질 반응)도 포함한다.In the present invention, the steam reforming reaction refers to a reaction in which hydrocarbon compounds are reacted with steam in the presence of a catalyst and converted into a reforming gas containing carbon monoxide and hydrogen. In the case of reacting with water vapor, an oxygen-containing gas (automatic heating reforming reaction) is also included.
원료가 되는 탄화수소 화합물류는 탄소수 1 내지 40, 바람직하게는 탄소수 1 내지 30인 유기 화합물이다. 구체적으로, 포화 지방족 탄화수소, 불포화 지방족 탄화수소, 방향족 탄화수소 등이 있고, 포화 지방족 탄화수소, 불포화 지방족 탄화수소에 대해서는 쇄상, 환상에 상관없이 사용할 수 있다. 방향족 탄화수소에 대해서도 일환, 다환에 상관없이 사용할 수 있다. 이와 같은 탄화수소 화합물류는 치환기를 포함할 수도 있다. 치환기로는 쇄상, 환상 중 어떠한 것도 사용할 수 있고, 예컨대, 알킬 기, 사이클로알킬 기, 아릴 기, 알킬아릴 기 및 아르알킬 기 등이 있다. 또한, 이들 탄화수소 화합물류는 하이드록시 기, 알콕시 기, 하이드록시카르보닐 기, 알콕시카르보닐 기, 포름알데하이드 기 등의 헤테로 원자를 함유하는 치환기에 의해 치환되어 있어도 좋다.Hydrocarbon compounds used as a raw material are organic compounds with 1 to 40 carbon atoms, preferably 1 to 30 carbon atoms. Specifically, there are saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, aromatic hydrocarbons, and the like. The saturated aliphatic hydrocarbons and unsaturated aliphatic hydrocarbons can be used regardless of chain or cyclic. Also about aromatic hydrocarbon, it can use regardless of monocyclic or polycyclic. Such hydrocarbon compounds may contain a substituent. As the substituent, any of chain and cyclic can be used, and examples thereof include an alkyl group, a cycloalkyl group, an aryl group, an alkylaryl group and an aralkyl group. In addition, these hydrocarbon compounds may be substituted by substituents containing hetero atoms, such as a hydroxyl group, an alkoxy group, a hydroxycarbonyl group, an alkoxycarbonyl group, and a formaldehyde group.
본 발명에 사용할 수 있는 탄화수소 화합물류의 구체예로는 메탄, 에탄, 프 로판, 부탄, 펜탄, 헥산, 헵탄, 옥탄, 노난, 데칸, 도데칸, 트리데칸, 테트라데칸, 펜타데칸, 헥사데칸, 헵타데칸, 옥타데칸, 노나데칸, 에이코산 등의 포화 지방족 탄화수소, 에틸렌, 프로필렌, 부텐, 펜텐, 헥센 등의 불포화 지방족 탄화수소, 사이클로펜탄, 사이클로헥산 등의 환상 탄화수소, 벤젠, 톨루엔, 자일렌, 나프탈렌 등의 방향족 탄화수소를 예로 들 수 있다. 또한, 이들의 혼합물도 바람직하게 사용된다. 예컨대, 천연 가스, LPG, 나프타, 가솔린, 등유, 경유 등과 같이 공업적으로 저가에 입수할 수 있는 재료를 예로 들 수 있다. 또한, 헤테로원자를 함유하는 치환기를 보유하는 탄화수소 화합물류의 구체예로는 메탄올, 에탄올, 프로판올, 부탄올, 디메틸에테르, 페닐, 아니솔, 아세트알데하이드, 아세트산 등을 예로 들 수 있다.Specific examples of hydrocarbon compounds that can be used in the present invention include methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, Saturated aliphatic hydrocarbons such as heptadecane, octadecane, nonadecane, eicosane, unsaturated aliphatic hydrocarbons such as ethylene, propylene, butene, pentene, hexene, cyclic hydrocarbons such as cyclopentane, cyclohexane, benzene, toluene, xylene, naphthalene Aromatic hydrocarbons, such as these, are mentioned. In addition, mixtures thereof are also preferably used. For example, materials which can be industrially obtained at low cost, such as natural gas, LPG, naphtha, gasoline, kerosene and diesel, are exemplified. Specific examples of hydrocarbon compounds having a substituent containing a hetero atom include methanol, ethanol, propanol, butanol, dimethyl ether, phenyl, anisole, acetaldehyde, acetic acid and the like.
또한, 상기 원료에 수소, 물, 이산화탄소, 일산화탄소 등을 포함하는 원료도 사용할 수 있다. 예컨대, 원료의 전처리로서 수소화탈황을 실시하는 경우, 반응에 이용된 수소의 잔류분은 특별히 분리할 필요없이 그대로 사용할 수 있다.Moreover, the raw material which contains hydrogen, water, a carbon dioxide, carbon monoxide, etc. in the said raw material can also be used. For example, when hydrodesulfurization is carried out as a pretreatment of a raw material, the residual content of hydrogen used in the reaction can be used as it is without particular separation.
원료로서 사용되는 탄화수소 화합물에 포함되는 유황 농도가 너무 높은 경우에는 본 발명의 개질촉매가 불활성화하는 경우가 있기 때문에 그 농도는 유황 원자의 질량으로서, 바람직하게는 10질량ppb 이하이다. 이 때문에, 필요하면 미리 원료를 탈황하는 것도 바람직하게 수행될 수 있다.When the sulfur concentration contained in the hydrocarbon compound used as a raw material is too high, since the reforming catalyst of the present invention may be inactivated, the concentration is the mass of sulfur atoms, preferably 10 mass ppb or less. For this reason, if necessary, desulfurization of the raw material in advance can also be preferably performed.
탈황 공정에 공급되는 원료 중의 유황 농도에는 특별한 제한은 없고, 탈황 공정에서 상기 유황 농도로 전환될 수 있는 것이면 사용할 수 있다.There is no restriction | limiting in particular in the sulfur concentration in the raw material supplied to a desulfurization process, It can use if it can convert into the said sulfur concentration in a desulfurization process.
탈황 방법에도 특별한 제한은 없지만, 활성탄을 기본으로 한 상온 탈황제를 사용하며, 탈황 공정의 실시 방법에도 특별한 제한은 없고, 수증기 개질 반응기의 직전에 배치된 탈황 과정으로 실시해도 좋고, 독립된 탈황 과정에서 처리한 탄화수소를 이용해도 좋다.There is no particular limitation on the desulfurization method, however, a room temperature desulfurization agent based on activated carbon is used, and there is no particular limitation on the method of carrying out the desulfurization process, and the desulfurization process may be performed immediately before the steam reforming reactor, or may be treated in an independent desulfurization process. One hydrocarbon may be used.
본 발명의 촉매를 이용하는 수증기 개질 반응에서, 반응계에 도입되는 수증기의 양은 원료 탄화수소 화합물류에 포함된 탄소 원자의 몰 수에 대한 물 분자 몰 수의 비(수증기/탄소 비)로서 정의되는 값이, 바람직하게는 0.3 내지 10, 더욱 바람직하게는 0.5 내지 5, 더욱 바람직하게는 2 내지 3의 범위인 것이 바람직하다. 상기 값이 0.3 보다 작은 경우에는 촉매 상에 코크스가 석출되기 쉽고, 또 수소 분율을 상승시킬 수 없게 되고, 상기 값이 10보다 큰 경우에는 개질 반응은 진행하지만 수증기 발생 설비, 수증기 회수 설비의 비대화를 초래할 우려가 있다. 첨가 방법은 특별한 제한은 없지만, 반응 대역에 원료 탄화수소 화합물류와 동시에 도입해도 좋고, 반응기 대역의 다른 위치로부터 또는 몇 회로 분할하여 일부만 도입해도 좋다.In the steam reforming reaction using the catalyst of the present invention, the amount of steam introduced into the reaction system is a value defined as the ratio of the number of moles of water molecules to the number of moles of carbon atoms included in the raw hydrocarbon compounds (steam / carbon ratio), Preferably it is 0.3-10, More preferably, it is 0.5-5, More preferably, it is the range of 2-3. If the value is less than 0.3, coke is easily precipitated on the catalyst, and the hydrogen fraction cannot be increased. If the value is larger than 10, the reforming reaction proceeds, but the expansion of the steam generating equipment and the steam recovery equipment is prevented. It may cause. Although the addition method does not have a restriction | limiting in particular, You may introduce into a reaction zone at the same time as a raw material hydrocarbon compound, You may introduce only a part from other positions of a reactor zone or divide into several times.
본 발명의 촉매를 이용하는 수증기 개질 반응에서, 반응기에 도입되는 유통 원료의 공간 속도는 GHSV가 바람직하게는 10 내지 10,000h-1, 더욱 바람직하게는 50 내지 5,000h-1, 더욱 바람직하게는 100 내지 3,000h-1 범위이다. LHSV는 바람직하게는 0.05 내지 5.0h-1, 더욱 바람직하게는 0.1 내지 2.0h-1, 더욱 바람직하게는 0.2 내지 1.0h-1 범위이다.In the steam reforming reaction using the catalyst of the present invention, the spatial velocity distribution of a raw material to be introduced into the reactor, GHSV is preferably from 10 to 10,000h -1, more preferably from 50 to 5,000h -1, more preferably from 100 to 3,000 h -1 range. LHSV is preferably from 0.05 to 5.0h -1, more preferably between 0.1 and 2.0h -1, and more preferably from 0.2 to 1.0h -1 range.
반응 온도는 특별히 한정되지 않지만, 200 내지 1000℃ 범위가 바람직하고, 300 내지 900℃ 범위가 더욱 바람직하며, 400 내지 800℃ 범위가 더욱 바람직하다.Although reaction temperature is not specifically limited, 200-1000 degreeC range is preferable, 300-900 degreeC range is more preferable, 400-800 degreeC range is more preferable.
반응 압력에 대해서도 특별히 한정되는 것은 없고, 바람직하게는 대기압 내지 20MPa 범위, 더욱 바람직하게는 대기압 내지 5MPa 범위, 특히 바람직하게는 대기압 내지 1MPa 범위에서 실시되지만, 필요하면 대기압 이하에서 실시하는 것도 가능하다.The reaction pressure is not particularly limited, but is preferably in the range of atmospheric pressure to 20 MPa, more preferably in the range of atmospheric pressure to 5 MPa, particularly preferably in the range of atmospheric pressure to 1 MPa.
본 발명의 촉매를 이용하는 수증기 개질 반응에서 수득되는 일산화탄소와 수소를 포함하는 혼합 가스는 고체 산화물형 연료 전지와 같은 경우에는 그대로 연료 전지용 연료로서 이용할 수 있다. 또한, 인산형 연료 전지 또는 고체 고분자형 연료 전지와 같이 일산화탄소의 제거가 필요한 경우에는, 일산화탄소 제거 공정을 병용함으로써 연료 전지용 수소의 원료로서 바람직하게 사용될 수 있다.The mixed gas containing carbon monoxide and hydrogen obtained by the steam reforming reaction using the catalyst of the present invention can be used as a fuel for a fuel cell as it is in the case of a solid oxide fuel cell. In addition, when carbon monoxide removal is required, such as a phosphoric acid fuel cell or a solid polymer fuel cell, it can be used suitably as a raw material of hydrogen for fuel cells by using a carbon monoxide removal process together.
이하에서 실시예를 통하여 본 발명을 구체적으로 설명하기로 한다. 그러나 하기의 실시예는 오로지 본 발명을 구체적으로 설명하기 위한 것으로 이들 실시예에 의해 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are only for illustrating the present invention in detail and are not intended to limit the scope of the present invention by these examples.
<실시예><Examples>
(1) 세공 용적 0.4ml/g, 표면적 5㎡/g, 크러쉬 강도(Crush strength) 21kgf 인 α 알루미나를 촉매 담체 A로 한다.(1) α-alumina having a pore volume of 0.4 ml / g, surface area of 5 m 2 / g, and crush strength of 21 kgf is used as the catalyst carrier A.
(2) 질산세륨과 질산마그네슘을 촉매 담체 A에, 담지 산화세륨 양이 외율로 13중량부, 담지 산화마그네슘 양이 외율로 5중량%가 되는 양을 함침 담지시키고, 150℃에서 8시간 이상 건조 후, 800℃에서 8시간 공기 소성한다. 이것을 촉매 담체 B라 한다.(2) Cerium nitrate and magnesium nitrate were impregnated and supported on the catalyst carrier A, with the amount of supported cerium oxide being 13 parts by weight at an external rate, and the amount of the supported magnesium oxide being 5% by weight at an external rate, and dried at 150 ° C. for 8 hours or more. After that, air firing was carried out at 800 ° C. for 8 hours. This is called catalyst carrier B.
(3) 염화루테늄을 상기 촉매 담체 B에, 담지 루테늄 양이 외율로 3중량부가 되는 양을 함침 담지시키고, 120℃에서 12시간 이상 건조 후, 500℃에서 1시간 수소 환원한다. (3) Ruthenium chloride is impregnated and impregnated in the catalyst carrier B in an amount such that the amount of supported ruthenium is 3 parts by weight at an external rate, dried at 120 ° C for at least 12 hours, and hydrogen reduced at 500 ° C for 1 hour.
<비교예>Comparative Example
실시예 1과 동일한 방법으로 실시하되, 상기 (1)의 세공 용적 0.4ml/g, 표면적 5㎡/g, 크러쉬 강도(Crush strength) 21kgf 인 α 알루미나를 촉매 담체 대신 세공 용적 0.4ml/g, 표면적 2㎡/g, 크러쉬 강도(Crush strength) 18kgf 인 α 알루미나를 촉매 담체로 사용하였다.The same method as in Example 1 was carried out, except that α alumina having a pore volume of 0.4 ml / g, surface area of 5 m 2 / g, and crush strength of 21 kgf was used instead of the catalyst carrier, with pore volume of 0.4 ml / g, surface area. Α alumina with 2 m 2 / g and crush strength of 18 kgf was used as catalyst carrier.
<실험><Experiment>
상시 실시예 및 비교예에 따라 제조된 촉매의 개질촉매 평가 실험을 다음의 절차에 따라 진행하였다.Modified catalyst evaluation experiments of the catalysts prepared according to the Examples and Comparative Examples were carried out according to the following procedure.
- 활성물질 담지와 소성을 마친 수증기 개질촉매 12ml(size = 3mm)를 준비한다.-Prepare 12 ml of steam reforming catalyst (size = 3mm) after supporting active material and firing.
- 반응기 내부에 준비된 촉매를 위치시키고 하기 조건을 충족하도록 일정 수준의 유량을 흘려준다.Place the prepared catalyst inside the reactor and flow a certain level of flow to meet the following conditions.
Total flow = 1,029ml/min, SV = 5,145hr-1, S/C ratio = 2.5Total flow = 1,029ml / min, SV = 5,145hr -1 , S / C ratio = 2.5
=> H2O =0.59ml/min, CH4= 295ml/min=> H2O = 0.59ml / min, CH4 = 295ml / min
- 촉매층의 온도를 600~750℃로 조절하여 온도별 CH4 전환율을 측정하고, 운전온도에서 장시간 내구성 평가를 실시하였다.-CH 4 conversion by temperature was measured by adjusting the temperature of the catalyst layer to 600 ~ 750 ℃, and durability evaluation was performed for a long time at the operating temperature.
- 개질 후 가스 분석은 가스크로마토그래프(GC/TCD, Model DS6200, Donam Instrument)를 이용하여 측정하였으며, 분석가스 항목은 H2, N2, CH4, CO, CO2이다.-The gas analysis after reforming was measured using gas chromatograph (GC / TCD, Model DS6200, Donam Instrument), and the analysis gas items are H 2 , N 2 , CH 4 , CO, CO 2 .
그 결과를 도 1로 나타냈다.The result is shown in FIG.
이상에서 설명한 바와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모두 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모두 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.As described above, those skilled in the art will understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. Therefore, it should be understood that the embodiments described above are all illustrative and not restrictive. The scope of the present invention should be construed as being included in the scope of the present invention all changes or modifications derived from the meaning and scope of the claims to be described later rather than the detailed description and equivalent concepts thereof.
도 1은 본 발명에 따른 개질촉매 평가 결과를 나타내는 도이다.1 is a view showing a reforming catalyst evaluation results according to the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090068840A KR20110011276A (en) | 2009-07-28 | 2009-07-28 | Steam reforming catalyst and hydrogen production apparatus using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090068840A KR20110011276A (en) | 2009-07-28 | 2009-07-28 | Steam reforming catalyst and hydrogen production apparatus using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20110011276A true KR20110011276A (en) | 2011-02-08 |
Family
ID=43771517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090068840A KR20110011276A (en) | 2009-07-28 | 2009-07-28 | Steam reforming catalyst and hydrogen production apparatus using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20110011276A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102935372A (en) * | 2012-11-13 | 2013-02-20 | 上海应用技术学院 | Nickel-rare earth-aluminum oxide catalysis composite film, preparation method and application thereof |
-
2009
- 2009-07-28 KR KR1020090068840A patent/KR20110011276A/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102935372A (en) * | 2012-11-13 | 2013-02-20 | 上海应用技术学院 | Nickel-rare earth-aluminum oxide catalysis composite film, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101403733B1 (en) | Catalyst for steam reformation, hydrogen production apparatus, and fuel cell system | |
Bepari et al. | Steam reforming of methanol, ethanol and glycerol over nickel-based catalysts-A review | |
CN103170335A (en) | Effective carbon dioxide conversion catalyst and preparing method thereof | |
JP5378148B2 (en) | Reforming catalyst, reformer, and hydrogen production device | |
KR101444600B1 (en) | Preparation method of porous nickel-based spinel catalysts with high activity and sulfur resistance in hydrocarbon autothermal reforming, the catalyst prepared by the method, and operation method using the catalyst | |
JP5788348B2 (en) | Reforming catalyst for hydrogen production, hydrogen production apparatus and fuel cell system using the catalyst | |
JP4783240B2 (en) | Steam reforming catalyst, hydrogen production apparatus and fuel cell system | |
JP2011207697A (en) | Hydrogen production method, hydrogen producing device, and fuel cell system | |
JP5603120B2 (en) | Steam reforming catalyst, hydrogen production apparatus and fuel cell system | |
KR20110011276A (en) | Steam reforming catalyst and hydrogen production apparatus using the same | |
JP4465478B2 (en) | Catalyst for hydrogen production | |
JP5759922B2 (en) | Method for producing hydrogen | |
KR101392996B1 (en) | Preparation of Hydrogen Gas by Steam Reforming Reaction of Ethanol with Gel Catalyst with Medium Porous Nickel-Alumina-Zirconia Control | |
JP5462685B2 (en) | Steam reforming catalyst, hydrogen production apparatus and fuel cell system | |
KR102186052B1 (en) | Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Acetone Using the Same | |
WO2017094030A2 (en) | Active support metal catalyst and its method of preparation thereof | |
JP4860226B2 (en) | Partial oxidation reforming catalyst and partial oxidation reforming method | |
JP5788352B2 (en) | Reforming catalyst for hydrogen production, hydrogen production apparatus and fuel cell system using the catalyst | |
JP5351089B2 (en) | Steam reforming catalyst, hydrogen production apparatus and fuel cell system | |
JP5409484B2 (en) | Steam reforming catalyst, hydrogen production apparatus and fuel cell system | |
WO2005097317A1 (en) | Catalyst for steam reforming, method for steam reforming, apparatus for producing hydrogen and fuel cell system | |
JP2004057963A (en) | Hydrocarbon reforming catalyst, hydrocarbon cracking device, and fuel cell reformer | |
JP4799312B2 (en) | Synthesis gas production catalyst | |
JP2004275833A (en) | Catalyst for aqueous gas shift reaction, hydrogen production apparatus, and fuel cell system | |
BETCHAKU | Development of Ni-based Catalysts for Fuel Reforming with Exhaust Gas of Gasoline Engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20090728 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20110330 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20110623 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20110330 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |