KR20110006968A - Novel titanium alkoxide compounds and process for preparing method thereof - Google Patents

Novel titanium alkoxide compounds and process for preparing method thereof Download PDF

Info

Publication number
KR20110006968A
KR20110006968A KR1020090064627A KR20090064627A KR20110006968A KR 20110006968 A KR20110006968 A KR 20110006968A KR 1020090064627 A KR1020090064627 A KR 1020090064627A KR 20090064627 A KR20090064627 A KR 20090064627A KR 20110006968 A KR20110006968 A KR 20110006968A
Authority
KR
South Korea
Prior art keywords
formula
titanium
compound
titanium alkoxide
alkoxide compound
Prior art date
Application number
KR1020090064627A
Other languages
Korean (ko)
Other versions
KR101093817B1 (en
Inventor
김창균
정택모
이상현
윤혜정
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020090064627A priority Critical patent/KR101093817B1/en
Publication of KR20110006968A publication Critical patent/KR20110006968A/en
Application granted granted Critical
Publication of KR101093817B1 publication Critical patent/KR101093817B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: A method for preparing titanium alkoxide compound is provided to manufacture thermally stable titanium oxide thin film. CONSTITUTION: A titanium alkoxide compound is denoted by chemical formula 1(Ti(OCR^1R^2R^3)_4). In chemical formula 1, R1 and R2 are independently linear or branched alkyl group of C1-C5; and R3 is linear alkenyl or alkinyl group of C2-C5. A titanium alkoxide compound is prepared by reacting alcohol compound of chemical formula 3(HOCR^1R^2R^3) with titanium amide compound of chemical formula 4(Ti(NR^4R^5)_4). A titanium oxide thin film is manufactured using titanium alkoxide compound as a precursor by MOCVD(metal organic chemical vapor deposition) and ALD(atomic layer deposition).

Description

신규의 티타늄 알콕사이드 화합물 및 이의 제조방법{Novel titanium alkoxide compounds and process for preparing method thereof}Novel titanium alkoxide compounds and process for preparing method

본 발명은 신규의 티타늄 알콕사이드 화합물에 관한 것으로서, 보다 상세하게는 티타늄 산화물 박막을 제조하는데 전구체로서 유용한 티타늄 알콕사이드 화합물 및 이의 제조 방법에 관한 것이다.The present invention relates to novel titanium alkoxide compounds, and more particularly to titanium alkoxide compounds useful as precursors for the production of titanium oxide thin films and methods for their preparation.

최근, 모스 트랜지스터의 게이트 절연막 또는 커패시터의 유전막 등과 같은 박막은 고-유전율(high-k dielectric)을 갖는 물질을 사용하여 형성하고 있는 추세이다. 상기 고-유전율을 갖는 물질로 이루어진 박막은 얇은 등가 산화막 두께(equivalent oxide thickness, EOT)를 유지하면서 게이트 전극과 채널 또는 하부 전극과 상부 전극 사이에서 빈번하게 발생하는 누설 전류를 충분하게 줄일 수 있기 때문이다. Recently, thin films such as gate insulating films of MOS transistors, dielectric films of capacitors, and the like have been formed using materials having a high-k dielectric. The thin film made of a material having a high dielectric constant can sufficiently reduce the leakage current frequently generated between the gate electrode and the channel or the lower electrode and the upper electrode while maintaining a thin equivalent oxide thickness (EOT). to be.

주로 사용하고 있는 고-유전율을 갖는 물질로 이루어진 박막의 예로서는 티타늄 산화막(TiO2), 하프늄 산화막(HfO2) 등을 들 수 있다.Examples of the thin film made of a material having a high dielectric constant mainly used include a titanium oxide film (TiO 2 ), a hafnium oxide film (HfO 2 ), and the like.

티타늄 산화물(티타니아, TiO2)은 절연층 (dielectric layers), 광소자용 비 반사성 코팅(antireflection coatings), 센서, 광촉매 등 많은 분야에서 응용되고 있는 물질이다. 이들 티타니아 물질을 성장시키는 방법으로 금속 유기물 화학 증착법(metal organic chemical vapor deposition: MOCVD)이 있다. 이 공정은 장치가 간단하고 층 덮임성이 다른 기법에 비해 월등하며 성분 조절이 쉽고 대량 생산으로 전환하기에 무리가 없다는 장점이 있다. 또 다른 방법으로 원자층 침착법(atomic layer deposition: ALD)이 있는데, 이 방법은 자체 조절 반응(self-limiting reaction)이 가능하여 원하는 두께로 박막을 성장시킬 수 있는 장점을 갖는다. 이러한 화학기상 증착법과 원자층 침착법을 이용하여 티타늄 산화막을 제조하는 방법으로 한국공개특허 제 10-2006-0013046호, 제 10-2006-0014514호 등이 알려져 있다. 박막의 제조를 위해서는 공정에 사용되는 선구 물질의 개발과 특성을 이해하는 것이 필수적이다. MOCVD 및 ALD용 선구 물질은 200 ℃ 이하에서 증기압이 충분히 높아야 하고, 기화시키기 위해 가열하는 동안에 열적으로 충분히 안정해야 하며, 저장하는 동안에 공기 및 습기에 충분히 안정해야 한다. 그리고 그 자체에 또는 분해 생성 물질에 독성이 없거나 적어야 하며 합성법이 간단하며 원재료의 단가가 낮아야 함을 부수적인 요건으로 한다.Titanium oxide (Titania, TiO 2 ) is a material applied in many fields such as dielectric layers, antireflection coatings for optical devices, sensors, and photocatalysts. A method of growing these titania materials is metal organic chemical vapor deposition (MOCVD). This process has the advantages of a simple device, superior layer coverage compared to other techniques, easy control of components, and no difficulty in switching to mass production. Another method is atomic layer deposition (ALD), which has the advantage of allowing self-limiting reactions to grow thin films to a desired thickness. Korean Patent Laid-Open Publication Nos. 10-2006-0013046, 10-2006-0014514 and the like are known as methods for producing titanium oxide films using such chemical vapor deposition and atomic layer deposition. For the manufacture of thin films, it is essential to understand the development and characteristics of the precursors used in the process. The precursors for MOCVD and ALD should be sufficiently high vapor pressure below 200 ° C., thermally stable during heating to vaporize, and sufficiently stable to air and moisture during storage. As an additional requirement, it must be non-toxic or less toxic to itself or to decomposition products, to simplify the synthesis and to lower the cost of the raw materials.

티타늄 산화물을 제조하기 위한 선구 물질로는 알킬산티타늄(titanium alkoxide)이 가장 좋은 물질인 것으로 알려져 지금까지 많이 사용되고 있다. 그 중에서도 티타늄 테트라이소프로폭사이드[titanium tetraisopropoxide, Ti(OiPr)4]와 같은 알콕사이드 화합물은 액체이고, 증기압이 높으며, 박막 증착 온도에 덜 민감 하고 증착되는 박막의 표면에 도드라지는 부분(hump)이나 흐릿한 부분(haziness)을 발생시키지 않아 낮은 증착 온도(< 400 ℃)에서 티타늄 산화물의 선구 물질로 사용되었다. 그러나, 이 선구 물질은 공기와 수분에 대하여 반응성이 매우 높은 불포화Ti(IV) 중심을 가지고 있다. 또한, Ti-O 결합이 높은 온도에서 쉽게 분해하여 MOCVD 공정의 장점인 층 덮임성(step coverage)이 나빠지게 된다.As a precursor for producing titanium oxide, titanium alkoxide is known to be the best material and has been widely used until now. Among them, alkoxide compounds such as titanium tetraisopropoxide (Ti (O i Pr) 4 ) are liquid, high vapor pressure, less sensitive to thin film deposition temperature, and bumps on the surface of the thin film to be deposited. It was used as a precursor of titanium oxide at low deposition temperatures (<400 ° C), without causing haze or hazeiness. However, this precursor has an unsaturated Ti (IV) center that is highly reactive to air and moisture. In addition, Ti-O bonds readily decompose at high temperatures, resulting in poor step coverage, which is an advantage of the MOCVD process.

이와 같은 문제를 해결하기 위해 Ti(OiPr)2(tmhd)2(tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate)와 같이 포화한 배위 상태를 갖는 변형 알콕사이드(modified alkoxide)에 관한 연구가 이루어졌다. Ti(OiPr)2(tmhd)2는 증기압이 높고 공기 중에서 안정하며 열적 안정성도 우수하다고 알려져 있다[참조: J.-H. Lee and S.-W. Rhee, J. Electrochem. Soc., 1999, 146, 3783; J.-H. Lee and S.-W. Rhee, Electrochem. Solid-State Lett., 1999, 2, 507]. Ti(OiPr)2(tmhd)2와 같이 두 개의 알콕사이드와 두 개의 β-디케토네이트 리간드를 갖는 티타늄 선구 물질로 Ti(OiPr)2(tbaoac)2(tbaoac = tert-butylacetoacetate)을 이용하여 박막을 증착하는 연구 결과가 보고되었다[참조: R. Bhakta, R. Thomas, F. Hipler, H. F. Bettinger, J. M, P. Ehrhartb, A. Devi, J. Mater. Chem., 2004, 14, 3231]. To solve this problem, modified alkoxides with saturated coordination states such as Ti (O i Pr) 2 (tmhd) 2 (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate) ) Has been studied. Ti (O i Pr) 2 (tmhd) 2 is known for its high vapor pressure, stability in air and excellent thermal stability. See J.-H. Lee and S.-W. Rhee, J. Electrochem. Soc ., 1999 , 146 , 3783; J.-H. Lee and S.-W. Rhee, Electrochem. Solid-State Lett ., 1999 , 2 , 507]. Ti (O i Pr) 2 ( tmhd) by two alkoxide and titanium precursor with two β- diketonates ligand, such as 2 (O i Pr) Ti 2 (tbaoac) 2 (tbaoac = tert-butylacetoacetate) the The results of studies of depositing thin films using the same have been reported [R. Bhakta, R. Thomas, F. Hipler, HF Bettinger, J. M, P. Ehrhartb, A. Devi, J. Mater. Chem., 2004, 14, 3231.

또한, 최근에는 두 개 이상의 주개(donor)를 갖는 기능성 주개 군(donor group)(예컨대, 디메틸아미노에톡사이드(dmae), 디메틸아미노프로폭사이 드(dimethylaminopropoxide) 등)을 알콕사이드와 치환하는 방법도 시도되고 있다[참조: K. Szczegot and M. Nowakowska, Polimery (Warsaw), 1977, 22, 399].Also recently, a method of substituting an alkoxide for a functional donor group having two or more donors (eg, dimethylaminoethoxide, dimethylaminopropoxide, etc.) Attempts have been made (K. Szczegot and M. Nowakowska, Polimery ( Warsaw ), 1977 , 22 , 399).

4 배위의 Ti(OiPr)4에서 하나 또는 두 개의 OiPr을 dmae로 대체한 Ti(OiPr)3(dmae)와 Ti(OiPr)2(dmae)2가 합성되었으며, 이들은 알콕사이드보다 수분에 덜 민감한데, 이들 화합물을 선구 물질로 이용하여 액체 주입 화학 증착법(liquid injection CVD)으로 질이 좋은 TiO2 막이 얻어졌다[참조: A. C. Jones, T. J. Leedham, P. J. Wright, M. J. Crosbie, K. A. Fleeting, D. J. Otway, P. O'Brien, and M. E. Pemble, J. Mater. Chem., 1998, 8, 1773].Ti (O i Pr) 3 (dmae) and Ti (O i Pr) 2 (dmae) 2 were synthesized by replacing one or two O i Pr with dmae in 4 coordination Ti (O i Pr) 4 . Moisture less sensitive than alkoxides, using these compounds as precursors, a good quality TiO 2 film was obtained by liquid injection CVD [AC Jones, TJ Leedham, PJ Wright, MJ Crosbie, KA] Fleeting, DJ Otway, P. O'Brien, and ME Pemble, J. Mater. Chem ., 1998 , 8 , 1773].

리간드 4 개가 모두 dmae로 이루어진 Ti(dmae)4는 Ti(OiPr)2(tmhd)2에 비하여 증착 온도에 덜 민감하고 도드라진 부분 및 흐릿한 부분도 생기지 않는 결과를 나타내었다[참조: J.-H. Lee, J. Y. Kim, J.-Y. Shim, and S.-W. Rhee, J. Vac. Sci. Technol. A, 1999 , 17, 3033]. Ti (dmae) 4, which is composed of all four ligands of dmae, is less sensitive to deposition temperature than Ti (O i Pr) 2 (tmhd) 2 and results in no raised or blurry parts. J. -H. Lee, JY Kim, J.-Y. Shim, and S.-W. Rhee, J. Vac. Sci. Technol. A, 1999 , 17 , 3033].

한편 ALD를 이용하여 티타니아 박막을 제조하는 연구가 최근에 활발히 진행되고 있다. 티타늄 소스로 주로 Ti(OiC3H7)4[참조: M. Ritala, M. Leskel, L. Niinist, and P. Haussalo, Chem. Mater., 1993, 5, 1174; A. Rahtu and M. Ritala, Chem. Vap. Deposition, 2002, 8, 21]나 Ti(OC2H5)4 [참조: M. Ritala, M. Leskel, and E. Rauhala, Chem. Mater., 1994, 6, 556; J. Aarik, A. Aidla, V. Sammelselg, T. Uustare, M. Ritala, and M. Leskel, Thin Solid Films, 2000, 370, 163; A. Rahtu, K. Kukli, and M. Ritala, Chem. Mater., 2001, 13, 817]같은 알콕사이드 화합물을 사용하거나 TiCl4[참조: M. Ritala, M. Leskel, E. Nyknen, P. Soininen, and L. Niinist, Thin Solid Films, 1993, 225, 288; J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films, 1997, 305, 270; R. Matero, A. Rahtu, and M. Ritala, Chem. Mater., 2001, 13, 4506]나 TiI4[참조: K. Kukli, M. Ritala, M. Schuisky, M. Leskel, T. Sajavaara, J. Keinonen, T. Uustare, and A. H, Chem. Vap. Deposition, 2000, 6, 303; K. Kukli, A. Aidla, J. Aarik, M. Schuisky, A. H, M. Ritala, and M. Leskel, Langmuir, 2000, 16, 8122]와 같은 할라이드 화합물을 사용하는데, 대분분의 경우에 산소 소스로 물을 넣어준다.On the other hand, researches for producing titania thin films using ALD have been actively conducted in recent years. The source of titanium is mainly Ti (OiC 3 H 7 ) 4 [M. Ritala, M. Leskel, L. Niinist, and P. Haussalo, Chem. Mater. , 1993 , 5 , 1174; A. Rahtu and M. Ritala, Chem. Vap. Deposition , 2002 , 8 , 21] or Ti (OC 2 H 5 ) 4 [M. Ritala, M. Leskel, and E. Rauhala, Chem. Mater. , 1994 , 6 , 556; J. Aarik, A. Aidla, V. Sammelselg, T. Uustare, M. Ritala, and M. Leskel, Thin Solid Films , 2000 , 370 , 163; A. Rahtu, K. Kukli, and M. Ritala, Chem. Alkoxide compounds such as Mater ., 2001 , 13 , 817] or TiCl 4 [M. Ritala, M. Leskel, E. Nyknen, P. Soininen, and L. Niinist, Thin Solid Films , 1993 , 225 , 288 ; J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films , 1997 , 305 , 270; R. Matero, A. Rahtu, and M. Ritala, Chem. Mater ., 2001 , 13 , 4506] or TiI 4 [K. Kukli, M. Ritala, M. Schuisky, M. Leskel, T. Sajavaara, J. Keinonen, T. Uustare, and A. H, Chem. Vap. Deposition , 2000 , 6 , 303; K. Kukli, A. Aidla, J. Aarik, M. Schuisky, A. H, M. Ritala, and M. Leskel, Langmuir , 2000 , 16 , 8122]. Add water to the oxygen source.

이상과 같이 종래에 알려진 티타늄 화합물은 그 화합물들이 갖고 있는 장점들에도 불구하고 낮은 증착 온도를 갖는 물질은 공기나 수분에 민감하고 공기 중이나 열적으로 안정한 물질은 증기압이 매우 낮다는 단점을 가지고 있다. 따라서 열적 안정성과 휘발성을 증가시키기 위한 새로운 티타늄 산화물 선구 물질의 개발은 그 의미가 크다고 할 수 있다.As described above, titanium compounds known in the related art have disadvantages that materials having a low deposition temperature are sensitive to air or moisture and materials in the air or thermally stable are very low in vapor pressure despite the advantages of the compounds. Therefore, the development of new titanium oxide precursors to increase thermal stability and volatility is significant.

이에 본 발명자들은 기존 화합물이 가지는 문제점들을 해결하기 위하여, 탄소나 플루오르의 오염을 일으키지 않으며, 열적 안정성이 증가하고 휘발성이 충분히 높고 티타늄 산화물 박막 형성 과정에서 오존과의 반응성이 기존의 물질보다 높 은 신규의 티타늄 전이금속 산화물 전구체를 개발하기에 이르렀다.In order to solve the problems of the existing compounds, the present inventors do not cause contamination of carbon or fluorine, increase thermal stability, high volatility, and high reactivity with ozone in the process of forming a titanium oxide thin film. Titanium transition metal oxide precursors have been developed.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 양질의 티타늄 산화물 박막을 형성하기 위해 열적으로 안정하고 휘발성이 높으면서도 반응성이 지나치게 높지 않으며 티타늄 산화물 박막 형성 과정에서 오존과의 반응성이 기존의 물질보다 높은 티타늄 알콕사이드 화합물 및 이의 제조방법을 제공하는 데 있다.The present invention is to solve the problems of the prior art as described above, an object of the present invention is thermally stable to form a high quality titanium oxide thin film and high volatility but not too high reactivity and ozone in the process of forming a titanium oxide thin film The present invention provides a titanium alkoxide compound having a higher reactivity with a conventional material and a method for preparing the same.

본 발명은 열적으로 안정하고 휘발성이 높으면서도 반응성이 지나치게 높지 않으며 티타늄 산화물 박막 형성 과정에서 오존과의 반응성이 기존의 물질보다 높은 티타늄 알콕사이드 화합물에 관한 것으로, 하기 화학식 1로 표시되는 신규의 티타늄 알콕사이드 화합물을 제공한다.The present invention relates to a titanium alkoxide compound which is thermally stable, has high volatility and is not too high in reactivity, and has a higher reactivity with ozone than a conventional material in the process of forming a titanium oxide thin film. To provide.

[화학식 1][Formula 1]

Ti(OCR1R2R3)4 Ti (OCR 1 R 2 R 3 ) 4

[상기 화학식 1에서, R1 및 R2는 서로 독립적으로 C1-C5의 선형 또는 분지형 알킬기이고, R3 C2-C5의 선형 알케닐 또는 알키닐기이다.][In Formula 1, R 1 and R 2 are each independently a C 1 -C 5 linear or branched alkyl group, R 3 is C 2 -C 5 linear alkenyl or alkynyl group.]

상기 화학식 1에서, R1 및 R2는 서로 독립적으로

Figure 112009043121903-PAT00001
,
Figure 112009043121903-PAT00002
,
Figure 112009043121903-PAT00003
또는
Figure 112009043121903-PAT00004
로부터 선택되고, 상기 R3
Figure 112009043121903-PAT00005
,
Figure 112009043121903-PAT00006
,
Figure 112009043121903-PAT00007
,
Figure 112009043121903-PAT00008
,
Figure 112009043121903-PAT00009
또는
Figure 112009043121903-PAT00010
인 것이 보다 바람직하다. In Formula 1, R 1 and R 2 are independently of each other
Figure 112009043121903-PAT00001
,
Figure 112009043121903-PAT00002
,
Figure 112009043121903-PAT00003
or
Figure 112009043121903-PAT00004
Is selected from, and R 3 is
Figure 112009043121903-PAT00005
,
Figure 112009043121903-PAT00006
,
Figure 112009043121903-PAT00007
,
Figure 112009043121903-PAT00008
,
Figure 112009043121903-PAT00009
or
Figure 112009043121903-PAT00010
It is more preferable that is.

상기 화학식 1의 Ti(OCR1R2R3)4는 구체적으로 하기 구조로 예시될 수 있으나, 이에 한정되는 것은 아니며, 하기 구조의 R1 내지 R3은 상기 화학식 1에서의 정의와 동일하다.Ti (OCR 1 R 2 R 3 ) 4 of Formula 1 may be specifically exemplified by the following structure, but is not limited thereto, and R 1 to R 3 of the following structure are the same as defined in Formula 1 above.

Figure 112009043121903-PAT00011
Figure 112009043121903-PAT00011

이하, 본 발명에 따른 티타늄 알콕사이드 화합물의 제조방법을 더욱 상세하게 설명한다.Hereinafter, the method for producing a titanium alkoxide compound according to the present invention will be described in more detail.

본 발명에 따른 상기 화학식 1의 티타늄 알콕사이드 화합물은, 출발 물질로서 하기 화학식 2의 티타늄 아미드 화합물과 하기 화학식 3의 알코올 화합물을 비극성 용매 하에서 반응시켜 제조할 수 있다. The titanium alkoxide compound of Chemical Formula 1 according to the present invention may be prepared by reacting a titanium amide compound of Chemical Formula 2 with an alcohol compound of Chemical Formula 3 under a nonpolar solvent as a starting material.

[화학식 2][Formula 2]

Ti(NR4R5)4 Ti (NR 4 R 5 ) 4

[화학식 3](3)

HOCR1R2R3 HOCR 1 R 2 R 3

상기 화학식 2의 티타늄 아미드 화합물은 Ti(NMe2)4, Ti(NEt2)4 또는 Ti(NEtMe)4로부터 선택적으로 사용될 수 있고, 상기 화학식 3의 알코올 화합물은 HOCCH3CH3C≡CH 또는 HOCCH3CH2CH3C≡CH로부터 선택적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.The titanium amide compound of Formula 2 may be selectively used from Ti (NMe 2 ) 4 , Ti (NEt 2 ) 4 or Ti (NEtMe) 4 , and the alcohol compound of Formula 3 may be selected from HOCCH 3 CH 3 C≡CH or HOCCH. It may optionally be used from 3 CH 2 CH 3 C≡CH, but is not limited thereto.

이에 대한 반응식은 하기 반응식 1에 나타내었다.The reaction scheme is shown in Scheme 1 below.

[반응식 1]Scheme 1

Ti(NR4R5)4 + 4 HOCR1R2R3 → Ti(OCR1R2R3)4 + 4 HNR4R5 Ti (NR 4 R 5 ) 4 + 4 HOCR 1 R 2 R 3 ¡Æ Ti (OCR 1 R 2 R 3 ) 4 + 4 HNR 4 R 5

[상기 화학식 2, 화학식 3 및 반응식 1에서, R1, R2, R4 및 R5는 서로 독립적으로 C1-C5의 선형 또는 분지형 알킬기이고, R3 C2-C5의 선형 알케닐 또는 알키닐기이다.][In Formula 2, Formula 3 and Scheme 1, R 1 , R 2 , R 4 and R 5 are independently of each other a C 1 -C 5 linear or branched alkyl group, and R 3 is C 2 -C 5 linear alkenyl or alkynyl group.]

상기 반응식 1에서 출발 물질인 화학식 2의 티타늄 아미드 화합물(Ti(NR4R5)4)은 반응성이 높은 다이알킬아미도 리간드를 포함하고 있어 이차아민의 수소에 비하여 상대적으로 산성인 수소가 있는 화학식 3의 알코올 화합물(HOCR1R2R3)과 4 당량 치환 반응시킴으로써 화학식 1의 티타늄 알콕사이드 화합 물(Ti(OCR1R2R3)4)을 제조할 수 있다.The titanium amide compound (Ti (NR 4 R 5 ) 4 ) of Chemical Formula 2, which is a starting material in Scheme 1, contains a highly reactive dialkylamido ligand, and thus has a relatively acidic hydrogen as compared to that of a secondary amine. The titanium alkoxide compound (Ti (OCR 1 R 2 R 3 ) 4 ) of Chemical Formula 1 may be prepared by performing a 4-equivalent substitution reaction with an alcohol compound of 3 (HOCR 1 R 2 R 3 ).

상기 반응식 1을 상세하게 설명하면, 화학식 2의 티타늄 아미드 화합물 1 당량이 녹아 있는 헥산, 펜탄 또는 톨루엔과 같은 비극성 용매에 화학식 3의 알코올 화합물 4 당량이 녹아 있는 헥산, 펜탄 또는 톨루엔과 같은 비극성 용매를 실온에서 천천히 첨가한 다음, 1 내지 48시간 동안 치환 반응시킨 후에 감압 하에서 용매를 제거하여 화학식 1의 화합물을 얻을 수 있다.In more detail, Reaction Scheme 1, a non-polar solvent such as hexane, pentane or toluene in which 4 equivalents of the alcohol compound of Formula 3 is dissolved in a non-polar solvent such as hexane, pentane or toluene in which 1 equivalent of the titanium amide compound of Formula 2 is dissolved The compound of formula 1 may be obtained by slowly adding at room temperature and then performing a substitution reaction for 1 to 48 hours and then removing the solvent under reduced pressure.

또한 상기 화학식 1의 티타늄 알콕사이드 화합물을 제조하는 또 다른 방법으로는 하기 화학식 4의 티타늄 할라이드 화합물과 하기 화학식 5의 알칼리 금속염을 유기용매 하에서 반응시켜 제조할 수 있다.In addition, the titanium alkoxide compound of Formula 1 As another method of preparing, the titanium halide compound of Formula 4 may be prepared by reacting an alkali metal salt of Formula 5 under an organic solvent.

[화학식 4][Formula 4]

TiX4 TiX 4

[화학식 5][Chemical Formula 5]

MOCR1R2R3 MOCR 1 R 2 R 3

상기 화학식 4의 티타늄 할라이드 화합물은 TiCl4, TiBr4 또는 TiI4로부터 선택적으로 사용될 수 있고, 상기 화학식 5의 알칼리 금속염은 NaOCCH3CH3C≡CH 또는 NaOCCH3CH2CH3C≡CH로부터 선택적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.The titanium halide compound of Formula 4 may be selectively used from TiCl 4 , TiBr 4 or TiI 4 , and the alkali metal salt of Formula 5 may be selectively selected from NaOCCH 3 CH 3 C≡CH or NaOCCH 3 CH 2 CH 3 C≡CH. It may be used, but is not limited thereto.

이에 대한 반응식은 하기 반응식 2에 나타내었다.The reaction scheme is shown in Scheme 2 below.

[반응식 2]Scheme 2

TiX4 + 4 MOCR1R2R3 → Ti(OCR1R2R3)4 + 4 MXTiX 4 + 4 MOCR 1 R 2 R 3 → Ti (OCR 1 R 2 R 3 ) 4 + 4 MX

[상기 화학식 4, 화학식 5 및 반응식 2에서, R1 및 R2는 서로 독립적으로 C1-C5의 선형 또는 분지형 알킬기이고, R3 C2-C5의 선형 알케닐 또는 알키닐기이며, X는 Cl, Br 또는 I이고, M은 Li, Na 또는 K이다.][In Formula 4, Formula 5 and Scheme 2, R 1 and R 2 are each independently a C 1 -C 5 linear or branched alkyl group, R 3 is C 2 -C 5 is a linear alkenyl or alkynyl group, X is Cl, Br or I, and M is Li, Na or K.]

상기 반응식 2를 상세하게 설명하면, 출발 물질인 화학식 4로 표시되는 티타늄 할라이드 화합물 1 당량과 화학식 5의 알칼리 금속염 4 당량을 테트라하이드로퓨란, 톨루엔 또는 헥산과 같은 유기용매에서 0.5 내지 3시간 동안 반응시키고, 1 내지 48시간 동안 환류 시킨 뒤 감압 하에서 용매를 제거하여 화학식 1의 화합물을 얻을 수 있다.In detail, Reaction Scheme 2, 1 equivalent of the titanium halide compound represented by Chemical Formula 4, and 4 equivalents of the alkali metal salt of Chemical Formula 5 are reacted in an organic solvent such as tetrahydrofuran, toluene, or hexane for 0.5 to 3 hours. After refluxing for 1 to 48 hours, the solvent may be removed under reduced pressure to obtain a compound of Formula 1.

상기 화학식 1로 표시되는 티타늄 알콕사이드 화합물은 알콕사이드의 산소에 대하여 α-위치에 있는 탄소에 크기가 다른 여러 가지 알킬기를 도입함으로써 티타늄 t-부톡사이드나 티타늄 이소프로폭사이드와 비교할 때 산소와 결합한 중심 금속이 이웃한 리간드의 산소와 분자 간 상호 작용을 일으키지 못하도록 입체 장애를 주기 때문에 이 전구체가 단위체로 존재할 수 있다. 이러한 구조적 특성으로 인하여 상기 화학식 1의 티타늄 알콕사이드 화합물은 상온에서 안정한 액체로서 유기 용매, 예를 들면 펜탄, 헥산, 다이에틸에테르, 테트라하이드로퓨란, 톨루엔 등에 대한 용해도가 높고, 휘발성이 뛰어날 뿐만 아니라, 할로겐 원소를 포함하지 않고, 상온에서 안정하여 보관에 유리하므로 상기 화학식 1의 티타늄 알콕사이드 화합물을 사용하여 질이 더 좋은 티타늄 산화물 박막을 얻을 수 있다.The titanium alkoxide compound represented by the formula (1) is a central metal bonded to oxygen when compared with titanium t-butoxide or titanium isopropoxide by introducing various alkyl groups having different sizes to the carbon at the α-position to the oxygen of the alkoxide. This precursor may exist as a monomer because it impairs steric hindrance to prevent intermolecular interactions with oxygen of these neighboring ligands. Due to these structural properties, the titanium alkoxide compound of Chemical Formula 1 is a stable liquid at room temperature, has high solubility in organic solvents such as pentane, hexane, diethyl ether, tetrahydrofuran, toluene, etc. Since it does not contain an element and is stable at room temperature and is advantageous for storage, a titanium oxide thin film having better quality may be obtained using the titanium alkoxide compound of Chemical Formula 1.

본 발명에 따른 신규의 티타늄 알콕사이드 화합물은 티타늄 산화물 박막 제조용 전구체로서, 특히 반도체 제조 공정에 널리 이용하고 있는 금속 유기물 화학 증착(MOCVD) 또는 원자층 침착(ALD) 공정에 바람직하게 적용할 수 있다.The novel titanium alkoxide compound according to the present invention is a precursor for producing a titanium oxide thin film, and is particularly applicable to metal organic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD) processes widely used in semiconductor manufacturing processes.

본 발명에 따른 4족 전이금속 산화물 전구체인 신규의 티타늄 알콕사이드 화합물은 열적으로 충분히 안정하고 보관에 유리하며 오존과의 반응성이 높으므로, 산화막의 우수한 질을 요구하는 티타늄 산화물 박막 제조용 전구체로서 금속 유기물 화학 증착법(MOCVD) 또는 원자층 증착법(ALD)에 바람직하게 적용할 수 있다.The novel titanium alkoxide compound, which is a Group 4 transition metal oxide precursor according to the present invention, is thermally sufficiently stable, is advantageous for storage, and has high reactivity with ozone. It can apply suitably to vapor deposition (MOCVD) or atomic layer deposition (ALD).

이하, 실시예에 의해 본 발명을 보다 상세하게 설명하나, 이는 발명의 구성 및 효과를 이해시키기 위한 것 일뿐, 본 발명의 범위를 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, which are intended only for understanding the constitution and effects of the present invention, and are not intended to limit the scope of the present invention.

[실시예][Example]

모든 실험은 장갑 상자 또는 슐렝크 관(Schlenk line)을 이용하여 비활성 아르곤 또는 질소 분위기에서 수행하였다. 실시예 1 및 실시예 2에서 각각 얻은 반응 생성물의 구조와 물성은 수소 원자 핵자기 공명법(1H nuclear magnetic resonance, NMR), 탄소 원자 핵자기 공명법(13C NMR), 원소 분석법(elemental analysis, EA), 질량 분석법(mass spectroscopy), 열무게 분석/시차 열분석법(thermogravimetric analysis/differential thermal analysis, TGA/DTA)을 이용하여 확인하였다.All experiments were performed in an inert argon or nitrogen atmosphere using a glove box or Schlenk line. The structures and physical properties of the reaction products obtained in Examples 1 and 2, respectively, were analyzed by 1 H nuclear magnetic resonance (NMR), carbon atom nuclear magnetic resonance ( 13 C NMR), and elemental analysis. , EA), mass spectroscopy, thermogravimetric analysis / differential thermal analysis (TGA / DTA).

[실시예 1] 테트라키스(3-메틸-1-펜틴-3-옥시)티타늄(IV) [Ti(mpy) 4 ]의 합성 Example 1 Synthesis of Tetrakis (3-methyl-1-pentin-3-oxy) titanium (IV) [Ti (mpy) 4 ]

헥산 (50 mL)이 들어 있는 불꽃 건조한 125 mL 슐렝크 플라스크에 테트라키스다이메틸아미도티타늄(IV) (5 g, 22 mmol)을 넣고 용해하였다. 이 용액에 mpyH( 3-methylpent-1-yn-3-ol) (9.85 g, 100 mmol)를 녹인 헥산 (30 mL) 용액을 천천히 첨가하고 12 시간 동안 교반하였다. 감압 하에서 용매를 제거하고 130 ℃/10-2 torr에서 감압 정제하여 연한 노란색 액체인 표제 화합물 Ti(mpy)4 8.5 g을 얻었다(수율: 88.5 %).Tetrakisdimethylamidotitanium (IV) (5 g, 22 mmol) was dissolved in a flame dried 125 mL Schlenk flask containing hexane (50 mL). To this solution was added slowly a solution of hexane (30 mL) in which mpyH (3-methylpent-1-yn-3-ol) (9.85 g, 100 mmol) was dissolved and stirred for 12 hours. The solvent was removed under reduced pressure and purified under reduced pressure at 130 ° C./10 −2 torr to obtain 8.5 g of the title compound Ti (mpy) 4 as a pale yellow liquid (yield: 88.5%).

1H NMR (C6D6, 300.13 MHz): δ 1.20 (t, 12H, J = 7.2Hz, CCH2CH 3), 1.69 (s, 12H, CCH 3), 1.88 (m, 8H, J = 7.2Hz, CCH 2CH3), 2.11 (s, 4H, CCH). 1 H NMR (C 6 D 6 , 300.13 MHz): δ 1.20 (t, 12H, J = 7.2 Hz, CCH 2 C H 3 ), 1.69 (s, 12H, CC H 3 ), 1.88 (m, 8H, J = 7.2 Hz, CC H 2 CH 3 ), 2.11 (s, 4H, CC H ).

13C{1H} NMR (C6D6, 75.03 MHz): δ 9.57 (CCH2 CH3), 31.4 (CCH3), 38.3 (CCH2CH3), 70.9 (CCH2CH3), 80.3 (CCH), 88.1 (CCH). 13 C { 1 H} NMR (C 6 D 6 , 75.03 MHz): δ 9.57 (CCH 2 C H 3 ), 31.4 (C C H 3 ), 38.3 (C C H 2 CH 3 ), 70.9 ( C CH 2 CH 3 ), 80.3 (C C H), 88.1 ( C CH).

EA for C24H36O4Ti Found (Calcd.) C; 66.32(66.05), H; 8.30(8.31)EA for C 24 H 36 O 4 Ti Found (Calcd.) C; 66.32 (66.05), H; 8.30 (8.31)

[실시예 2] 테트라키스(3-메틸-1-펜틴-3-옥시)티타늄(IV) [Ti(mpy) 4 ]의 합성 Example 2 Synthesis of Tetrakis (3-methyl-1-pentin-3-oxy) titanium (IV) [Ti (mpy) 4 ]

헥산 (50 mL)이 들어 있는 불꽃 건조한 125 mL 슐렝크 플라스크에 염화티타늄(IV) (2.85 g, 15 mmol)을 넣고 용해하였다. 이 용액에 Na(mpy)(mpy: 3-methylpent-1-yn-3-oxy) (8.1 g, 67.5 mmol)를 녹인 헥산 (30 mL) 용액을 천천히 첨가하고 상온에서 1 시간 동안 교반하고 12시간 동안 환류 반응하였다. 감압 하에서 용매를 제거하고 130 ℃/10-2 torr에서 감압 정제하여 연한 노란색 액체인 표제 화합물 Ti(mpy)4 5.3 g을 얻었다(수율: 81.5 %).Titanium (IV) chloride (2.85 g, 15 mmol) was dissolved in a flame-dried 125 mL Schlenk flask containing hexane (50 mL). To this solution was added slowly a solution of hexane (30 mL) dissolved Na (mpy) (mpy: 3-methylpent-1-yn-3-oxy) (8.1 g, 67.5 mmol) and stirred at room temperature for 1 hour and then 12 hours. During the reflux reaction. The solvent was removed under reduced pressure and purified under reduced pressure at 130 ° C./10 −2 torr to obtain 5.3 g of the title compound Ti (mpy) 4 as a pale yellow liquid (yield: 81.5%).

1H NMR (C6D6, 300.13 MHz): δ 1.20 (t, 12H, J = 7.2Hz, CCH2CH 3), 1.69 (s, 12H, CCH 3), 1.88 (m, 8H, J = 7.2Hz, CCH 2CH3), 2.11 (s, 4H, CCH). 1 H NMR (C 6 D 6 , 300.13 MHz): δ 1.20 (t, 12H, J = 7.2 Hz, CCH 2 C H 3 ), 1.69 (s, 12H, CC H 3 ), 1.88 (m, 8H, J = 7.2 Hz, CC H 2 CH 3 ), 2.11 (s, 4H, CC H ).

13C{1H} NMR (C6D6, 75.03 MHz): δ 9.57 (CCH2 CH3), 31.4 (CCH3), 38.3 (CCH2CH3), 70.9 (CCH2CH3), 80.3 (CCH), 88.1 (CCH). 13 C { 1 H} NMR (C 6 D 6 , 75.03 MHz): δ 9.57 (CCH 2 C H 3 ), 31.4 (C C H 3 ), 38.3 (C C H 2 CH 3 ), 70.9 ( C CH 2 CH 3 ), 80.3 (C C H), 88.1 ( C CH).

[실시예 3] 테트라키스(2-메틸-3-부틴-2-옥시)티타늄(IV) [Ti(mby) 4 ]의 합성 Example 3 Synthesis of Tetrakis (2-methyl-3-butyn-2-oxy) titanium (IV) [Ti (mby) 4 ]

헥산 (50 mL)이 들어 있는 불꽃 건조한 125 mL 슐렝크 플라스크에 테트라키스다이메틸아미도티타늄(IV) (5 g, 22 mmol)을 넣고 용해하였다. 이 용액에 mbyH (2-methylbut-3-yn-2-ol) (8.4 g, 100 mmol)를 헥산 (30 mL)에 녹인 용액을 천천히 첨가하고, 12 시간 동안 교반하였다. 감압 하에서 용매를 제거하고 110 ℃/10-2 torr에서 감압 정제하여 노란색 액체인 표제 화합물 Ti(mby)4 7.4 g 을 얻었다(수율: 89.2%).Tetrakisdimethylamidotitanium (IV) (5 g, 22 mmol) was dissolved in a flame dried 125 mL Schlenk flask containing hexane (50 mL). To this solution was slowly added a solution of mbyH (2-methylbut-3-yn-2-ol) (8.4 g, 100 mmol) in hexane (30 mL) and stirred for 12 hours. The solvent was removed under reduced pressure and purified under reduced pressure at 110 ° C / 10 -2 torr to obtain 7.4 g of the title compound Ti (mby) 4 as a yellow liquid (yield: 89.2%).

1H NMR (C6D6, 300.13 MHz): δ 1.64 (s, 24H, C(CH 3)2), 2.14 (s, 4H, CCH). 1 H NMR (C 6 D 6 , 300.13 MHz): δ 1.64 (s, 24H, C (C H 3 ) 2 ), 2.14 (s, 4H, CC H ).

13C{1H} NMR (C6D6, 75.03 MHz): δ 33.2 (C(CH3)2), 70.0 (C(CH3)2), 76.3 (CCH), 89.2 (CCH). 13 C { 1 H} NMR (C 6 D 6 , 75.03 MHz): δ 33.2 (C ( C H 3 ) 2 ), 70.0 ( C (CH 3 ) 2 ), 76.3 (C C H), 89.2 ( C CH ).

EA for C20H28O4Ti Found (Calcd.) C; 62.97(63.12), H; 7.93(7.42)EA for C 20 H 28 O 4 Ti Found (Calcd.) C; 62.97 (63.12), H; 7.93 (7.42)

도 1 및 도 2는 Ti(mpy)4(mpy:3-methylpent-1-yn-3-oxy)의 수소 및 탄소 원자 핵자기 공명 스펙트럼을 나타낸 것으로, 출발 물질로 사용한 Ti(NEtMe)4의 에틸기와 메틸기의 봉우리가 사라지고 반응 물질로 사용한 mpyH(3-methylpent-1-yn-3-ol) 리간드의 봉우리가 나타난 것을 확인할 수 있었다.1 and 2 show nuclear and magnetic resonance spectra of hydrogen and carbon atoms of Ti (mpy) 4 (mpy: 3-methylpent-1-yn-3-oxy), and an ethyl group of Ti (NEtMe) 4 used as a starting material. It was confirmed that the peaks of the and methyl groups disappeared and the peaks of the mpyH (3-methylpent-1-yn-3-ol) ligand used as reaction materials appeared.

도 3은 Ti(mpy)4 적외선 스펙트럼을 나타낸 것으로, 반응 물질로 사용한 mpyH( 3-methylpent-1-yn-3-ol) 리간드의 히드록시기 봉우리가 없어지고, 636 cm-1에서 티타늄과 산소의 결합이 나타난 것을 확인할 수 있었다.3 shows Ti (mpy) 4 Infrared spectra showing the hydroxy group peaks of the mpyH (3-methylpent-1-yn-3-ol) ligand used as the reactant and disappearing at 636 cm -1 . It was confirmed that the combination of titanium and oxygen appeared.

도 4는 Ti(mpy)4의 TG/DTA 그래프(10 ℃/min to 600 ℃, 100 cc/min N2 purge)를 나타낸 것으로, 50 ~ 130 ℃에서 약 5 % 정도의 질량 감소가 일어났고, 130 ℃에서 급격한 질량 감소가 일어난 것을 확인할 수 있었다. 또한 240 ℃에서는 92 % 이상의 질량 감소가 관찰되었고, 잔류 물질은 3 % 정도 되었다. TGA 그래프는 T1/2(온도에 따른 무게 감소에서 시료의 무게가 원래 무게의 1/2이 될 때의 온도)이 203 ℃임을 보여 준다.4 shows a TG / DTA graph of Ti (mpy) 4 (10 ° C./min to 600 ° C., 100 cc / min N 2 purge), where a mass reduction of about 5% occurred at 50 to 130 ° C. It was confirmed that a sharp mass reduction occurred at 130 ℃. In addition, a mass loss of 92% or more was observed at 240 ° C, and residual material was about 3%. The TGA graph shows that T 1/2 (the temperature at which the weight of the sample at half the original weight at weight loss with temperature) is 203 ° C.

도 5 및 도 6은 Ti(mby)4(mby: 2-methylbut-3-yn-2-oxy)의 수소 및 탄소 원자 핵자기 공명 스펙트럼을 나타낸 것으로, 출발 물질로 사용한 Ti(NEtMe)4의 에틸기와 메틸기의 봉우리가 사라지고 반응 물질로 사용한 mbyH(2-methylbut-3-yn-2-ol) 리간드의 봉우리가 나타난 것을 확인할 수 있었다.5 and 6 show nuclear and magnetic resonance spectra of hydrogen and carbon atoms of Ti (mby) 4 (mby: 2-methylbut-3-yn-2-oxy), and an ethyl group of Ti (NEtMe) 4 used as a starting material. The peaks of and the methyl group disappeared and the peaks of the mbyH (2-methylbut-3-yn-2-ol) ligand used as a reaction material were observed.

도 7은 Ti(mby)4 적외선 스펙트럼을 나타낸 것으로, 반응 물질로 사용한 mbyH(2-methylbut-3-yn-2-ol) 리간드의 하이드록시기 봉우리가 없어지고 630 cm-1에서 티타늄과 산소의 결합이 나타난 것을 확인할 수 있었다.7 shows Ti (mby) 4 Illustrates the IR spectrum, mbyH used as reactant (2-methylbut-3-yn -2-ol) do not have a hydroxyl group peaks of the ligand is at 630 cm -1 It was confirmed that the combination of titanium and oxygen appeared.

도 8은 Ti(mby)4의 TG/DTA 그래프(10 ℃/min to 600 ℃, 100 cc/min N2 purge)를 나타낸 것으로, 50 ~ 120 ℃에서 약 3 % 정도 질량 감소가 일어났고, 120 ℃에서 급격한 질량 감소가 일어난 것을 확인할 수 있었다. 또한 210 ℃에서는 95 % 이상의 질량 감소가 관찰되었고, 잔류 물질은 2 % 정도 되었다. TGA 그래프는 T1/2이 180 ℃임을 보여 준다.8 shows a TG / DTA graph of Ti (mby) 4 (10 ° C./min to 600 ° C., 100 cc / min N 2 purge), where a mass reduction of about 3% occurred at 50 to 120 ° C., and 120 It was confirmed that a sharp mass reduction occurred at ℃. In addition, a mass loss of 95% or more was observed at 210 ° C, and residual material was about 2%. TGA graph shows that T 1/2 is 180 ° C.

도 1은 본 발명에 따른 실시예 1에서 제조한 Ti(mpy)4의 수소 원자 핵자기 공명(1H NMR) 스펙트럼이고, 도 2는 본 발명에 따른 실시예 1에서 제조한 Ti(mpy)4의 탄소 원자 핵자기 공명(13C NMR) 스펙트럼이고, 도 3은 본 발명에 따른 실시예 1에서 제조한 Ti(mpy)4의 적외선(IR) 스펙트럼이고, 도 4는 본 발명에 따른 실시예 1에서 제조한 Ti(mpy)4의 열분석(TG/DTA) 그래프고, 도 5는 본 발명에 따른 실시예 3에서 제조한 Ti(mby)4의 수소 원자 핵자기 공명(1H NMR) 스펙트럼이고, 도 6은 본 발명에 따른 실시예 3에서 제조한 Ti(mby)4의 탄소 원자 핵자기 공명(13C NMR) 스펙트럼이고, 도 7은 본 발명에 따른 실시예 3에서 제조한 Ti(mby)4의 적외선(IR) 스펙트럼이고, 도 8은 본 발명에 따른 실시예 3에서 제조한 Ti(mby)4의 열분석(TG/DTA) 그래프이다. 1 is a hydrogen atom nuclear magnetic resonance (1 H NMR) spectrum of a Ti (mpy) 4 prepared in Example 1 according to the invention, Figure 2 is a four by Ti (mpy) prepared in Example 1 according to the invention Carbon atom nuclear magnetic resonance ( 13 C NMR) spectrum of, Figure 3 is an infrared (IR) spectrum of Ti (mpy) 4 prepared in Example 1 according to the present invention, Figure 4 is a first embodiment according to the present invention Thermal analysis (TG / DTA) graph of Ti (mpy) 4 prepared in Fig. 5 is a hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of Ti (mby) 4 prepared in Example 3 according to the present invention 6 is a carbon atom nuclear magnetic resonance ( 13 C NMR) spectrum of Ti (mby) 4 prepared in Example 3 according to the present invention, and FIG. 7 is Ti (mby) prepared in Example 3 according to the present invention. Infrared (IR) spectrum of 4 , Figure 8 is a thermal analysis (TG / DTA) graph of Ti (mby) 4 prepared in Example 3 according to the present invention.

Claims (6)

하기 화학식 1로 표시되는 티타늄 알콕사이드 화합물.Titanium alkoxide compound represented by the following formula (1). [화학식 1][Formula 1] Ti(OCR1R2R3)4 Ti (OCR 1 R 2 R 3 ) 4 [상기 화학식 1에서, R1 및 R2는 서로 독립적으로 C1-C5의 선형 또는 분지형 알킬기이고, R3 C2-C5의 선형 알케닐 또는 알키닐기이다.][In Formula 1, R 1 and R 2 are each independently a C 1 -C 5 linear or branched alkyl group, R 3 is C 2 -C 5 linear alkenyl or alkynyl group.] 제 1 항에 있어서,The method of claim 1, 상기 R1 및 R2는 서로 독립적으로
Figure 112009043121903-PAT00012
,
Figure 112009043121903-PAT00013
,
Figure 112009043121903-PAT00014
또는
Figure 112009043121903-PAT00015
로부터 선택되고, 상기 R3
Figure 112009043121903-PAT00016
,
Figure 112009043121903-PAT00017
,
Figure 112009043121903-PAT00018
,
Figure 112009043121903-PAT00019
,
Figure 112009043121903-PAT00020
또는
Figure 112009043121903-PAT00021
로부터 선택되는 것을 특징으로 하는 티타늄 알콕사이드 화합물.
R 1 and R 2 are independently of each other
Figure 112009043121903-PAT00012
,
Figure 112009043121903-PAT00013
,
Figure 112009043121903-PAT00014
or
Figure 112009043121903-PAT00015
Is selected from, and R 3 is
Figure 112009043121903-PAT00016
,
Figure 112009043121903-PAT00017
,
Figure 112009043121903-PAT00018
,
Figure 112009043121903-PAT00019
,
Figure 112009043121903-PAT00020
or
Figure 112009043121903-PAT00021
Titanium alkoxide compound, characterized in that selected from.
하기 화학식 2의 티타늄 아미드 화합물과 하기 화학식 3의 알코올 화합물을 반응시켜 제1항에 따른 화학식 1의 티타늄 알콕사이드 화합물을 제조하는 제조방법.A method for preparing a titanium alkoxide compound of formula 1 according to claim 1 by reacting a titanium amide compound of formula 2 with an alcohol compound of formula 3 below. [화학식 2][Formula 2] Ti(NR4R5)4 Ti (NR 4 R 5 ) 4 [화학식 3](3) HOCR1R2R3 HOCR 1 R 2 R 3 [상기 화학식 2 및 화학식 3에서, R1, R2, R4 및 R5는 서로 독립적으로 C1-C5의 선형 또는 분지형 알킬기이고, R3 C2-C5의 선형 알케닐 또는 알키닐기이다.][In Formula 2 and Formula 3, R 1 , R 2 , R 4 and R 5 are independently of each other a C 1 -C 5 linear or branched alkyl group, and R 3 is C 2 -C 5 linear alkenyl or alkynyl group.] 하기 화학식 4의 티타늄 할라이드 화합물과 하기 화학식 5의 알칼리 금속염을 반응시켜 제1항에 따른 화학식 1의 티타늄 알콕사이드 화합물을 제조하는 제조방법. A method for preparing a titanium alkoxide compound of formula 1 according to claim 1 by reacting a titanium halide compound of formula 4 with an alkali metal salt of formula 5 below. [화학식 4][Formula 4] TiX4 TiX 4 [화학식 5][Chemical Formula 5] MOCR1R2R3 MOCR 1 R 2 R 3 [상기 화학식 4 및 화학식 5에서, R1 및 R2는 서로 독립적으로 C1-C5의 선형 또는 분지형 알킬기이고, R3 C2-C5의 선형 알케닐 또는 알키닐기이며, X는 Cl, Br 또는 I이고, M은 Li, Na 또는 K이다.][In Formulas 4 and 5, R 1 and R 2 are each independently a C 1 -C 5 linear or branched alkyl group, R 3 is C 2 -C 5 is a linear alkenyl or alkynyl group, X is Cl, Br or I, and M is Li, Na or K.] 제 1항 또는 제 2항에서 선택되는 어느 한 항의 티타늄 알콕사이드 화합물을 전구체로 사용하는 것을 특징으로 하는 티타늄 산화물 박막의 제조방법.A method for producing a titanium oxide thin film, comprising using the titanium alkoxide compound of any one of claims 1 or 2 as a precursor. 제 5항에 있어서,The method of claim 5, 상기 티타늄 산화물 박막은 화학기상 증착법(MOCVD) 또는 원자층 증착법(ALD)으로 형성되는 티타늄 산화물 박막의 제조방법.The titanium oxide thin film is formed by chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
KR1020090064627A 2009-07-15 2009-07-15 Novel titanium alkoxide compounds and process for preparing method thereof KR101093817B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090064627A KR101093817B1 (en) 2009-07-15 2009-07-15 Novel titanium alkoxide compounds and process for preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090064627A KR101093817B1 (en) 2009-07-15 2009-07-15 Novel titanium alkoxide compounds and process for preparing method thereof

Publications (2)

Publication Number Publication Date
KR20110006968A true KR20110006968A (en) 2011-01-21
KR101093817B1 KR101093817B1 (en) 2011-12-19

Family

ID=43613652

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090064627A KR101093817B1 (en) 2009-07-15 2009-07-15 Novel titanium alkoxide compounds and process for preparing method thereof

Country Status (1)

Country Link
KR (1) KR101093817B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9516108D0 (en) * 1995-08-05 1995-10-04 Tioxide Specialties Ltd Printing inks
KR100634814B1 (en) * 2005-04-12 2006-10-16 한국화학연구원 Precursors of novel titanium oxide and preparation method thereof

Also Published As

Publication number Publication date
KR101093817B1 (en) 2011-12-19

Similar Documents

Publication Publication Date Title
KR101260858B1 (en) Metal-containing compound process for producing the same metal-containing thin film and method of forming the same
KR102215341B1 (en) Metal precursor and metal containing thin film prepared by using the same
JP5469037B2 (en) Group 4 metal precursors for metal-containing films
JP5654439B2 (en) Metal enolate precursors for depositing metal-containing films
JP2010539709A (en) Preparation of titanium-containing thin films by atomic layer growth using monocyclopentadienyl titanium-based precursors
KR101284664B1 (en) Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom
KR20090054922A (en) Metal complexes of tridentate beta-ketoiminates
KR101659610B1 (en) Organo germanium compounds and method of depositing thin film using them as precursors
KR20120072986A (en) Organometallic precursors for thin-film deposition of metal oxide or silicon-containing metal oxide, and deposition process of the thin films therefrom
KR101785594B1 (en) Precusor compositions and Method for forming a thin film using thereof
TW201738250A (en) Transition metal compound, preparation method thereof, and composition for depositing transition metal-containing thin film comprising the same
JP2020517579A (en) Metal triamine compound, method for producing the same, and metal-containing thin film deposition composition containing the same
KR100684992B1 (en) Novel lanthanum(iii) complexes and preparation method thereof
KR20200067508A (en) Group iv transition metal compounds, preparation method thereof and process for the formation of thin films using the same
KR101093817B1 (en) Novel titanium alkoxide compounds and process for preparing method thereof
KR100634814B1 (en) Precursors of novel titanium oxide and preparation method thereof
JP5373945B2 (en) Method for depositing Group 4 metal-containing film
KR20220058190A (en) Group 3 metal precusor and thin film containing metal
TWI838641B (en) Group 4 metal element-containing compound, precursor composition containing same, and method for forming thin film using same
KR20140074162A (en) A precursor compound containing group iv transition metal, and depositing method of thin film using the same
KR102428276B1 (en) Group 4 metal element-containing compound, precursor composition containing same, and method for forming thin film using same
KR100584200B1 (en) Precursors of titanium oxide and preparation method thereof
KR102417216B1 (en) Group 4 organometallic precursor compound into which η6 borata benzene ligand is introduced, a method for manufacturing the same, and a method for forming a thin film using the same
KR100992982B1 (en) Novel hafnium alkoxide compounds and preparing method thereof
KR100695571B1 (en) Novel praseodymium(iii) complexes and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140922

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161006

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee